llvm/lib/CodeGen/MachineInstr.cpp
Jakob Stoklund Olesen 9f4692d295 Tighten up the erase/remove API for bundled instructions.
Most code is oblivious to bundles and uses the MBB::iterator which only
visits whole bundles. MBB::erase() operates on whole bundles at a time
as before.

MBB::remove() now refuses to remove bundled instructions. It is not safe
to remove all instructions in a bundle without deleting them since there
is no way of returning pointers to all the removed instructions.

MBB::remove_instr() and MBB::erase_instr() will now update bundle flags
correctly, lifting individual instructions out of bundles while leaving
the remaining bundle intact.

The MachineInstr convenience functions are updated so

  eraseFromParent() erases a whole bundle as before
  eraseFromBundle() erases a single instruction, leaving the rest of its bundle.
  removeFromParent() refuses to operate on bundled instructions, and
  removeFromBundle() lifts a single instruction out of its bundle.

These functions will no longer accidentally split or coalesce bundles -
bundle flags are updated to preserve the existing bundling, and explicit
bundleWith* / unbundleFrom* functions should be used to change the
instruction bundling.

This API update is still a work in progress. I am going to update APIs
first so they maintain bundle flags automatically when possible. Then
I'll add stricter verification of the bundle flags.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170384 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-17 23:55:38 +00:00

1912 lines
66 KiB
C++

//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Methods common to all machine instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Constants.h"
#include "llvm/DebugInfo.h"
#include "llvm/Function.h"
#include "llvm/InlineAsm.h"
#include "llvm/LLVMContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Type.h"
#include "llvm/Value.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// MachineOperand Implementation
//===----------------------------------------------------------------------===//
void MachineOperand::setReg(unsigned Reg) {
if (getReg() == Reg) return; // No change.
// Otherwise, we have to change the register. If this operand is embedded
// into a machine function, we need to update the old and new register's
// use/def lists.
if (MachineInstr *MI = getParent())
if (MachineBasicBlock *MBB = MI->getParent())
if (MachineFunction *MF = MBB->getParent()) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.removeRegOperandFromUseList(this);
SmallContents.RegNo = Reg;
MRI.addRegOperandToUseList(this);
return;
}
// Otherwise, just change the register, no problem. :)
SmallContents.RegNo = Reg;
}
void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
const TargetRegisterInfo &TRI) {
assert(TargetRegisterInfo::isVirtualRegister(Reg));
if (SubIdx && getSubReg())
SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
setReg(Reg);
if (SubIdx)
setSubReg(SubIdx);
}
void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (getSubReg()) {
Reg = TRI.getSubReg(Reg, getSubReg());
// Note that getSubReg() may return 0 if the sub-register doesn't exist.
// That won't happen in legal code.
setSubReg(0);
}
setReg(Reg);
}
/// Change a def to a use, or a use to a def.
void MachineOperand::setIsDef(bool Val) {
assert(isReg() && "Wrong MachineOperand accessor");
assert((!Val || !isDebug()) && "Marking a debug operation as def");
if (IsDef == Val)
return;
// MRI may keep uses and defs in different list positions.
if (MachineInstr *MI = getParent())
if (MachineBasicBlock *MBB = MI->getParent())
if (MachineFunction *MF = MBB->getParent()) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.removeRegOperandFromUseList(this);
IsDef = Val;
MRI.addRegOperandToUseList(this);
return;
}
IsDef = Val;
}
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
// If this operand is currently a register operand, and if this is in a
// function, deregister the operand from the register's use/def list.
if (isReg() && isOnRegUseList())
if (MachineInstr *MI = getParent())
if (MachineBasicBlock *MBB = MI->getParent())
if (MachineFunction *MF = MBB->getParent())
MF->getRegInfo().removeRegOperandFromUseList(this);
OpKind = MO_Immediate;
Contents.ImmVal = ImmVal;
}
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
bool isKill, bool isDead, bool isUndef,
bool isDebug) {
MachineRegisterInfo *RegInfo = 0;
if (MachineInstr *MI = getParent())
if (MachineBasicBlock *MBB = MI->getParent())
if (MachineFunction *MF = MBB->getParent())
RegInfo = &MF->getRegInfo();
// If this operand is already a register operand, remove it from the
// register's use/def lists.
bool WasReg = isReg();
if (RegInfo && WasReg)
RegInfo->removeRegOperandFromUseList(this);
// Change this to a register and set the reg#.
OpKind = MO_Register;
SmallContents.RegNo = Reg;
SubReg = 0;
IsDef = isDef;
IsImp = isImp;
IsKill = isKill;
IsDead = isDead;
IsUndef = isUndef;
IsInternalRead = false;
IsEarlyClobber = false;
IsDebug = isDebug;
// Ensure isOnRegUseList() returns false.
Contents.Reg.Prev = 0;
// Preserve the tie when the operand was already a register.
if (!WasReg)
TiedTo = 0;
// If this operand is embedded in a function, add the operand to the
// register's use/def list.
if (RegInfo)
RegInfo->addRegOperandToUseList(this);
}
/// isIdenticalTo - Return true if this operand is identical to the specified
/// operand. Note that this should stay in sync with the hash_value overload
/// below.
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
if (getType() != Other.getType() ||
getTargetFlags() != Other.getTargetFlags())
return false;
switch (getType()) {
case MachineOperand::MO_Register:
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
getSubReg() == Other.getSubReg();
case MachineOperand::MO_Immediate:
return getImm() == Other.getImm();
case MachineOperand::MO_CImmediate:
return getCImm() == Other.getCImm();
case MachineOperand::MO_FPImmediate:
return getFPImm() == Other.getFPImm();
case MachineOperand::MO_MachineBasicBlock:
return getMBB() == Other.getMBB();
case MachineOperand::MO_FrameIndex:
return getIndex() == Other.getIndex();
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
case MachineOperand::MO_JumpTableIndex:
return getIndex() == Other.getIndex();
case MachineOperand::MO_GlobalAddress:
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
case MachineOperand::MO_ExternalSymbol:
return !strcmp(getSymbolName(), Other.getSymbolName()) &&
getOffset() == Other.getOffset();
case MachineOperand::MO_BlockAddress:
return getBlockAddress() == Other.getBlockAddress() &&
getOffset() == Other.getOffset();
case MO_RegisterMask:
return getRegMask() == Other.getRegMask();
case MachineOperand::MO_MCSymbol:
return getMCSymbol() == Other.getMCSymbol();
case MachineOperand::MO_Metadata:
return getMetadata() == Other.getMetadata();
}
llvm_unreachable("Invalid machine operand type");
}
// Note: this must stay exactly in sync with isIdenticalTo above.
hash_code llvm::hash_value(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Register:
// Register operands don't have target flags.
return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
case MachineOperand::MO_Immediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
case MachineOperand::MO_CImmediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
case MachineOperand::MO_FPImmediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
case MachineOperand::MO_MachineBasicBlock:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
case MachineOperand::MO_FrameIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
MO.getOffset());
case MachineOperand::MO_JumpTableIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
case MachineOperand::MO_ExternalSymbol:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
MO.getSymbolName());
case MachineOperand::MO_GlobalAddress:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
MO.getOffset());
case MachineOperand::MO_BlockAddress:
return hash_combine(MO.getType(), MO.getTargetFlags(),
MO.getBlockAddress(), MO.getOffset());
case MachineOperand::MO_RegisterMask:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
case MachineOperand::MO_Metadata:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
case MachineOperand::MO_MCSymbol:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
}
llvm_unreachable("Invalid machine operand type");
}
/// print - Print the specified machine operand.
///
void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
// If the instruction is embedded into a basic block, we can find the
// target info for the instruction.
if (!TM)
if (const MachineInstr *MI = getParent())
if (const MachineBasicBlock *MBB = MI->getParent())
if (const MachineFunction *MF = MBB->getParent())
TM = &MF->getTarget();
const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
switch (getType()) {
case MachineOperand::MO_Register:
OS << PrintReg(getReg(), TRI, getSubReg());
if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
isInternalRead() || isEarlyClobber() || isTied()) {
OS << '<';
bool NeedComma = false;
if (isDef()) {
if (NeedComma) OS << ',';
if (isEarlyClobber())
OS << "earlyclobber,";
if (isImplicit())
OS << "imp-";
OS << "def";
NeedComma = true;
// <def,read-undef> only makes sense when getSubReg() is set.
// Don't clutter the output otherwise.
if (isUndef() && getSubReg())
OS << ",read-undef";
} else if (isImplicit()) {
OS << "imp-use";
NeedComma = true;
}
if (isKill()) {
if (NeedComma) OS << ',';
OS << "kill";
NeedComma = true;
}
if (isDead()) {
if (NeedComma) OS << ',';
OS << "dead";
NeedComma = true;
}
if (isUndef() && isUse()) {
if (NeedComma) OS << ',';
OS << "undef";
NeedComma = true;
}
if (isInternalRead()) {
if (NeedComma) OS << ',';
OS << "internal";
NeedComma = true;
}
if (isTied()) {
if (NeedComma) OS << ',';
OS << "tied";
if (TiedTo != 15)
OS << unsigned(TiedTo - 1);
NeedComma = true;
}
OS << '>';
}
break;
case MachineOperand::MO_Immediate:
OS << getImm();
break;
case MachineOperand::MO_CImmediate:
getCImm()->getValue().print(OS, false);
break;
case MachineOperand::MO_FPImmediate:
if (getFPImm()->getType()->isFloatTy())
OS << getFPImm()->getValueAPF().convertToFloat();
else
OS << getFPImm()->getValueAPF().convertToDouble();
break;
case MachineOperand::MO_MachineBasicBlock:
OS << "<BB#" << getMBB()->getNumber() << ">";
break;
case MachineOperand::MO_FrameIndex:
OS << "<fi#" << getIndex() << '>';
break;
case MachineOperand::MO_ConstantPoolIndex:
OS << "<cp#" << getIndex();
if (getOffset()) OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_TargetIndex:
OS << "<ti#" << getIndex();
if (getOffset()) OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_JumpTableIndex:
OS << "<jt#" << getIndex() << '>';
break;
case MachineOperand::MO_GlobalAddress:
OS << "<ga:";
WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
if (getOffset()) OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_ExternalSymbol:
OS << "<es:" << getSymbolName();
if (getOffset()) OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_BlockAddress:
OS << '<';
WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
if (getOffset()) OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_RegisterMask:
OS << "<regmask>";
break;
case MachineOperand::MO_Metadata:
OS << '<';
WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
OS << '>';
break;
case MachineOperand::MO_MCSymbol:
OS << "<MCSym=" << *getMCSymbol() << '>';
break;
}
if (unsigned TF = getTargetFlags())
OS << "[TF=" << TF << ']';
}
//===----------------------------------------------------------------------===//
// MachineMemOperand Implementation
//===----------------------------------------------------------------------===//
/// getAddrSpace - Return the LLVM IR address space number that this pointer
/// points into.
unsigned MachinePointerInfo::getAddrSpace() const {
if (V == 0) return 0;
return cast<PointerType>(V->getType())->getAddressSpace();
}
/// getConstantPool - Return a MachinePointerInfo record that refers to the
/// constant pool.
MachinePointerInfo MachinePointerInfo::getConstantPool() {
return MachinePointerInfo(PseudoSourceValue::getConstantPool());
}
/// getFixedStack - Return a MachinePointerInfo record that refers to the
/// the specified FrameIndex.
MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
}
MachinePointerInfo MachinePointerInfo::getJumpTable() {
return MachinePointerInfo(PseudoSourceValue::getJumpTable());
}
MachinePointerInfo MachinePointerInfo::getGOT() {
return MachinePointerInfo(PseudoSourceValue::getGOT());
}
MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
}
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
uint64_t s, unsigned int a,
const MDNode *TBAAInfo,
const MDNode *Ranges)
: PtrInfo(ptrinfo), Size(s),
Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
TBAAInfo(TBAAInfo), Ranges(Ranges) {
assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
"invalid pointer value");
assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
assert((isLoad() || isStore()) && "Not a load/store!");
}
/// Profile - Gather unique data for the object.
///
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(getOffset());
ID.AddInteger(Size);
ID.AddPointer(getValue());
ID.AddInteger(Flags);
}
void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
// The Value and Offset may differ due to CSE. But the flags and size
// should be the same.
assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
assert(MMO->getSize() == getSize() && "Size mismatch!");
if (MMO->getBaseAlignment() >= getBaseAlignment()) {
// Update the alignment value.
Flags = (Flags & ((1 << MOMaxBits) - 1)) |
((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
// Also update the base and offset, because the new alignment may
// not be applicable with the old ones.
PtrInfo = MMO->PtrInfo;
}
}
/// getAlignment - Return the minimum known alignment in bytes of the
/// actual memory reference.
uint64_t MachineMemOperand::getAlignment() const {
return MinAlign(getBaseAlignment(), getOffset());
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
assert((MMO.isLoad() || MMO.isStore()) &&
"SV has to be a load, store or both.");
if (MMO.isVolatile())
OS << "Volatile ";
if (MMO.isLoad())
OS << "LD";
if (MMO.isStore())
OS << "ST";
OS << MMO.getSize();
// Print the address information.
OS << "[";
if (!MMO.getValue())
OS << "<unknown>";
else
WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
// If the alignment of the memory reference itself differs from the alignment
// of the base pointer, print the base alignment explicitly, next to the base
// pointer.
if (MMO.getBaseAlignment() != MMO.getAlignment())
OS << "(align=" << MMO.getBaseAlignment() << ")";
if (MMO.getOffset() != 0)
OS << "+" << MMO.getOffset();
OS << "]";
// Print the alignment of the reference.
if (MMO.getBaseAlignment() != MMO.getAlignment() ||
MMO.getBaseAlignment() != MMO.getSize())
OS << "(align=" << MMO.getAlignment() << ")";
// Print TBAA info.
if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
OS << "(tbaa=";
if (TBAAInfo->getNumOperands() > 0)
WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
else
OS << "<unknown>";
OS << ")";
}
// Print nontemporal info.
if (MMO.isNonTemporal())
OS << "(nontemporal)";
return OS;
}
//===----------------------------------------------------------------------===//
// MachineInstr Implementation
//===----------------------------------------------------------------------===//
void MachineInstr::addImplicitDefUseOperands() {
if (MCID->ImplicitDefs)
for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
if (MCID->ImplicitUses)
for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
}
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
/// implicit operands. It reserves space for the number of operands specified by
/// the MCInstrDesc.
MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
bool NoImp)
: MCID(&tid), Flags(0), AsmPrinterFlags(0),
NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
unsigned NumImplicitOps = 0;
if (!NoImp)
NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
Operands.reserve(NumImplicitOps + MCID->getNumOperands());
if (!NoImp)
addImplicitDefUseOperands();
// Make sure that we get added to a machine basicblock
LeakDetector::addGarbageObject(this);
}
/// MachineInstr ctor - Copies MachineInstr arg exactly
///
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
: MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
Parent(0), debugLoc(MI.getDebugLoc()) {
Operands.reserve(MI.getNumOperands());
// Add operands
for (unsigned i = 0; i != MI.getNumOperands(); ++i)
addOperand(MI.getOperand(i));
// Copy all the flags.
Flags = MI.Flags;
// Set parent to null.
Parent = 0;
LeakDetector::addGarbageObject(this);
}
MachineInstr::~MachineInstr() {
LeakDetector::removeGarbageObject(this);
#ifndef NDEBUG
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
"Reg operand def/use list corrupted");
}
#endif
}
/// getRegInfo - If this instruction is embedded into a MachineFunction,
/// return the MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *MachineInstr::getRegInfo() {
if (MachineBasicBlock *MBB = getParent())
return &MBB->getParent()->getRegInfo();
return 0;
}
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands already be on their use lists.
void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
if (Operands[i].isReg())
MRI.removeRegOperandFromUseList(&Operands[i]);
}
/// AddRegOperandsToUseLists - Add all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands not be on their use lists yet.
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
if (Operands[i].isReg())
MRI.addRegOperandToUseList(&Operands[i]);
}
/// addOperand - Add the specified operand to the instruction. If it is an
/// implicit operand, it is added to the end of the operand list. If it is
/// an explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
void MachineInstr::addOperand(const MachineOperand &Op) {
assert(MCID && "Cannot add operands before providing an instr descriptor");
bool isImpReg = Op.isReg() && Op.isImplicit();
MachineRegisterInfo *RegInfo = getRegInfo();
// If the Operands backing store is reallocated, all register operands must
// be removed and re-added to RegInfo. It is storing pointers to operands.
bool Reallocate = RegInfo &&
!Operands.empty() && Operands.size() == Operands.capacity();
// Find the insert location for the new operand. Implicit registers go at
// the end, everything goes before the implicit regs.
unsigned OpNo = Operands.size();
// Remove all the implicit operands from RegInfo if they need to be shifted.
// FIXME: Allow mixed explicit and implicit operands on inline asm.
// InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
// implicit-defs, but they must not be moved around. See the FIXME in
// InstrEmitter.cpp.
if (!isImpReg && !isInlineAsm()) {
while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
--OpNo;
assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
if (RegInfo)
RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
}
}
// OpNo now points as the desired insertion point. Unless this is a variadic
// instruction, only implicit regs are allowed beyond MCID->getNumOperands().
// RegMask operands go between the explicit and implicit operands.
assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
OpNo < MCID->getNumOperands()) &&
"Trying to add an operand to a machine instr that is already done!");
// All operands from OpNo have been removed from RegInfo. If the Operands
// backing store needs to be reallocated, we also need to remove any other
// register operands.
if (Reallocate)
for (unsigned i = 0; i != OpNo; ++i)
if (Operands[i].isReg())
RegInfo->removeRegOperandFromUseList(&Operands[i]);
// Insert the new operand at OpNo.
Operands.insert(Operands.begin() + OpNo, Op);
Operands[OpNo].ParentMI = this;
// The Operands backing store has now been reallocated, so we can re-add the
// operands before OpNo.
if (Reallocate)
for (unsigned i = 0; i != OpNo; ++i)
if (Operands[i].isReg())
RegInfo->addRegOperandToUseList(&Operands[i]);
// When adding a register operand, tell RegInfo about it.
if (Operands[OpNo].isReg()) {
// Ensure isOnRegUseList() returns false, regardless of Op's status.
Operands[OpNo].Contents.Reg.Prev = 0;
// Ignore existing ties. This is not a property that can be copied.
Operands[OpNo].TiedTo = 0;
// Add the new operand to RegInfo.
if (RegInfo)
RegInfo->addRegOperandToUseList(&Operands[OpNo]);
// The MCID operand information isn't accurate until we start adding
// explicit operands. The implicit operands are added first, then the
// explicits are inserted before them.
if (!isImpReg) {
// Tie uses to defs as indicated in MCInstrDesc.
if (Operands[OpNo].isUse()) {
int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
if (DefIdx != -1)
tieOperands(DefIdx, OpNo);
}
// If the register operand is flagged as early, mark the operand as such.
if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
Operands[OpNo].setIsEarlyClobber(true);
}
}
// Re-add all the implicit ops.
if (RegInfo) {
for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
assert(Operands[i].isReg() && "Should only be an implicit reg!");
RegInfo->addRegOperandToUseList(&Operands[i]);
}
}
}
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
///
void MachineInstr::RemoveOperand(unsigned OpNo) {
assert(OpNo < Operands.size() && "Invalid operand number");
untieRegOperand(OpNo);
MachineRegisterInfo *RegInfo = getRegInfo();
// Special case removing the last one.
if (OpNo == Operands.size()-1) {
// If needed, remove from the reg def/use list.
if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
RegInfo->removeRegOperandFromUseList(&Operands.back());
Operands.pop_back();
return;
}
// Otherwise, we are removing an interior operand. If we have reginfo to
// update, remove all operands that will be shifted down from their reg lists,
// move everything down, then re-add them.
if (RegInfo) {
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
if (Operands[i].isReg())
RegInfo->removeRegOperandFromUseList(&Operands[i]);
}
}
#ifndef NDEBUG
// Moving tied operands would break the ties.
for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
if (Operands[i].isReg())
assert(!Operands[i].isTied() && "Cannot move tied operands");
#endif
Operands.erase(Operands.begin()+OpNo);
if (RegInfo) {
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
if (Operands[i].isReg())
RegInfo->addRegOperandToUseList(&Operands[i]);
}
}
}
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
/// This function should be used only occasionally. The setMemRefs function
/// is the primary method for setting up a MachineInstr's MemRefs list.
void MachineInstr::addMemOperand(MachineFunction &MF,
MachineMemOperand *MO) {
mmo_iterator OldMemRefs = MemRefs;
uint16_t OldNumMemRefs = NumMemRefs;
uint16_t NewNum = NumMemRefs + 1;
mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
NewMemRefs[NewNum - 1] = MO;
MemRefs = NewMemRefs;
NumMemRefs = NewNum;
}
bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
const MachineBasicBlock *MBB = getParent();
MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
while (MII != MBB->end() && MII->isInsideBundle()) {
if (MII->getDesc().getFlags() & Mask) {
if (Type == AnyInBundle)
return true;
} else {
if (Type == AllInBundle)
return false;
}
++MII;
}
return Type == AllInBundle;
}
bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
MICheckType Check) const {
// If opcodes or number of operands are not the same then the two
// instructions are obviously not identical.
if (Other->getOpcode() != getOpcode() ||
Other->getNumOperands() != getNumOperands())
return false;
if (isBundle()) {
// Both instructions are bundles, compare MIs inside the bundle.
MachineBasicBlock::const_instr_iterator I1 = *this;
MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
MachineBasicBlock::const_instr_iterator I2 = *Other;
MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
while (++I1 != E1 && I1->isInsideBundle()) {
++I2;
if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
return false;
}
}
// Check operands to make sure they match.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
const MachineOperand &OMO = Other->getOperand(i);
if (!MO.isReg()) {
if (!MO.isIdenticalTo(OMO))
return false;
continue;
}
// Clients may or may not want to ignore defs when testing for equality.
// For example, machine CSE pass only cares about finding common
// subexpressions, so it's safe to ignore virtual register defs.
if (MO.isDef()) {
if (Check == IgnoreDefs)
continue;
else if (Check == IgnoreVRegDefs) {
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
if (MO.getReg() != OMO.getReg())
return false;
} else {
if (!MO.isIdenticalTo(OMO))
return false;
if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
return false;
}
} else {
if (!MO.isIdenticalTo(OMO))
return false;
if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
return false;
}
}
// If DebugLoc does not match then two dbg.values are not identical.
if (isDebugValue())
if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
&& getDebugLoc() != Other->getDebugLoc())
return false;
return true;
}
MachineInstr *MachineInstr::removeFromParent() {
assert(getParent() && "Not embedded in a basic block!");
return getParent()->remove(this);
}
MachineInstr *MachineInstr::removeFromBundle() {
assert(getParent() && "Not embedded in a basic block!");
return getParent()->remove_instr(this);
}
void MachineInstr::eraseFromParent() {
assert(getParent() && "Not embedded in a basic block!");
getParent()->erase(this);
}
void MachineInstr::eraseFromBundle() {
assert(getParent() && "Not embedded in a basic block!");
getParent()->erase_instr(this);
}
/// getNumExplicitOperands - Returns the number of non-implicit operands.
///
unsigned MachineInstr::getNumExplicitOperands() const {
unsigned NumOperands = MCID->getNumOperands();
if (!MCID->isVariadic())
return NumOperands;
for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isImplicit())
NumOperands++;
}
return NumOperands;
}
void MachineInstr::bundleWithPred() {
assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
setFlag(BundledPred);
MachineBasicBlock::instr_iterator Pred = this;
--Pred;
Pred->setFlag(BundledSucc);
}
void MachineInstr::bundleWithSucc() {
assert(!isBundledWithSucc() && "MI is already bundled with its successor");
setFlag(BundledSucc);
MachineBasicBlock::instr_iterator Succ = this;
++Succ;
Succ->setFlag(BundledPred);
}
void MachineInstr::unbundleFromPred() {
assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
clearFlag(BundledPred);
MachineBasicBlock::instr_iterator Pred = this;
--Pred;
Pred->clearFlag(BundledSucc);
}
void MachineInstr::unbundleFromSucc() {
assert(isBundledWithSucc() && "MI isn't bundled with its successor");
clearFlag(BundledSucc);
MachineBasicBlock::instr_iterator Succ = this;
--Succ;
Succ->clearFlag(BundledPred);
}
/// isBundled - Return true if this instruction part of a bundle. This is true
/// if either itself or its following instruction is marked "InsideBundle".
bool MachineInstr::isBundled() const {
if (isInsideBundle())
return true;
MachineBasicBlock::const_instr_iterator nextMI = this;
++nextMI;
return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
}
bool MachineInstr::isStackAligningInlineAsm() const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
return true;
}
return false;
}
InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
}
int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
unsigned *GroupNo) const {
assert(isInlineAsm() && "Expected an inline asm instruction");
assert(OpIdx < getNumOperands() && "OpIdx out of range");
// Ignore queries about the initial operands.
if (OpIdx < InlineAsm::MIOp_FirstOperand)
return -1;
unsigned Group = 0;
unsigned NumOps;
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
i += NumOps) {
const MachineOperand &FlagMO = getOperand(i);
// If we reach the implicit register operands, stop looking.
if (!FlagMO.isImm())
return -1;
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
if (i + NumOps > OpIdx) {
if (GroupNo)
*GroupNo = Group;
return i;
}
++Group;
}
return -1;
}
const TargetRegisterClass*
MachineInstr::getRegClassConstraint(unsigned OpIdx,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const {
assert(getParent() && "Can't have an MBB reference here!");
assert(getParent()->getParent() && "Can't have an MF reference here!");
const MachineFunction &MF = *getParent()->getParent();
// Most opcodes have fixed constraints in their MCInstrDesc.
if (!isInlineAsm())
return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
if (!getOperand(OpIdx).isReg())
return NULL;
// For tied uses on inline asm, get the constraint from the def.
unsigned DefIdx;
if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
OpIdx = DefIdx;
// Inline asm stores register class constraints in the flag word.
int FlagIdx = findInlineAsmFlagIdx(OpIdx);
if (FlagIdx < 0)
return NULL;
unsigned Flag = getOperand(FlagIdx).getImm();
unsigned RCID;
if (InlineAsm::hasRegClassConstraint(Flag, RCID))
return TRI->getRegClass(RCID);
// Assume that all registers in a memory operand are pointers.
if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
return TRI->getPointerRegClass(MF);
return NULL;
}
/// getBundleSize - Return the number of instructions inside the MI bundle.
unsigned MachineInstr::getBundleSize() const {
assert(isBundle() && "Expecting a bundle");
const MachineBasicBlock *MBB = getParent();
MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end();
unsigned Size = 0;
while ((++I != E) && I->isInsideBundle()) {
++Size;
}
assert(Size > 1 && "Malformed bundle");
return Size;
}
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
const TargetRegisterInfo *TRI) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MOReg == Reg ||
(TRI &&
TargetRegisterInfo::isPhysicalRegister(MOReg) &&
TargetRegisterInfo::isPhysicalRegister(Reg) &&
TRI->isSubRegister(MOReg, Reg)))
if (!isKill || MO.isKill())
return i;
}
return -1;
}
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
/// indicating if this instruction reads or writes Reg. This also considers
/// partial defines.
std::pair<bool,bool>
MachineInstr::readsWritesVirtualRegister(unsigned Reg,
SmallVectorImpl<unsigned> *Ops) const {
bool PartDef = false; // Partial redefine.
bool FullDef = false; // Full define.
bool Use = false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || MO.getReg() != Reg)
continue;
if (Ops)
Ops->push_back(i);
if (MO.isUse())
Use |= !MO.isUndef();
else if (MO.getSubReg() && !MO.isUndef())
// A partial <def,undef> doesn't count as reading the register.
PartDef = true;
else
FullDef = true;
}
// A partial redefine uses Reg unless there is also a full define.
return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
}
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
/// the specified register or -1 if it is not found. If isDead is true, defs
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
/// also checks if there is a def of a super-register.
int
MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
const TargetRegisterInfo *TRI) const {
bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
// Accept regmask operands when Overlap is set.
// Ignore them when looking for a specific def operand (Overlap == false).
if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
return i;
if (!MO.isReg() || !MO.isDef())
continue;
unsigned MOReg = MO.getReg();
bool Found = (MOReg == Reg);
if (!Found && TRI && isPhys &&
TargetRegisterInfo::isPhysicalRegister(MOReg)) {
if (Overlap)
Found = TRI->regsOverlap(MOReg, Reg);
else
Found = TRI->isSubRegister(MOReg, Reg);
}
if (Found && (!isDead || MO.isDead()))
return i;
}
return -1;
}
/// findFirstPredOperandIdx() - Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int MachineInstr::findFirstPredOperandIdx() const {
// Don't call MCID.findFirstPredOperandIdx() because this variant
// is sometimes called on an instruction that's not yet complete, and
// so the number of operands is less than the MCID indicates. In
// particular, the PTX target does this.
const MCInstrDesc &MCID = getDesc();
if (MCID.isPredicable()) {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (MCID.OpInfo[i].isPredicate())
return i;
}
return -1;
}
// MachineOperand::TiedTo is 4 bits wide.
const unsigned TiedMax = 15;
/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
///
/// Use and def operands can be tied together, indicated by a non-zero TiedTo
/// field. TiedTo can have these values:
///
/// 0: Operand is not tied to anything.
/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
/// TiedMax: Tied to an operand >= TiedMax-1.
///
/// The tied def must be one of the first TiedMax operands on a normal
/// instruction. INLINEASM instructions allow more tied defs.
///
void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
MachineOperand &DefMO = getOperand(DefIdx);
MachineOperand &UseMO = getOperand(UseIdx);
assert(DefMO.isDef() && "DefIdx must be a def operand");
assert(UseMO.isUse() && "UseIdx must be a use operand");
assert(!DefMO.isTied() && "Def is already tied to another use");
assert(!UseMO.isTied() && "Use is already tied to another def");
if (DefIdx < TiedMax)
UseMO.TiedTo = DefIdx + 1;
else {
// Inline asm can use the group descriptors to find tied operands, but on
// normal instruction, the tied def must be within the first TiedMax
// operands.
assert(isInlineAsm() && "DefIdx out of range");
UseMO.TiedTo = TiedMax;
}
// UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
}
/// Given the index of a tied register operand, find the operand it is tied to.
/// Defs are tied to uses and vice versa. Returns the index of the tied operand
/// which must exist.
unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
const MachineOperand &MO = getOperand(OpIdx);
assert(MO.isTied() && "Operand isn't tied");
// Normally TiedTo is in range.
if (MO.TiedTo < TiedMax)
return MO.TiedTo - 1;
// Uses on normal instructions can be out of range.
if (!isInlineAsm()) {
// Normal tied defs must be in the 0..TiedMax-1 range.
if (MO.isUse())
return TiedMax - 1;
// MO is a def. Search for the tied use.
for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
const MachineOperand &UseMO = getOperand(i);
if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
return i;
}
llvm_unreachable("Can't find tied use");
}
// Now deal with inline asm by parsing the operand group descriptor flags.
// Find the beginning of each operand group.
SmallVector<unsigned, 8> GroupIdx;
unsigned OpIdxGroup = ~0u;
unsigned NumOps;
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
i += NumOps) {
const MachineOperand &FlagMO = getOperand(i);
assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
unsigned CurGroup = GroupIdx.size();
GroupIdx.push_back(i);
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
// OpIdx belongs to this operand group.
if (OpIdx > i && OpIdx < i + NumOps)
OpIdxGroup = CurGroup;
unsigned TiedGroup;
if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
continue;
// Operands in this group are tied to operands in TiedGroup which must be
// earlier. Find the number of operands between the two groups.
unsigned Delta = i - GroupIdx[TiedGroup];
// OpIdx is a use tied to TiedGroup.
if (OpIdxGroup == CurGroup)
return OpIdx - Delta;
// OpIdx is a def tied to this use group.
if (OpIdxGroup == TiedGroup)
return OpIdx + Delta;
}
llvm_unreachable("Invalid tied operand on inline asm");
}
/// clearKillInfo - Clears kill flags on all operands.
///
void MachineInstr::clearKillInfo() {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (MO.isReg() && MO.isUse())
MO.setIsKill(false);
}
}
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
///
void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
continue;
for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
MachineOperand &MOp = getOperand(j);
if (!MOp.isIdenticalTo(MO))
continue;
if (MO.isKill())
MOp.setIsKill();
else
MOp.setIsDead();
break;
}
}
}
/// copyPredicates - Copies predicate operand(s) from MI.
void MachineInstr::copyPredicates(const MachineInstr *MI) {
assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
const MCInstrDesc &MCID = MI->getDesc();
if (!MCID.isPredicable())
return;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (MCID.OpInfo[i].isPredicate()) {
// Predicated operands must be last operands.
addOperand(MI->getOperand(i));
}
}
}
void MachineInstr::substituteRegister(unsigned FromReg,
unsigned ToReg,
unsigned SubIdx,
const TargetRegisterInfo &RegInfo) {
if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
if (SubIdx)
ToReg = RegInfo.getSubReg(ToReg, SubIdx);
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || MO.getReg() != FromReg)
continue;
MO.substPhysReg(ToReg, RegInfo);
}
} else {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || MO.getReg() != FromReg)
continue;
MO.substVirtReg(ToReg, SubIdx, RegInfo);
}
}
}
/// isSafeToMove - Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
AliasAnalysis *AA,
bool &SawStore) const {
// Ignore stuff that we obviously can't move.
//
// Treat volatile loads as stores. This is not strictly necessary for
// volatiles, but it is required for atomic loads. It is not allowed to move
// a load across an atomic load with Ordering > Monotonic.
if (mayStore() || isCall() ||
(mayLoad() && hasOrderedMemoryRef())) {
SawStore = true;
return false;
}
if (isLabel() || isDebugValue() ||
isTerminator() || hasUnmodeledSideEffects())
return false;
// See if this instruction does a load. If so, we have to guarantee that the
// loaded value doesn't change between the load and the its intended
// destination. The check for isInvariantLoad gives the targe the chance to
// classify the load as always returning a constant, e.g. a constant pool
// load.
if (mayLoad() && !isInvariantLoad(AA))
// Otherwise, this is a real load. If there is a store between the load and
// end of block, we can't move it.
return !SawStore;
return true;
}
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
/// instruction which defined the specified register instead of copying it.
bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
AliasAnalysis *AA,
unsigned DstReg) const {
bool SawStore = false;
if (!TII->isTriviallyReMaterializable(this, AA) ||
!isSafeToMove(TII, AA, SawStore))
return false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg())
continue;
// FIXME: For now, do not remat any instruction with register operands.
// Later on, we can loosen the restriction is the register operands have
// not been modified between the def and use. Note, this is different from
// MachineSink because the code is no longer in two-address form (at least
// partially).
if (MO.isUse())
return false;
else if (!MO.isDead() && MO.getReg() != DstReg)
return false;
}
return true;
}
/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
/// or volatile memory reference, or if the information describing the memory
/// reference is not available. Return false if it is known to have no ordered
/// memory references.
bool MachineInstr::hasOrderedMemoryRef() const {
// An instruction known never to access memory won't have a volatile access.
if (!mayStore() &&
!mayLoad() &&
!isCall() &&
!hasUnmodeledSideEffects())
return false;
// Otherwise, if the instruction has no memory reference information,
// conservatively assume it wasn't preserved.
if (memoperands_empty())
return true;
// Check the memory reference information for ordered references.
for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
if (!(*I)->isUnordered())
return true;
return false;
}
/// isInvariantLoad - Return true if this instruction is loading from a
/// location whose value is invariant across the function. For example,
/// loading a value from the constant pool or from the argument area
/// of a function if it does not change. This should only return true of
/// *all* loads the instruction does are invariant (if it does multiple loads).
bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
// If the instruction doesn't load at all, it isn't an invariant load.
if (!mayLoad())
return false;
// If the instruction has lost its memoperands, conservatively assume that
// it may not be an invariant load.
if (memoperands_empty())
return false;
const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
for (mmo_iterator I = memoperands_begin(),
E = memoperands_end(); I != E; ++I) {
if ((*I)->isVolatile()) return false;
if ((*I)->isStore()) return false;
if ((*I)->isInvariant()) return true;
if (const Value *V = (*I)->getValue()) {
// A load from a constant PseudoSourceValue is invariant.
if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
if (PSV->isConstant(MFI))
continue;
// If we have an AliasAnalysis, ask it whether the memory is constant.
if (AA && AA->pointsToConstantMemory(
AliasAnalysis::Location(V, (*I)->getSize(),
(*I)->getTBAAInfo())))
continue;
}
// Otherwise assume conservatively.
return false;
}
// Everything checks out.
return true;
}
/// isConstantValuePHI - If the specified instruction is a PHI that always
/// merges together the same virtual register, return the register, otherwise
/// return 0.
unsigned MachineInstr::isConstantValuePHI() const {
if (!isPHI())
return 0;
assert(getNumOperands() >= 3 &&
"It's illegal to have a PHI without source operands");
unsigned Reg = getOperand(1).getReg();
for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
if (getOperand(i).getReg() != Reg)
return 0;
return Reg;
}
bool MachineInstr::hasUnmodeledSideEffects() const {
if (hasProperty(MCID::UnmodeledSideEffects))
return true;
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
return true;
}
return false;
}
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
///
bool MachineInstr::allDefsAreDead() const {
for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || MO.isUse())
continue;
if (!MO.isDead())
return false;
}
return true;
}
/// copyImplicitOps - Copy implicit register operands from specified
/// instruction to this instruction.
void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isImplicit())
addOperand(MO);
}
}
void MachineInstr::dump() const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dbgs() << " " << *this;
#endif
}
static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
raw_ostream &CommentOS) {
const LLVMContext &Ctx = MF->getFunction()->getContext();
if (!DL.isUnknown()) { // Print source line info.
DIScope Scope(DL.getScope(Ctx));
// Omit the directory, because it's likely to be long and uninteresting.
if (Scope.Verify())
CommentOS << Scope.getFilename();
else
CommentOS << "<unknown>";
CommentOS << ':' << DL.getLine();
if (DL.getCol() != 0)
CommentOS << ':' << DL.getCol();
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
if (!InlinedAtDL.isUnknown()) {
CommentOS << " @[ ";
printDebugLoc(InlinedAtDL, MF, CommentOS);
CommentOS << " ]";
}
}
}
void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
// We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
const MachineFunction *MF = 0;
const MachineRegisterInfo *MRI = 0;
if (const MachineBasicBlock *MBB = getParent()) {
MF = MBB->getParent();
if (!TM && MF)
TM = &MF->getTarget();
if (MF)
MRI = &MF->getRegInfo();
}
// Save a list of virtual registers.
SmallVector<unsigned, 8> VirtRegs;
// Print explicitly defined operands on the left of an assignment syntax.
unsigned StartOp = 0, e = getNumOperands();
for (; StartOp < e && getOperand(StartOp).isReg() &&
getOperand(StartOp).isDef() &&
!getOperand(StartOp).isImplicit();
++StartOp) {
if (StartOp != 0) OS << ", ";
getOperand(StartOp).print(OS, TM);
unsigned Reg = getOperand(StartOp).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
VirtRegs.push_back(Reg);
}
if (StartOp != 0)
OS << " = ";
// Print the opcode name.
if (TM && TM->getInstrInfo())
OS << TM->getInstrInfo()->getName(getOpcode());
else
OS << "UNKNOWN";
// Print the rest of the operands.
bool OmittedAnyCallClobbers = false;
bool FirstOp = true;
unsigned AsmDescOp = ~0u;
unsigned AsmOpCount = 0;
if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
// Print asm string.
OS << " ";
getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
// Print HasSideEffects, IsAlignStack
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
OS << " [sideeffect]";
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
OS << " [alignstack]";
if (getInlineAsmDialect() == InlineAsm::AD_ATT)
OS << " [attdialect]";
if (getInlineAsmDialect() == InlineAsm::AD_Intel)
OS << " [inteldialect]";
StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
FirstOp = false;
}
for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
VirtRegs.push_back(MO.getReg());
// Omit call-clobbered registers which aren't used anywhere. This makes
// call instructions much less noisy on targets where calls clobber lots
// of registers. Don't rely on MO.isDead() because we may be called before
// LiveVariables is run, or we may be looking at a non-allocatable reg.
if (MF && isCall() &&
MO.isReg() && MO.isImplicit() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
const MachineRegisterInfo &MRI = MF->getRegInfo();
if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
bool HasAliasLive = false;
for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
AI.isValid(); ++AI) {
unsigned AliasReg = *AI;
if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
HasAliasLive = true;
break;
}
}
if (!HasAliasLive) {
OmittedAnyCallClobbers = true;
continue;
}
}
}
}
if (FirstOp) FirstOp = false; else OS << ",";
OS << " ";
if (i < getDesc().NumOperands) {
const MCOperandInfo &MCOI = getDesc().OpInfo[i];
if (MCOI.isPredicate())
OS << "pred:";
if (MCOI.isOptionalDef())
OS << "opt:";
}
if (isDebugValue() && MO.isMetadata()) {
// Pretty print DBG_VALUE instructions.
const MDNode *MD = MO.getMetadata();
if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
OS << "!\"" << MDS->getString() << '\"';
else
MO.print(OS, TM);
} else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
} else if (i == AsmDescOp && MO.isImm()) {
// Pretty print the inline asm operand descriptor.
OS << '$' << AsmOpCount++;
unsigned Flag = MO.getImm();
switch (InlineAsm::getKind(Flag)) {
case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
case InlineAsm::Kind_Imm: OS << ":[imm"; break;
case InlineAsm::Kind_Mem: OS << ":[mem"; break;
default: OS << ":[??" << InlineAsm::getKind(Flag); break;
}
unsigned RCID = 0;
if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
if (TM)
OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
else
OS << ":RC" << RCID;
}
unsigned TiedTo = 0;
if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
OS << " tiedto:$" << TiedTo;
OS << ']';
// Compute the index of the next operand descriptor.
AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
} else
MO.print(OS, TM);
}
// Briefly indicate whether any call clobbers were omitted.
if (OmittedAnyCallClobbers) {
if (!FirstOp) OS << ",";
OS << " ...";
}
bool HaveSemi = false;
if (Flags) {
if (!HaveSemi) OS << ";"; HaveSemi = true;
OS << " flags: ";
if (Flags & FrameSetup)
OS << "FrameSetup";
}
if (!memoperands_empty()) {
if (!HaveSemi) OS << ";"; HaveSemi = true;
OS << " mem:";
for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
i != e; ++i) {
OS << **i;
if (llvm::next(i) != e)
OS << " ";
}
}
// Print the regclass of any virtual registers encountered.
if (MRI && !VirtRegs.empty()) {
if (!HaveSemi) OS << ";"; HaveSemi = true;
for (unsigned i = 0; i != VirtRegs.size(); ++i) {
const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
for (unsigned j = i+1; j != VirtRegs.size();) {
if (MRI->getRegClass(VirtRegs[j]) != RC) {
++j;
continue;
}
if (VirtRegs[i] != VirtRegs[j])
OS << "," << PrintReg(VirtRegs[j]);
VirtRegs.erase(VirtRegs.begin()+j);
}
}
}
// Print debug location information.
if (isDebugValue() && getOperand(e - 1).isMetadata()) {
if (!HaveSemi) OS << ";"; HaveSemi = true;
DIVariable DV(getOperand(e - 1).getMetadata());
OS << " line no:" << DV.getLineNumber();
if (MDNode *InlinedAt = DV.getInlinedAt()) {
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
if (!InlinedAtDL.isUnknown()) {
OS << " inlined @[ ";
printDebugLoc(InlinedAtDL, MF, OS);
OS << " ]";
}
}
} else if (!debugLoc.isUnknown() && MF) {
if (!HaveSemi) OS << ";"; HaveSemi = true;
OS << " dbg:";
printDebugLoc(debugLoc, MF, OS);
}
OS << '\n';
}
bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound) {
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
bool hasAliases = isPhysReg &&
MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
bool Found = false;
SmallVector<unsigned,4> DeadOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (Reg == IncomingReg) {
if (!Found) {
if (MO.isKill())
// The register is already marked kill.
return true;
if (isPhysReg && isRegTiedToDefOperand(i))
// Two-address uses of physregs must not be marked kill.
return true;
MO.setIsKill();
Found = true;
}
} else if (hasAliases && MO.isKill() &&
TargetRegisterInfo::isPhysicalRegister(Reg)) {
// A super-register kill already exists.
if (RegInfo->isSuperRegister(IncomingReg, Reg))
return true;
if (RegInfo->isSubRegister(IncomingReg, Reg))
DeadOps.push_back(i);
}
}
// Trim unneeded kill operands.
while (!DeadOps.empty()) {
unsigned OpIdx = DeadOps.back();
if (getOperand(OpIdx).isImplicit())
RemoveOperand(OpIdx);
else
getOperand(OpIdx).setIsKill(false);
DeadOps.pop_back();
}
// If not found, this means an alias of one of the operands is killed. Add a
// new implicit operand if required.
if (!Found && AddIfNotFound) {
addOperand(MachineOperand::CreateReg(IncomingReg,
false /*IsDef*/,
true /*IsImp*/,
true /*IsKill*/));
return true;
}
return Found;
}
void MachineInstr::clearRegisterKills(unsigned Reg,
const TargetRegisterInfo *RegInfo) {
if (!TargetRegisterInfo::isPhysicalRegister(Reg))
RegInfo = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isUse() || !MO.isKill())
continue;
unsigned OpReg = MO.getReg();
if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
MO.setIsKill(false);
}
}
bool MachineInstr::addRegisterDead(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound) {
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
bool hasAliases = isPhysReg &&
MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
bool Found = false;
SmallVector<unsigned,4> DeadOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (Reg == IncomingReg) {
MO.setIsDead();
Found = true;
} else if (hasAliases && MO.isDead() &&
TargetRegisterInfo::isPhysicalRegister(Reg)) {
// There exists a super-register that's marked dead.
if (RegInfo->isSuperRegister(IncomingReg, Reg))
return true;
if (RegInfo->isSubRegister(IncomingReg, Reg))
DeadOps.push_back(i);
}
}
// Trim unneeded dead operands.
while (!DeadOps.empty()) {
unsigned OpIdx = DeadOps.back();
if (getOperand(OpIdx).isImplicit())
RemoveOperand(OpIdx);
else
getOperand(OpIdx).setIsDead(false);
DeadOps.pop_back();
}
// If not found, this means an alias of one of the operands is dead. Add a
// new implicit operand if required.
if (Found || !AddIfNotFound)
return Found;
addOperand(MachineOperand::CreateReg(IncomingReg,
true /*IsDef*/,
true /*IsImp*/,
false /*IsKill*/,
true /*IsDead*/));
return true;
}
void MachineInstr::addRegisterDefined(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo) {
if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
if (MO)
return;
} else {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
MO.getSubReg() == 0)
return;
}
}
addOperand(MachineOperand::CreateReg(IncomingReg,
true /*IsDef*/,
true /*IsImp*/));
}
void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
const TargetRegisterInfo &TRI) {
bool HasRegMask = false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (MO.isRegMask()) {
HasRegMask = true;
continue;
}
if (!MO.isReg() || !MO.isDef()) continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
bool Dead = true;
for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
I != E; ++I)
if (TRI.regsOverlap(*I, Reg)) {
Dead = false;
break;
}
// If there are no uses, including partial uses, the def is dead.
if (Dead) MO.setIsDead();
}
// This is a call with a register mask operand.
// Mask clobbers are always dead, so add defs for the non-dead defines.
if (HasRegMask)
for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
I != E; ++I)
addRegisterDefined(*I, &TRI);
}
unsigned
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
// Build up a buffer of hash code components.
SmallVector<size_t, 8> HashComponents;
HashComponents.reserve(MI->getNumOperands() + 1);
HashComponents.push_back(MI->getOpcode());
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue; // Skip virtual register defs.
HashComponents.push_back(hash_value(MO));
}
return hash_combine_range(HashComponents.begin(), HashComponents.end());
}
void MachineInstr::emitError(StringRef Msg) const {
// Find the source location cookie.
unsigned LocCookie = 0;
const MDNode *LocMD = 0;
for (unsigned i = getNumOperands(); i != 0; --i) {
if (getOperand(i-1).isMetadata() &&
(LocMD = getOperand(i-1).getMetadata()) &&
LocMD->getNumOperands() != 0) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
LocCookie = CI->getZExtValue();
break;
}
}
}
if (const MachineBasicBlock *MBB = getParent())
if (const MachineFunction *MF = MBB->getParent())
return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
report_fatal_error(Msg);
}