llvm/lib/Support/Host.cpp
Tim Northover 8a6c627fd0 X86: enable AVX2 under Haswell native compilation
Patch by Adam Strzelecki

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195632 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-25 09:52:59 +00:00

734 lines
24 KiB
C++

//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Host.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
#include "llvm/Support/DataStream.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <string.h>
// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef LLVM_ON_WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/host_info.h>
#include <mach/machine.h>
#endif
//===----------------------------------------------------------------------===//
//
// Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//
using namespace llvm;
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
/// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
// pedantic #else returns to appease -Wunreachable-code (so we don't generate
// postprocessed code that looks like "return true; return false;")
#else
return true;
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
/// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
/// 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value),
"c" (subleaf));
return false;
#elif defined(_MSC_VER)
// __cpuidex was added in MSVC++ 9.0 SP1
#if (_MSC_VER > 1500) || (_MSC_VER == 1500 && _MSC_FULL_VER >= 150030729)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
#else
return true;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value),
"c" (subleaf));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
mov ecx,subleaf
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#else
return true;
#endif
#else
return true;
#endif
}
static bool OSHasAVXSupport() {
#if defined(__GNUC__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
int rEAX, rEDX;
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0));
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long rEAX = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
#else
int rEAX = 0; // Ensures we return false
#endif
return (rEAX & 6) == 6;
}
static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
unsigned &Model) {
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (Family == 6 || Family == 0xf) {
if (Family == 0xf)
// Examine extended family ID if family ID is F.
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
std::string sys::getHostCPUName() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Family = 0;
unsigned Model = 0;
DetectX86FamilyModel(EAX, Family, Model);
union {
unsigned u[3];
char c[12];
} text;
GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
unsigned MaxLeaf = EAX;
bool HasSSE3 = (ECX & 0x1);
bool HasSSE41 = (ECX & 0x80000);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && OSHasAVXSupport();
bool HasAVX2 = HasAVX && MaxLeaf >= 0x7 &&
!GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX) &&
(EBX & 0x20);
GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
bool Em64T = (EDX >> 29) & 0x1;
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
switch (Family) {
case 3:
return "i386";
case 4:
switch (Model) {
case 0: // Intel486 DX processors
case 1: // Intel486 DX processors
case 2: // Intel486 SX processors
case 3: // Intel487 processors, IntelDX2 OverDrive processors,
// IntelDX2 processors
case 4: // Intel486 SL processor
case 5: // IntelSX2 processors
case 7: // Write-Back Enhanced IntelDX2 processors
case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
default: return "i486";
}
case 5:
switch (Model) {
case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
// Pentium processors (60, 66)
case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
// 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
// 150, 166, 200)
case 3: // Pentium OverDrive processors for Intel486 processor-based
// systems
return "pentium";
case 4: // Pentium OverDrive processor with MMX technology for Pentium
// processor (75, 90, 100, 120, 133), Pentium processor with
// MMX technology (166, 200)
return "pentium-mmx";
default: return "pentium";
}
case 6:
switch (Model) {
case 1: // Pentium Pro processor
return "pentiumpro";
case 3: // Intel Pentium II OverDrive processor, Pentium II processor,
// model 03
case 5: // Pentium II processor, model 05, Pentium II Xeon processor,
// model 05, and Intel Celeron processor, model 05
case 6: // Celeron processor, model 06
return "pentium2";
case 7: // Pentium III processor, model 07, and Pentium III Xeon
// processor, model 07
case 8: // Pentium III processor, model 08, Pentium III Xeon processor,
// model 08, and Celeron processor, model 08
case 10: // Pentium III Xeon processor, model 0Ah
case 11: // Pentium III processor, model 0Bh
return "pentium3";
case 9: // Intel Pentium M processor, Intel Celeron M processor model 09.
case 13: // Intel Pentium M processor, Intel Celeron M processor, model
// 0Dh. All processors are manufactured using the 90 nm process.
return "pentium-m";
case 14: // Intel Core Duo processor, Intel Core Solo processor, model
// 0Eh. All processors are manufactured using the 65 nm process.
return "yonah";
case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 22: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
return "core2";
case 21: // Intel EP80579 Integrated Processor and Intel EP80579
// Integrated Processor with Intel QuickAssist Technology
return "i686"; // FIXME: ???
case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
// Not all Penryn processors support SSE 4.1 (such as the Pentium brand)
return HasSSE41 ? "penryn" : "core2";
case 26: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 29: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 37: // Intel Core i7, laptop version.
case 44: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 46: // Nehalem EX
case 47: // Westmere EX
return "corei7";
// SandyBridge:
case 42: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 45:
// Not all Sandy Bridge processors support AVX (such as the Pentium
// versions instead of the i7 versions).
return HasAVX ? "corei7-avx" : "corei7";
// Ivy Bridge:
case 58:
case 62: // Ivy Bridge EP
// Not all Ivy Bridge processors support AVX (such as the Pentium
// versions instead of the i7 versions).
return HasAVX ? "core-avx-i" : "corei7";
// Haswell:
case 60:
case 63:
case 69:
case 70:
// Not all Haswell processors support AVX too (such as the Pentium
// versions instead of the i7 versions).
return HasAVX2 ? "core-avx2" : "corei7";
case 28: // Most 45 nm Intel Atom processors
case 38: // 45 nm Atom Lincroft
case 39: // 32 nm Atom Medfield
case 53: // 32 nm Atom Midview
case 54: // 32 nm Atom Midview
return "atom";
// Atom Silvermont codes from the Intel software optimization guide.
case 55:
case 74:
case 77:
return "slm";
default: return (Em64T) ? "x86-64" : "i686";
}
case 15: {
switch (Model) {
case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
// model 00h and manufactured using the 0.18 micron process.
case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
// processor MP, and Intel Celeron processor. All processors are
// model 01h and manufactured using the 0.18 micron process.
case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
// Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
// processor, and Mobile Intel Celeron processor. All processors
// are model 02h and manufactured using the 0.13 micron process.
return (Em64T) ? "x86-64" : "pentium4";
case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
// processor. All processors are model 03h and manufactured using
// the 90 nm process.
case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
// Pentium D processor, Intel Xeon processor, Intel Xeon
// processor MP, Intel Celeron D processor. All processors are
// model 04h and manufactured using the 90 nm process.
case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
// Extreme Edition, Intel Xeon processor, Intel Xeon processor
// MP, Intel Celeron D processor. All processors are model 06h
// and manufactured using the 65 nm process.
return (Em64T) ? "nocona" : "prescott";
default:
return (Em64T) ? "x86-64" : "pentium4";
}
}
default:
return "generic";
}
} else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
return "i486";
case 5:
switch (Model) {
case 6:
case 7: return "k6";
case 8: return "k6-2";
case 9:
case 13: return "k6-3";
case 10: return "geode";
default: return "pentium";
}
case 6:
switch (Model) {
case 4: return "athlon-tbird";
case 6:
case 7:
case 8: return "athlon-mp";
case 10: return "athlon-xp";
default: return "athlon";
}
case 15:
if (HasSSE3)
return "k8-sse3";
switch (Model) {
case 1: return "opteron";
case 5: return "athlon-fx"; // also opteron
default: return "athlon64";
}
case 16:
return "amdfam10";
case 20:
return "btver1";
case 21:
if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
return "btver1";
if (Model >= 0x30)
return "bdver3"; // 30h-3Fh: Steamroller
if (Model >= 0x10)
return "bdver2"; // 10h-1Fh: Piledriver
return "bdver1"; // 00h-0Fh: Bulldozer
case 22:
if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
return "btver1";
return "btver2";
default:
return "generic";
}
}
return "generic";
}
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
std::string sys::getHostCPUName() {
host_basic_info_data_t hostInfo;
mach_msg_type_number_t infoCount;
infoCount = HOST_BASIC_INFO_COUNT;
host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
&infoCount);
if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
switch(hostInfo.cpu_subtype) {
case CPU_SUBTYPE_POWERPC_601: return "601";
case CPU_SUBTYPE_POWERPC_602: return "602";
case CPU_SUBTYPE_POWERPC_603: return "603";
case CPU_SUBTYPE_POWERPC_603e: return "603e";
case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
case CPU_SUBTYPE_POWERPC_604: return "604";
case CPU_SUBTYPE_POWERPC_604e: return "604e";
case CPU_SUBTYPE_POWERPC_620: return "620";
case CPU_SUBTYPE_POWERPC_750: return "750";
case CPU_SUBTYPE_POWERPC_7400: return "7400";
case CPU_SUBTYPE_POWERPC_7450: return "7450";
case CPU_SUBTYPE_POWERPC_970: return "970";
default: ;
}
return "generic";
}
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
std::string sys::getHostCPUName() {
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
// and so we must use an operating-system interface to determine the current
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
const char *generic = "generic";
// Note: We cannot mmap /proc/cpuinfo here and then process the resulting
// memory buffer because the 'file' has 0 size (it can be read from only
// as a stream).
std::string Err;
DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
if (!DS) {
DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
return generic;
}
// The cpu line is second (after the 'processor: 0' line), so if this
// buffer is too small then something has changed (or is wrong).
char buffer[1024];
size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
delete DS;
const char *CPUInfoStart = buffer;
const char *CPUInfoEnd = buffer + CPUInfoSize;
const char *CIP = CPUInfoStart;
const char *CPUStart = 0;
size_t CPULen = 0;
// We need to find the first line which starts with cpu, spaces, and a colon.
// After the colon, there may be some additional spaces and then the cpu type.
while (CIP < CPUInfoEnd && CPUStart == 0) {
if (CIP < CPUInfoEnd && *CIP == '\n')
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'c') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'p') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'u') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd && *CIP == ':') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd) {
CPUStart = CIP;
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
*CIP != ',' && *CIP != '\n'))
++CIP;
CPULen = CIP - CPUStart;
}
}
}
}
}
if (CPUStart == 0)
while (CIP < CPUInfoEnd && *CIP != '\n')
++CIP;
}
if (CPUStart == 0)
return generic;
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
.Case("604e", "604e")
.Case("604", "604")
.Case("7400", "7400")
.Case("7410", "7400")
.Case("7447", "7400")
.Case("7455", "7450")
.Case("G4", "g4")
.Case("POWER4", "970")
.Case("PPC970FX", "970")
.Case("PPC970MP", "970")
.Case("G5", "g5")
.Case("POWER5", "g5")
.Case("A2", "a2")
.Case("POWER6", "pwr6")
.Case("POWER7", "pwr7")
.Default(generic);
}
#elif defined(__linux__) && defined(__arm__)
std::string sys::getHostCPUName() {
// The cpuid register on arm is not accessible from user space. On Linux,
// it is exposed through the /proc/cpuinfo file.
// Note: We cannot mmap /proc/cpuinfo here and then process the resulting
// memory buffer because the 'file' has 0 size (it can be read from only
// as a stream).
std::string Err;
DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
if (!DS) {
DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
return "generic";
}
// Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
// in all cases.
char buffer[1024];
size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
delete DS;
StringRef Str(buffer, CPUInfoSize);
SmallVector<StringRef, 32> Lines;
Str.split(Lines, "\n");
// Look for the CPU implementer line.
StringRef Implementer;
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU implementer"))
Implementer = Lines[I].substr(15).ltrim("\t :");
if (Implementer == "0x41") // ARM Ltd.
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x926", "arm926ej-s")
.Case("0xb02", "mpcore")
.Case("0xb36", "arm1136j-s")
.Case("0xb56", "arm1156t2-s")
.Case("0xb76", "arm1176jz-s")
.Case("0xc08", "cortex-a8")
.Case("0xc09", "cortex-a9")
.Case("0xc0f", "cortex-a15")
.Case("0xc20", "cortex-m0")
.Case("0xc23", "cortex-m3")
.Case("0xc24", "cortex-m4")
.Default("generic");
return "generic";
}
#elif defined(__linux__) && defined(__s390x__)
std::string sys::getHostCPUName() {
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
// Note: We cannot mmap /proc/cpuinfo here and then process the resulting
// memory buffer because the 'file' has 0 size (it can be read from only
// as a stream).
std::string Err;
DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
if (!DS) {
DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
return "generic";
}
// The "processor 0:" line comes after a fair amount of other information,
// including a cache breakdown, but this should be plenty.
char buffer[2048];
size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
delete DS;
StringRef Str(buffer, CPUInfoSize);
SmallVector<StringRef, 32> Lines;
Str.split(Lines, "\n");
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("processor ")) {
size_t Pos = Lines[I].find("machine = ");
if (Pos != StringRef::npos) {
Pos += sizeof("machine = ") - 1;
unsigned int Id;
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
if (Id >= 2827)
return "zEC12";
if (Id >= 2817)
return "z196";
}
}
break;
}
}
return "generic";
}
#else
std::string sys::getHostCPUName() {
return "generic";
}
#endif
#if defined(__linux__) && defined(__arm__)
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
std::string Err;
DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
if (!DS) {
DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
return false;
}
// Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
// in all cases.
char buffer[1024];
size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
delete DS;
StringRef Str(buffer, CPUInfoSize);
SmallVector<StringRef, 32> Lines;
Str.split(Lines, "\n");
SmallVector<StringRef, 32> CPUFeatures;
// Look for the CPU features.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("Features")) {
Lines[I].split(CPUFeatures, " ");
break;
}
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
.Case("half", "fp16")
.Case("neon", "neon")
.Case("vfpv3", "vfp3")
.Case("vfpv3d16", "d16")
.Case("vfpv4", "vfp4")
.Case("idiva", "hwdiv-arm")
.Case("idivt", "hwdiv")
.Default("");
if (LLVMFeatureStr != "")
Features.GetOrCreateValue(LLVMFeatureStr).setValue(true);
}
return true;
}
#else
bool sys::getHostCPUFeatures(StringMap<bool> &Features){
return false;
}
#endif
std::string sys::getProcessTriple() {
Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
if (sizeof(void *) == 8 && PT.isArch32Bit())
PT = PT.get64BitArchVariant();
if (sizeof(void *) == 4 && PT.isArch64Bit())
PT = PT.get32BitArchVariant();
return PT.str();
}