mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-25 12:04:36 +00:00
957622ea93
Differential Revision: http://reviews.llvm.org/D12478 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246381 91177308-0d34-0410-b5e6-96231b3b80d8
437 lines
15 KiB
C++
437 lines
15 KiB
C++
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines vectorizer utilities.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
/// \brief Identify if the intrinsic is trivially vectorizable.
|
|
/// This method returns true if the intrinsic's argument types are all
|
|
/// scalars for the scalar form of the intrinsic and all vectors for
|
|
/// the vector form of the intrinsic.
|
|
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
|
|
switch (ID) {
|
|
case Intrinsic::sqrt:
|
|
case Intrinsic::sin:
|
|
case Intrinsic::cos:
|
|
case Intrinsic::exp:
|
|
case Intrinsic::exp2:
|
|
case Intrinsic::log:
|
|
case Intrinsic::log10:
|
|
case Intrinsic::log2:
|
|
case Intrinsic::fabs:
|
|
case Intrinsic::minnum:
|
|
case Intrinsic::maxnum:
|
|
case Intrinsic::copysign:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::nearbyint:
|
|
case Intrinsic::round:
|
|
case Intrinsic::bswap:
|
|
case Intrinsic::ctpop:
|
|
case Intrinsic::pow:
|
|
case Intrinsic::fma:
|
|
case Intrinsic::fmuladd:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::powi:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Identifies if the intrinsic has a scalar operand. It check for
|
|
/// ctlz,cttz and powi special intrinsics whose argument is scalar.
|
|
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
|
|
unsigned ScalarOpdIdx) {
|
|
switch (ID) {
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::powi:
|
|
return (ScalarOpdIdx == 1);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Check call has a unary float signature
|
|
/// It checks following:
|
|
/// a) call should have a single argument
|
|
/// b) argument type should be floating point type
|
|
/// c) call instruction type and argument type should be same
|
|
/// d) call should only reads memory.
|
|
/// If all these condition is met then return ValidIntrinsicID
|
|
/// else return not_intrinsic.
|
|
Intrinsic::ID
|
|
llvm::checkUnaryFloatSignature(const CallInst &I,
|
|
Intrinsic::ID ValidIntrinsicID) {
|
|
if (I.getNumArgOperands() != 1 ||
|
|
!I.getArgOperand(0)->getType()->isFloatingPointTy() ||
|
|
I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
return ValidIntrinsicID;
|
|
}
|
|
|
|
/// \brief Check call has a binary float signature
|
|
/// It checks following:
|
|
/// a) call should have 2 arguments.
|
|
/// b) arguments type should be floating point type
|
|
/// c) call instruction type and arguments type should be same
|
|
/// d) call should only reads memory.
|
|
/// If all these condition is met then return ValidIntrinsicID
|
|
/// else return not_intrinsic.
|
|
Intrinsic::ID
|
|
llvm::checkBinaryFloatSignature(const CallInst &I,
|
|
Intrinsic::ID ValidIntrinsicID) {
|
|
if (I.getNumArgOperands() != 2 ||
|
|
!I.getArgOperand(0)->getType()->isFloatingPointTy() ||
|
|
!I.getArgOperand(1)->getType()->isFloatingPointTy() ||
|
|
I.getType() != I.getArgOperand(0)->getType() ||
|
|
I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
return ValidIntrinsicID;
|
|
}
|
|
|
|
/// \brief Returns intrinsic ID for call.
|
|
/// For the input call instruction it finds mapping intrinsic and returns
|
|
/// its ID, in case it does not found it return not_intrinsic.
|
|
Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
|
|
const TargetLibraryInfo *TLI) {
|
|
// If we have an intrinsic call, check if it is trivially vectorizable.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
|
|
Intrinsic::ID ID = II->getIntrinsicID();
|
|
if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
|
|
ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
|
|
return ID;
|
|
return Intrinsic::not_intrinsic;
|
|
}
|
|
|
|
if (!TLI)
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
LibFunc::Func Func;
|
|
Function *F = CI->getCalledFunction();
|
|
// We're going to make assumptions on the semantics of the functions, check
|
|
// that the target knows that it's available in this environment and it does
|
|
// not have local linkage.
|
|
if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
// Otherwise check if we have a call to a function that can be turned into a
|
|
// vector intrinsic.
|
|
switch (Func) {
|
|
default:
|
|
break;
|
|
case LibFunc::sin:
|
|
case LibFunc::sinf:
|
|
case LibFunc::sinl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::sin);
|
|
case LibFunc::cos:
|
|
case LibFunc::cosf:
|
|
case LibFunc::cosl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::cos);
|
|
case LibFunc::exp:
|
|
case LibFunc::expf:
|
|
case LibFunc::expl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::exp);
|
|
case LibFunc::exp2:
|
|
case LibFunc::exp2f:
|
|
case LibFunc::exp2l:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
|
|
case LibFunc::log:
|
|
case LibFunc::logf:
|
|
case LibFunc::logl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::log);
|
|
case LibFunc::log10:
|
|
case LibFunc::log10f:
|
|
case LibFunc::log10l:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::log10);
|
|
case LibFunc::log2:
|
|
case LibFunc::log2f:
|
|
case LibFunc::log2l:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::log2);
|
|
case LibFunc::fabs:
|
|
case LibFunc::fabsf:
|
|
case LibFunc::fabsl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
|
|
case LibFunc::fmin:
|
|
case LibFunc::fminf:
|
|
case LibFunc::fminl:
|
|
return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
|
|
case LibFunc::fmax:
|
|
case LibFunc::fmaxf:
|
|
case LibFunc::fmaxl:
|
|
return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
|
|
case LibFunc::copysign:
|
|
case LibFunc::copysignf:
|
|
case LibFunc::copysignl:
|
|
return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
|
|
case LibFunc::floor:
|
|
case LibFunc::floorf:
|
|
case LibFunc::floorl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::floor);
|
|
case LibFunc::ceil:
|
|
case LibFunc::ceilf:
|
|
case LibFunc::ceill:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
|
|
case LibFunc::trunc:
|
|
case LibFunc::truncf:
|
|
case LibFunc::truncl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
|
|
case LibFunc::rint:
|
|
case LibFunc::rintf:
|
|
case LibFunc::rintl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::rint);
|
|
case LibFunc::nearbyint:
|
|
case LibFunc::nearbyintf:
|
|
case LibFunc::nearbyintl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
|
|
case LibFunc::round:
|
|
case LibFunc::roundf:
|
|
case LibFunc::roundl:
|
|
return checkUnaryFloatSignature(*CI, Intrinsic::round);
|
|
case LibFunc::pow:
|
|
case LibFunc::powf:
|
|
case LibFunc::powl:
|
|
return checkBinaryFloatSignature(*CI, Intrinsic::pow);
|
|
}
|
|
|
|
return Intrinsic::not_intrinsic;
|
|
}
|
|
|
|
/// \brief Find the operand of the GEP that should be checked for consecutive
|
|
/// stores. This ignores trailing indices that have no effect on the final
|
|
/// pointer.
|
|
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
|
|
const DataLayout &DL = Gep->getModule()->getDataLayout();
|
|
unsigned LastOperand = Gep->getNumOperands() - 1;
|
|
unsigned GEPAllocSize = DL.getTypeAllocSize(
|
|
cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
|
|
|
|
// Walk backwards and try to peel off zeros.
|
|
while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
|
|
// Find the type we're currently indexing into.
|
|
gep_type_iterator GEPTI = gep_type_begin(Gep);
|
|
std::advance(GEPTI, LastOperand - 1);
|
|
|
|
// If it's a type with the same allocation size as the result of the GEP we
|
|
// can peel off the zero index.
|
|
if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
|
|
break;
|
|
--LastOperand;
|
|
}
|
|
|
|
return LastOperand;
|
|
}
|
|
|
|
/// \brief If the argument is a GEP, then returns the operand identified by
|
|
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
|
|
/// operand, it returns that instead.
|
|
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
|
|
if (!GEP)
|
|
return Ptr;
|
|
|
|
unsigned InductionOperand = getGEPInductionOperand(GEP);
|
|
|
|
// Check that all of the gep indices are uniform except for our induction
|
|
// operand.
|
|
for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
|
|
if (i != InductionOperand &&
|
|
!SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
|
|
return Ptr;
|
|
return GEP->getOperand(InductionOperand);
|
|
}
|
|
|
|
/// \brief If a value has only one user that is a CastInst, return it.
|
|
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
|
|
Value *UniqueCast = nullptr;
|
|
for (User *U : Ptr->users()) {
|
|
CastInst *CI = dyn_cast<CastInst>(U);
|
|
if (CI && CI->getType() == Ty) {
|
|
if (!UniqueCast)
|
|
UniqueCast = CI;
|
|
else
|
|
return nullptr;
|
|
}
|
|
}
|
|
return UniqueCast;
|
|
}
|
|
|
|
/// \brief Get the stride of a pointer access in a loop. Looks for symbolic
|
|
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
|
|
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
|
|
auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
|
|
if (!PtrTy || PtrTy->isAggregateType())
|
|
return nullptr;
|
|
|
|
// Try to remove a gep instruction to make the pointer (actually index at this
|
|
// point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
|
|
// pointer, otherwise, we are analyzing the index.
|
|
Value *OrigPtr = Ptr;
|
|
|
|
// The size of the pointer access.
|
|
int64_t PtrAccessSize = 1;
|
|
|
|
Ptr = stripGetElementPtr(Ptr, SE, Lp);
|
|
const SCEV *V = SE->getSCEV(Ptr);
|
|
|
|
if (Ptr != OrigPtr)
|
|
// Strip off casts.
|
|
while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
|
|
V = C->getOperand();
|
|
|
|
const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
|
|
if (!S)
|
|
return nullptr;
|
|
|
|
V = S->getStepRecurrence(*SE);
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
// Strip off the size of access multiplication if we are still analyzing the
|
|
// pointer.
|
|
if (OrigPtr == Ptr) {
|
|
const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
|
|
DL.getTypeAllocSize(PtrTy->getElementType());
|
|
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
|
|
if (M->getOperand(0)->getSCEVType() != scConstant)
|
|
return nullptr;
|
|
|
|
const APInt &APStepVal =
|
|
cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
|
|
|
|
// Huge step value - give up.
|
|
if (APStepVal.getBitWidth() > 64)
|
|
return nullptr;
|
|
|
|
int64_t StepVal = APStepVal.getSExtValue();
|
|
if (PtrAccessSize != StepVal)
|
|
return nullptr;
|
|
V = M->getOperand(1);
|
|
}
|
|
}
|
|
|
|
// Strip off casts.
|
|
Type *StripedOffRecurrenceCast = nullptr;
|
|
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
|
|
StripedOffRecurrenceCast = C->getType();
|
|
V = C->getOperand();
|
|
}
|
|
|
|
// Look for the loop invariant symbolic value.
|
|
const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
|
|
if (!U)
|
|
return nullptr;
|
|
|
|
Value *Stride = U->getValue();
|
|
if (!Lp->isLoopInvariant(Stride))
|
|
return nullptr;
|
|
|
|
// If we have stripped off the recurrence cast we have to make sure that we
|
|
// return the value that is used in this loop so that we can replace it later.
|
|
if (StripedOffRecurrenceCast)
|
|
Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
|
|
|
|
return Stride;
|
|
}
|
|
|
|
/// \brief Given a vector and an element number, see if the scalar value is
|
|
/// already around as a register, for example if it were inserted then extracted
|
|
/// from the vector.
|
|
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
|
|
assert(V->getType()->isVectorTy() && "Not looking at a vector?");
|
|
VectorType *VTy = cast<VectorType>(V->getType());
|
|
unsigned Width = VTy->getNumElements();
|
|
if (EltNo >= Width) // Out of range access.
|
|
return UndefValue::get(VTy->getElementType());
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return C->getAggregateElement(EltNo);
|
|
|
|
if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
|
|
// If this is an insert to a variable element, we don't know what it is.
|
|
if (!isa<ConstantInt>(III->getOperand(2)))
|
|
return nullptr;
|
|
unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
|
|
|
|
// If this is an insert to the element we are looking for, return the
|
|
// inserted value.
|
|
if (EltNo == IIElt)
|
|
return III->getOperand(1);
|
|
|
|
// Otherwise, the insertelement doesn't modify the value, recurse on its
|
|
// vector input.
|
|
return findScalarElement(III->getOperand(0), EltNo);
|
|
}
|
|
|
|
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
|
|
unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
|
|
int InEl = SVI->getMaskValue(EltNo);
|
|
if (InEl < 0)
|
|
return UndefValue::get(VTy->getElementType());
|
|
if (InEl < (int)LHSWidth)
|
|
return findScalarElement(SVI->getOperand(0), InEl);
|
|
return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
|
|
}
|
|
|
|
// Extract a value from a vector add operation with a constant zero.
|
|
Value *Val = nullptr; Constant *Con = nullptr;
|
|
if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
|
|
if (Constant *Elt = Con->getAggregateElement(EltNo))
|
|
if (Elt->isNullValue())
|
|
return findScalarElement(Val, EltNo);
|
|
|
|
// Otherwise, we don't know.
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Get splat value if the input is a splat vector or return nullptr.
|
|
/// This function is not fully general. It checks only 2 cases:
|
|
/// the input value is (1) a splat constants vector or (2) a sequence
|
|
/// of instructions that broadcast a single value into a vector.
|
|
///
|
|
llvm::Value *llvm::getSplatValue(Value *V) {
|
|
if (auto *CV = dyn_cast<ConstantDataVector>(V))
|
|
return CV->getSplatValue();
|
|
|
|
auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
|
|
if (!ShuffleInst)
|
|
return nullptr;
|
|
// All-zero (or undef) shuffle mask elements.
|
|
for (int MaskElt : ShuffleInst->getShuffleMask())
|
|
if (MaskElt != 0 && MaskElt != -1)
|
|
return nullptr;
|
|
// The first shuffle source is 'insertelement' with index 0.
|
|
auto *InsertEltInst =
|
|
dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
|
|
if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
|
|
!cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
|
|
return nullptr;
|
|
|
|
return InsertEltInst->getOperand(1);
|
|
}
|