llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp
Nicolai Haehnle 87d298325f AMDGPU: Stay in WQM for non-intrinsic stores
Summary:
Two types of stores are possible in pixel shaders: stores to memory that are
explicitly requested at the API level, and stores that are an implementation
detail of register spilling or lowering of arrays.

For the first kind of store, we must ensure that helper pixels have no effect
and hence WQM must be disabled. The second kind of store must always be
executed, because the written value may be loaded again in a way that is
relevant for helper pixels as well -- and there are no externally visible
effects anyway.

This is a candidate for the 3.9 release branch.

Reviewers: arsenm, tstellarAMD, mareko

Subscribers: arsenm, kzhuravl, llvm-commits

Differential Revision: https://reviews.llvm.org/D22675

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277504 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-02 19:31:14 +00:00

541 lines
16 KiB
C++

//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass adds instructions to enable whole quad mode for pixel
/// shaders.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). This pass is run on the
/// scheduled machine IR but before register coalescing, so that machine SSA is
/// available for analysis. It ensures that WQM is enabled when necessary, but
/// disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
/// S_MOV_B64 LiveMask, EXEC
/// S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
/// S_AND_SAVEEXEC_B64 Tmp, LiveMask
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
/// (1) at the top level (outside of control flow statements, and as long as
/// kill hasn't been used), one SGPR can be saved by recovering WQM from
/// the LiveMask (this is implemented for the entry block).
///
/// (2) when entire regions (e.g. if-else blocks or entire loops) only
/// consist of exact and don't-care instructions, the switch only has to
/// be done at the entry and exit points rather than potentially in each
/// block of the region.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "si-wqm"
namespace {
enum {
StateWQM = 0x1,
StateExact = 0x2,
};
struct InstrInfo {
char Needs = 0;
char OutNeeds = 0;
};
struct BlockInfo {
char Needs = 0;
char InNeeds = 0;
char OutNeeds = 0;
};
struct WorkItem {
MachineBasicBlock *MBB = nullptr;
MachineInstr *MI = nullptr;
WorkItem() {}
WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
WorkItem(MachineInstr *MI) : MI(MI) {}
};
class SIWholeQuadMode : public MachineFunctionPass {
private:
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
MachineRegisterInfo *MRI;
LiveIntervals *LIS;
DenseMap<const MachineInstr *, InstrInfo> Instructions;
DenseMap<MachineBasicBlock *, BlockInfo> Blocks;
SmallVector<const MachineInstr *, 2> ExecExports;
SmallVector<MachineInstr *, 1> LiveMaskQueries;
void markInstruction(MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist);
char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
char analyzeFunction(MachineFunction &MF);
void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
unsigned SaveWQM, unsigned LiveMaskReg);
void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
unsigned SavedWQM);
void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);
void lowerLiveMaskQueries(unsigned LiveMaskReg);
public:
static char ID;
SIWholeQuadMode() :
MachineFunctionPass(ID) { }
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Whole Quad Mode";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace
char SIWholeQuadMode::ID = 0;
INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
false)
char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
FunctionPass *llvm::createSIWholeQuadModePass() {
return new SIWholeQuadMode;
}
void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist) {
InstrInfo &II = Instructions[&MI];
assert(Flag == StateWQM || Flag == StateExact);
// Ignore if the instruction is already marked. The typical case is that we
// mark an instruction WQM multiple times, but for atomics it can happen that
// Flag is StateWQM, but Needs is already set to StateExact. In this case,
// letting the atomic run in StateExact is correct as per the relevant specs.
if (II.Needs)
return;
II.Needs = Flag;
Worklist.push_back(&MI);
}
// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
std::vector<WorkItem> &Worklist) {
char GlobalFlags = 0;
bool WQMOutputs = MF.getFunction()->hasFnAttribute("amdgpu-ps-wqm-outputs");
for (auto BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
MachineInstr &MI = *II;
unsigned Opcode = MI.getOpcode();
char Flags = 0;
if (TII->isWQM(Opcode) || TII->isDS(Opcode)) {
Flags = StateWQM;
} else if (TII->isDisableWQM(MI)) {
Flags = StateExact;
} else {
// Handle export instructions with the exec mask valid flag set
if (Opcode == AMDGPU::EXP) {
if (MI.getOperand(4).getImm() != 0)
ExecExports.push_back(&MI);
} else if (Opcode == AMDGPU::SI_PS_LIVE) {
LiveMaskQueries.push_back(&MI);
} else if (WQMOutputs) {
// The function is in machine SSA form, which means that physical
// VGPRs correspond to shader inputs and outputs. Inputs are
// only used, outputs are only defined.
for (const MachineOperand &MO : MI.defs()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TRI->isVirtualRegister(Reg) &&
TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) {
Flags = StateWQM;
break;
}
}
}
if (!Flags)
continue;
}
markInstruction(MI, Flags, Worklist);
GlobalFlags |= Flags;
}
if (WQMOutputs && MBB.succ_empty()) {
// This is a prolog shader. Make sure we go back to exact mode at the end.
Blocks[&MBB].OutNeeds = StateExact;
Worklist.push_back(&MBB);
GlobalFlags |= StateExact;
}
}
return GlobalFlags;
}
void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
std::vector<WorkItem>& Worklist) {
MachineBasicBlock *MBB = MI.getParent();
InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
BlockInfo &BI = Blocks[MBB];
// Control flow-type instructions and stores to temporary memory that are
// followed by WQM computations must themselves be in WQM.
if ((II.OutNeeds & StateWQM) && !II.Needs &&
(MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
Instructions[&MI].Needs = StateWQM;
II.Needs = StateWQM;
}
// Propagate to block level
BI.Needs |= II.Needs;
if ((BI.InNeeds | II.Needs) != BI.InNeeds) {
BI.InNeeds |= II.Needs;
Worklist.push_back(MBB);
}
// Propagate backwards within block
if (MachineInstr *PrevMI = MI.getPrevNode()) {
char InNeeds = II.Needs | II.OutNeeds;
if (!PrevMI->isPHI()) {
InstrInfo &PrevII = Instructions[PrevMI];
if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
PrevII.OutNeeds |= InNeeds;
Worklist.push_back(PrevMI);
}
}
}
// Propagate WQM flag to instruction inputs
assert(II.Needs != (StateWQM | StateExact));
if (II.Needs != StateWQM)
return;
for (const MachineOperand &Use : MI.uses()) {
if (!Use.isReg() || !Use.isUse())
continue;
unsigned Reg = Use.getReg();
// Handle physical registers that we need to track; this is mostly relevant
// for VCC, which can appear as the (implicit) input of a uniform branch,
// e.g. when a loop counter is stored in a VGPR.
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
if (Reg == AMDGPU::EXEC)
continue;
for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) {
LiveRange &LR = LIS->getRegUnit(*RegUnit);
const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
if (!Value)
continue;
// Since we're in machine SSA, we do not need to track physical
// registers across basic blocks.
if (Value->isPHIDef())
continue;
markInstruction(*LIS->getInstructionFromIndex(Value->def), StateWQM,
Worklist);
}
continue;
}
for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg()))
markInstruction(DefMI, StateWQM, Worklist);
}
}
void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
std::vector<WorkItem>& Worklist) {
BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
// Propagate through instructions
if (!MBB.empty()) {
MachineInstr *LastMI = &*MBB.rbegin();
InstrInfo &LastII = Instructions[LastMI];
if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
LastII.OutNeeds |= BI.OutNeeds;
Worklist.push_back(LastMI);
}
}
// Predecessor blocks must provide for our WQM/Exact needs.
for (MachineBasicBlock *Pred : MBB.predecessors()) {
BlockInfo &PredBI = Blocks[Pred];
if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
continue;
PredBI.OutNeeds |= BI.InNeeds;
PredBI.InNeeds |= BI.InNeeds;
Worklist.push_back(Pred);
}
// All successors must be prepared to accept the same set of WQM/Exact data.
for (MachineBasicBlock *Succ : MBB.successors()) {
BlockInfo &SuccBI = Blocks[Succ];
if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
continue;
SuccBI.InNeeds |= BI.OutNeeds;
Worklist.push_back(Succ);
}
}
char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
std::vector<WorkItem> Worklist;
char GlobalFlags = scanInstructions(MF, Worklist);
while (!Worklist.empty()) {
WorkItem WI = Worklist.back();
Worklist.pop_back();
if (WI.MI)
propagateInstruction(*WI.MI, Worklist);
else
propagateBlock(*WI.MBB, Worklist);
}
return GlobalFlags;
}
void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
unsigned SaveWQM, unsigned LiveMaskReg) {
if (SaveWQM) {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
SaveWQM)
.addReg(LiveMaskReg);
} else {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(LiveMaskReg);
}
}
void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
unsigned SavedWQM) {
if (SavedWQM) {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC)
.addReg(SavedWQM);
} else {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC);
}
}
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
bool isEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
if (!(BI.InNeeds & StateWQM))
return;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact)
return;
unsigned SavedWQMReg = 0;
bool WQMFromExec = isEntry;
char State = isEntry ? StateExact : StateWQM;
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
while (II != IE) {
MachineInstr &MI = *II;
++II;
// Skip instructions that are not affected by EXEC
if (TII->isScalarUnit(MI) && !MI.isTerminator())
continue;
// Generic instructions such as COPY will either disappear by register
// coalescing or be lowered to SALU or VALU instructions.
if (TargetInstrInfo::isGenericOpcode(MI.getOpcode())) {
if (MI.getNumExplicitOperands() >= 1) {
const MachineOperand &Op = MI.getOperand(0);
if (Op.isReg()) {
if (TRI->isSGPRReg(*MRI, Op.getReg())) {
// SGPR instructions are not affected by EXEC
continue;
}
}
}
}
char Needs = 0;
char OutNeeds = 0;
auto InstrInfoIt = Instructions.find(&MI);
if (InstrInfoIt != Instructions.end()) {
Needs = InstrInfoIt->second.Needs;
OutNeeds = InstrInfoIt->second.OutNeeds;
// Make sure to switch to Exact mode before the end of the block when
// Exact and only Exact is needed further downstream.
if (OutNeeds == StateExact && MI.isTerminator()) {
assert(Needs == 0);
Needs = StateExact;
}
}
// State switching
if (Needs && State != Needs) {
if (Needs == StateExact) {
assert(!SavedWQMReg);
if (!WQMFromExec && (OutNeeds & StateWQM))
SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
toExact(MBB, &MI, SavedWQMReg, LiveMaskReg);
} else {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, &MI, SavedWQMReg);
SavedWQMReg = 0;
}
State = Needs;
}
if (MI.getOpcode() == AMDGPU::SI_ELSE && State == StateExact)
MI.getOperand(3).setImm(1);
}
if ((BI.OutNeeds & StateWQM) && State != StateWQM) {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, MBB.end(), SavedWQMReg);
} else if (BI.OutNeeds == StateExact && State != StateExact) {
toExact(MBB, MBB.end(), 0, LiveMaskReg);
}
}
void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
for (MachineInstr *MI : LiveMaskQueries) {
const DebugLoc &DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
.addReg(LiveMaskReg);
MI->eraseFromParent();
}
}
bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
if (MF.getFunction()->getCallingConv() != CallingConv::AMDGPU_PS)
return false;
Instructions.clear();
Blocks.clear();
ExecExports.clear();
LiveMaskQueries.clear();
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
LIS = &getAnalysis<LiveIntervals>();
char GlobalFlags = analyzeFunction(MF);
if (!(GlobalFlags & StateWQM)) {
lowerLiveMaskQueries(AMDGPU::EXEC);
return !LiveMaskQueries.empty();
}
// Store a copy of the original live mask when required
unsigned LiveMaskReg = 0;
{
MachineBasicBlock &Entry = MF.front();
MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();
if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg)
.addReg(AMDGPU::EXEC);
}
if (GlobalFlags == StateWQM) {
// For a shader that needs only WQM, we can just set it once.
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC);
lowerLiveMaskQueries(LiveMaskReg);
// EntryMI may become invalid here
return true;
}
}
lowerLiveMaskQueries(LiveMaskReg);
// Handle the general case
for (auto BII : Blocks)
processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin());
return true;
}