llvm/lib/Target/SystemZ/SystemZISelLowering.h
Richard Sandiford 842a1be06c [SystemZ] Extend memcpy and memset support to all constant lengths
Lengths up to a certain threshold (currently 6 * 256) use a series of MVCs.
Lengths above that threshold use a loop to handle X*256 bytes followed
by a single MVC to handle the excess (if any).  This loop will also be
needed in future when support for variable lengths is added.

Because the same tablegen classes are used to define MVC and CLC,
the patch also has the side-effect of defining a pseudo loop instruction
for CLC.  That instruction isn't used yet (and wouldn't be handled correctly
if it were).  I'm planning to use it soon though.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189331 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-27 09:54:29 +00:00

284 lines
12 KiB
C++

//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that SystemZ uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H
#define LLVM_TARGET_SystemZ_ISELLOWERING_H
#include "SystemZ.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
namespace llvm {
namespace SystemZISD {
enum {
FIRST_NUMBER = ISD::BUILTIN_OP_END,
// Return with a flag operand. Operand 0 is the chain operand.
RET_FLAG,
// Calls a function. Operand 0 is the chain operand and operand 1
// is the target address. The arguments start at operand 2.
// There is an optional glue operand at the end.
CALL,
SIBCALL,
// Wraps a TargetGlobalAddress that should be loaded using PC-relative
// accesses (LARL). Operand 0 is the address.
PCREL_WRAPPER,
// Signed integer and floating-point comparisons. The operands are the
// two values to compare.
CMP,
// Likewise unsigned integer comparison.
UCMP,
// Branches if a condition is true. Operand 0 is the chain operand;
// operand 1 is the 4-bit condition-code mask, with bit N in
// big-endian order meaning "branch if CC=N"; operand 2 is the
// target block and operand 3 is the flag operand.
BR_CCMASK,
// Selects between operand 0 and operand 1. Operand 2 is the
// mask of condition-code values for which operand 0 should be
// chosen over operand 1; it has the same form as BR_CCMASK.
// Operand 3 is the flag operand.
SELECT_CCMASK,
// Evaluates to the gap between the stack pointer and the
// base of the dynamically-allocatable area.
ADJDYNALLOC,
// Extracts the value of a 32-bit access register. Operand 0 is
// the number of the register.
EXTRACT_ACCESS,
// Wrappers around the ISD opcodes of the same name. The output and
// first input operands are GR128s. The trailing numbers are the
// widths of the second operand in bits.
UMUL_LOHI64,
SDIVREM32,
SDIVREM64,
UDIVREM32,
UDIVREM64,
// Use a series of MVCs to copy bytes from one memory location to another.
// The operands are:
// - the target address
// - the source address
// - the constant length
//
// This isn't a memory opcode because we'd need to attach two
// MachineMemOperands rather than one.
MVC,
// Like MVC, but implemented as a loop that handles X*256 bytes
// followed by straight-line code to handle the rest (if any).
// The value of X is passed as an additional operand.
MVC_LOOP,
// Use CLC to compare two blocks of memory, with the same comments
// as for MVC and MVC_LOOP.
CLC,
CLC_LOOP,
// Use an MVST-based sequence to implement stpcpy().
STPCPY,
// Use a CLST-based sequence to implement strcmp(). The two input operands
// are the addresses of the strings to compare.
STRCMP,
// Use an SRST-based sequence to search a block of memory. The first
// operand is the end address, the second is the start, and the third
// is the character to search for. CC is set to 1 on success and 2
// on failure.
SEARCH_STRING,
// Store the CC value in bits 29 and 28 of an integer.
IPM,
// Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
// ATOMIC_LOAD_<op>.
//
// Operand 0: the address of the containing 32-bit-aligned field
// Operand 1: the second operand of <op>, in the high bits of an i32
// for everything except ATOMIC_SWAPW
// Operand 2: how many bits to rotate the i32 left to bring the first
// operand into the high bits
// Operand 3: the negative of operand 2, for rotating the other way
// Operand 4: the width of the field in bits (8 or 16)
ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
ATOMIC_LOADW_ADD,
ATOMIC_LOADW_SUB,
ATOMIC_LOADW_AND,
ATOMIC_LOADW_OR,
ATOMIC_LOADW_XOR,
ATOMIC_LOADW_NAND,
ATOMIC_LOADW_MIN,
ATOMIC_LOADW_MAX,
ATOMIC_LOADW_UMIN,
ATOMIC_LOADW_UMAX,
// A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
//
// Operand 0: the address of the containing 32-bit-aligned field
// Operand 1: the compare value, in the low bits of an i32
// Operand 2: the swap value, in the low bits of an i32
// Operand 3: how many bits to rotate the i32 left to bring the first
// operand into the high bits
// Operand 4: the negative of operand 2, for rotating the other way
// Operand 5: the width of the field in bits (8 or 16)
ATOMIC_CMP_SWAPW,
// Prefetch from the second operand using the 4-bit control code in
// the first operand. The code is 1 for a load prefetch and 2 for
// a store prefetch.
PREFETCH
};
}
class SystemZSubtarget;
class SystemZTargetMachine;
class SystemZTargetLowering : public TargetLowering {
public:
explicit SystemZTargetLowering(SystemZTargetMachine &TM);
// Override TargetLowering.
virtual MVT getScalarShiftAmountTy(EVT LHSTy) const LLVM_OVERRIDE {
return MVT::i32;
}
virtual EVT getSetCCResultType(LLVMContext &, EVT) const LLVM_OVERRIDE {
return MVT::i32;
}
virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const LLVM_OVERRIDE;
virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const LLVM_OVERRIDE;
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const
LLVM_OVERRIDE;
virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const
LLVM_OVERRIDE;
virtual bool isTruncateFree(Type *, Type *) const LLVM_OVERRIDE;
virtual bool isTruncateFree(EVT, EVT) const LLVM_OVERRIDE;
virtual const char *getTargetNodeName(unsigned Opcode) const LLVM_OVERRIDE;
virtual std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const LLVM_OVERRIDE;
virtual TargetLowering::ConstraintType
getConstraintType(const std::string &Constraint) const LLVM_OVERRIDE;
virtual TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const LLVM_OVERRIDE;
virtual void
LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const LLVM_OVERRIDE;
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const LLVM_OVERRIDE;
virtual SDValue LowerOperation(SDValue Op,
SelectionDAG &DAG) const LLVM_OVERRIDE;
virtual bool allowTruncateForTailCall(Type *, Type *) const LLVM_OVERRIDE;
virtual bool mayBeEmittedAsTailCall(CallInst *CI) const LLVM_OVERRIDE;
virtual SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const LLVM_OVERRIDE;
virtual SDValue
LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const LLVM_OVERRIDE;
virtual SDValue
LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const LLVM_OVERRIDE;
private:
const SystemZSubtarget &Subtarget;
const SystemZTargetMachine &TM;
// Implement LowerOperation for individual opcodes.
SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const;
SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const;
SDValue lowerBlockAddress(BlockAddressSDNode *Node,
SelectionDAG &DAG) const;
SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG,
unsigned Opcode) const;
SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
// If the last instruction before MBBI in MBB was some form of COMPARE,
// try to replace it with a COMPARE AND BRANCH just before MBBI.
// CCMask and Target are the BRC-like operands for the branch.
// Return true if the change was made.
bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI,
unsigned CCMask,
MachineBasicBlock *Target) const;
// Implement EmitInstrWithCustomInserter for individual operation types.
MachineBasicBlock *emitSelect(MachineInstr *MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *emitCondStore(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned StoreOpcode, unsigned STOCOpcode,
bool Invert) const;
MachineBasicBlock *emitExt128(MachineInstr *MI,
MachineBasicBlock *MBB,
bool ClearEven, unsigned SubReg) const;
MachineBasicBlock *emitAtomicLoadBinary(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned BinOpcode, unsigned BitSize,
bool Invert = false) const;
MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned CompareOpcode,
unsigned KeepOldMask,
unsigned BitSize) const;
MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr *MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *emitMemMemWrapper(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Opcode) const;
MachineBasicBlock *emitStringWrapper(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Opcode) const;
};
} // end namespace llvm
#endif // LLVM_TARGET_SystemZ_ISELLOWERING_H