llvm/lib/CodeGen/PostRASchedulerList.cpp
Hal Finkel 8bacb53cc6 Add two additional hazard recognizer functions
This adds two additional functions to the hazard recognizer interface. These
are optional (in the sense that the default implementations preserve the
current behavior), and used by the post-RA scheduler. Upcoming commits will use
this functionality in order to improve dispatch-group formation on the POWER7
and related cores. Dispatch groups are an odd construct: sometimes we need to
insert nops to force a new one to start (for performance reasons), and some
instructions need to appear in certain positions within a group, but the groups
are not fundamentally cycle based (they can contain instructions with data
dependencies with non-trivial latencies).

Motivation:

unsigned PreEmitNoops(SUnit *) - Used to force the post-RA scheduler to insert
nops to force a new dispatch group to begin. We already have a NoopHazard, and
this is also still needed. However, NoopHazard only causes a nop to be inserted
if there are no other available instructions, and so is not always sufficient.
The number of nops to insert depends on state that only the hazard recognizer
has, so a general callback is necessary.

bool ShouldPreferAnother(SUnit *) - Used to avoid scheduling instructions that
would start a new dispatch group when others are available that could be part
of the current dispatch group. In this case, we don't want to issue nops,
because the non-preferred instruction will implicitly start a new dispatch
group regardless.

Although the motivation for these functions is driven by the PowerPC backend,
they are completely general.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197084 91177308-0d34-0410-b5e6-96231b3b80d8
2013-12-11 22:33:43 +00:00

822 lines
28 KiB
C++

//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "post-RA-sched"
#include "llvm/CodeGen/Passes.h"
#include "AggressiveAntiDepBreaker.h"
#include "AntiDepBreaker.h"
#include "CriticalAntiDepBreaker.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
STATISTIC(NumNoops, "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
// Post-RA scheduling is enabled with
// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
// override the target.
static cl::opt<bool>
EnablePostRAScheduler("post-RA-scheduler",
cl::desc("Enable scheduling after register allocation"),
cl::init(false), cl::Hidden);
static cl::opt<std::string>
EnableAntiDepBreaking("break-anti-dependencies",
cl::desc("Break post-RA scheduling anti-dependencies: "
"\"critical\", \"all\", or \"none\""),
cl::init("none"), cl::Hidden);
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
static cl::opt<int>
DebugDiv("postra-sched-debugdiv",
cl::desc("Debug control MBBs that are scheduled"),
cl::init(0), cl::Hidden);
static cl::opt<int>
DebugMod("postra-sched-debugmod",
cl::desc("Debug control MBBs that are scheduled"),
cl::init(0), cl::Hidden);
AntiDepBreaker::~AntiDepBreaker() { }
namespace {
class PostRAScheduler : public MachineFunctionPass {
const TargetInstrInfo *TII;
RegisterClassInfo RegClassInfo;
public:
static char ID;
PostRAScheduler() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &Fn);
};
char PostRAScheduler::ID = 0;
class SchedulePostRATDList : public ScheduleDAGInstrs {
/// AvailableQueue - The priority queue to use for the available SUnits.
///
LatencyPriorityQueue AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands becomes available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
/// AntiDepBreak - Anti-dependence breaking object, or NULL if none
AntiDepBreaker *AntiDepBreak;
/// AA - AliasAnalysis for making memory reference queries.
AliasAnalysis *AA;
/// LiveRegs - true if the register is live.
BitVector LiveRegs;
/// The schedule. Null SUnit*'s represent noop instructions.
std::vector<SUnit*> Sequence;
/// The index in BB of RegionEnd.
///
/// This is the instruction number from the top of the current block, not
/// the SlotIndex. It is only used by the AntiDepBreaker.
unsigned EndIndex;
public:
SchedulePostRATDList(
MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
AliasAnalysis *AA, const RegisterClassInfo&,
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
~SchedulePostRATDList();
/// startBlock - Initialize register live-range state for scheduling in
/// this block.
///
void startBlock(MachineBasicBlock *BB);
// Set the index of RegionEnd within the current BB.
void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
/// Initialize the scheduler state for the next scheduling region.
virtual void enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs);
/// Notify that the scheduler has finished scheduling the current region.
virtual void exitRegion();
/// Schedule - Schedule the instruction range using list scheduling.
///
void schedule();
void EmitSchedule();
/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void Observe(MachineInstr *MI, unsigned Count);
/// finishBlock - Clean up register live-range state.
///
void finishBlock();
/// FixupKills - Fix register kill flags that have been made
/// invalid due to scheduling
///
void FixupKills(MachineBasicBlock *MBB);
private:
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
void ReleaseSuccessors(SUnit *SU);
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown();
void StartBlockForKills(MachineBasicBlock *BB);
// ToggleKillFlag - Toggle a register operand kill flag. Other
// adjustments may be made to the instruction if necessary. Return
// true if the operand has been deleted, false if not.
bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
void dumpSchedule() const;
void emitNoop(unsigned CurCycle);
};
}
char &llvm::PostRASchedulerID = PostRAScheduler::ID;
INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
"Post RA top-down list latency scheduler", false, false)
SchedulePostRATDList::SchedulePostRATDList(
MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
AliasAnalysis *AA, const RegisterClassInfo &RCI,
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
: ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
LiveRegs(TRI->getNumRegs()), EndIndex(0)
{
const TargetMachine &TM = MF.getTarget();
const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
HazardRec =
TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
MRI.tracksLiveness()) &&
"Live-ins must be accurate for anti-dependency breaking");
AntiDepBreak =
((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
(AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
(AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
}
SchedulePostRATDList::~SchedulePostRATDList() {
delete HazardRec;
delete AntiDepBreak;
}
/// Initialize state associated with the next scheduling region.
void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs) {
ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
Sequence.clear();
}
/// Print the schedule before exiting the region.
void SchedulePostRATDList::exitRegion() {
DEBUG({
dbgs() << "*** Final schedule ***\n";
dumpSchedule();
dbgs() << '\n';
});
ScheduleDAGInstrs::exitRegion();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// dumpSchedule - dump the scheduled Sequence.
void SchedulePostRATDList::dumpSchedule() const {
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
if (SUnit *SU = Sequence[i])
SU->dump(this);
else
dbgs() << "**** NOOP ****\n";
}
}
#endif
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
TII = Fn.getTarget().getInstrInfo();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
RegClassInfo.runOnMachineFunction(Fn);
// Check for explicit enable/disable of post-ra scheduling.
TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
TargetSubtargetInfo::ANTIDEP_NONE;
SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
if (EnablePostRAScheduler.getPosition() > 0) {
if (!EnablePostRAScheduler)
return false;
} else {
// Check that post-RA scheduling is enabled for this target.
// This may upgrade the AntiDepMode.
const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
CriticalPathRCs))
return false;
}
// Check for antidep breaking override...
if (EnableAntiDepBreaking.getPosition() > 0) {
AntiDepMode = (EnableAntiDepBreaking == "all")
? TargetSubtargetInfo::ANTIDEP_ALL
: ((EnableAntiDepBreaking == "critical")
? TargetSubtargetInfo::ANTIDEP_CRITICAL
: TargetSubtargetInfo::ANTIDEP_NONE);
}
DEBUG(dbgs() << "PostRAScheduler\n");
SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
CriticalPathRCs);
// Loop over all of the basic blocks
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
#ifndef NDEBUG
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
if (DebugDiv > 0) {
static int bbcnt = 0;
if (bbcnt++ % DebugDiv != DebugMod)
continue;
dbgs() << "*** DEBUG scheduling " << Fn.getName()
<< ":BB#" << MBB->getNumber() << " ***\n";
}
#endif
// Initialize register live-range state for scheduling in this block.
Scheduler.startBlock(MBB);
// Schedule each sequence of instructions not interrupted by a label
// or anything else that effectively needs to shut down scheduling.
MachineBasicBlock::iterator Current = MBB->end();
unsigned Count = MBB->size(), CurrentCount = Count;
for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
MachineInstr *MI = llvm::prior(I);
--Count;
// Calls are not scheduling boundaries before register allocation, but
// post-ra we don't gain anything by scheduling across calls since we
// don't need to worry about register pressure.
if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
Scheduler.setEndIndex(CurrentCount);
Scheduler.schedule();
Scheduler.exitRegion();
Scheduler.EmitSchedule();
Current = MI;
CurrentCount = Count;
Scheduler.Observe(MI, CurrentCount);
}
I = MI;
if (MI->isBundle())
Count -= MI->getBundleSize();
}
assert(Count == 0 && "Instruction count mismatch!");
assert((MBB->begin() == Current || CurrentCount != 0) &&
"Instruction count mismatch!");
Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
Scheduler.setEndIndex(CurrentCount);
Scheduler.schedule();
Scheduler.exitRegion();
Scheduler.EmitSchedule();
// Clean up register live-range state.
Scheduler.finishBlock();
// Update register kills
Scheduler.FixupKills(MBB);
}
return true;
}
/// StartBlock - Initialize register live-range state for scheduling in
/// this block.
///
void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
// Call the superclass.
ScheduleDAGInstrs::startBlock(BB);
// Reset the hazard recognizer and anti-dep breaker.
HazardRec->Reset();
if (AntiDepBreak != NULL)
AntiDepBreak->StartBlock(BB);
}
/// Schedule - Schedule the instruction range using list scheduling.
///
void SchedulePostRATDList::schedule() {
// Build the scheduling graph.
buildSchedGraph(AA);
if (AntiDepBreak != NULL) {
unsigned Broken =
AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
EndIndex, DbgValues);
if (Broken != 0) {
// We made changes. Update the dependency graph.
// Theoretically we could update the graph in place:
// When a live range is changed to use a different register, remove
// the def's anti-dependence *and* output-dependence edges due to
// that register, and add new anti-dependence and output-dependence
// edges based on the next live range of the register.
ScheduleDAG::clearDAG();
buildSchedGraph(AA);
NumFixedAnti += Broken;
}
}
DEBUG(dbgs() << "********** List Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
AvailableQueue.initNodes(SUnits);
ListScheduleTopDown();
AvailableQueue.releaseState();
}
/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
if (AntiDepBreak != NULL)
AntiDepBreak->Observe(MI, Count, EndIndex);
}
/// FinishBlock - Clean up register live-range state.
///
void SchedulePostRATDList::finishBlock() {
if (AntiDepBreak != NULL)
AntiDepBreak->FinishBlock();
// Call the superclass.
ScheduleDAGInstrs::finishBlock();
}
/// StartBlockForKills - Initialize register live-range state for updating kills
///
void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
// Start with no live registers.
LiveRegs.reset();
// Examine the live-in regs of all successors.
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI) {
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
E = (*SI)->livein_end(); I != E; ++I) {
unsigned Reg = *I;
// Repeat, for reg and all subregs.
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
LiveRegs.set(*SubRegs);
}
}
}
bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
MachineOperand &MO) {
// Setting kill flag...
if (!MO.isKill()) {
MO.setIsKill(true);
return false;
}
// If MO itself is live, clear the kill flag...
if (LiveRegs.test(MO.getReg())) {
MO.setIsKill(false);
return false;
}
// If any subreg of MO is live, then create an imp-def for that
// subreg and keep MO marked as killed.
MO.setIsKill(false);
bool AllDead = true;
const unsigned SuperReg = MO.getReg();
MachineInstrBuilder MIB(MF, MI);
for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
if (LiveRegs.test(*SubRegs)) {
MIB.addReg(*SubRegs, RegState::ImplicitDefine);
AllDead = false;
}
}
if(AllDead)
MO.setIsKill(true);
return false;
}
/// FixupKills - Fix the register kill flags, they may have been made
/// incorrect by instruction reordering.
///
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
BitVector killedRegs(TRI->getNumRegs());
StartBlockForKills(MBB);
// Examine block from end to start...
unsigned Count = MBB->size();
for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
I != E; --Count) {
MachineInstr *MI = --I;
if (MI->isDebugValue())
continue;
// Update liveness. Registers that are defed but not used in this
// instruction are now dead. Mark register and all subregs as they
// are completely defined.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegMask())
LiveRegs.clearBitsNotInMask(MO.getRegMask());
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (!MO.isDef()) continue;
// Ignore two-addr defs.
if (MI->isRegTiedToUseOperand(i)) continue;
// Repeat for reg and all subregs.
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
LiveRegs.reset(*SubRegs);
}
// Examine all used registers and set/clear kill flag. When a
// register is used multiple times we only set the kill flag on
// the first use. Don't set kill flags on undef operands.
killedRegs.reset();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
unsigned Reg = MO.getReg();
if ((Reg == 0) || MRI.isReserved(Reg)) continue;
bool kill = false;
if (!killedRegs.test(Reg)) {
kill = true;
// A register is not killed if any subregs are live...
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
if (LiveRegs.test(*SubRegs)) {
kill = false;
break;
}
}
// If subreg is not live, then register is killed if it became
// live in this instruction
if (kill)
kill = !LiveRegs.test(Reg);
}
if (MO.isKill() != kill) {
DEBUG(dbgs() << "Fixing " << MO << " in ");
// Warning: ToggleKillFlag may invalidate MO.
ToggleKillFlag(MI, MO);
DEBUG(MI->dump());
}
killedRegs.set(Reg);
}
// Mark any used register (that is not using undef) and subregs as
// now live...
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
unsigned Reg = MO.getReg();
if ((Reg == 0) || MRI.isReserved(Reg)) continue;
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
LiveRegs.set(*SubRegs);
}
}
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
if (SuccEdge->isWeak()) {
--SuccSU->WeakPredsLeft;
return;
}
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--SuccSU->NumPredsLeft;
// Standard scheduler algorithms will recompute the depth of the successor
// here as such:
// SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
//
// However, we lazily compute node depth instead. Note that
// ScheduleNodeTopDown has already updated the depth of this node which causes
// all descendents to be marked dirty. Setting the successor depth explicitly
// here would cause depth to be recomputed for all its ancestors. If the
// successor is not yet ready (because of a transitively redundant edge) then
// this causes depth computation to be quadratic in the size of the DAG.
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
PendingQueue.push_back(SuccSU);
}
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
ReleaseSucc(SU, &*I);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
assert(CurCycle >= SU->getDepth() &&
"Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
ReleaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue.scheduledNode(SU);
}
/// emitNoop - Add a noop to the current instruction sequence.
void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
unsigned CurCycle = 0;
// We're scheduling top-down but we're visiting the regions in
// bottom-up order, so we don't know the hazards at the start of a
// region. So assume no hazards (this should usually be ok as most
// blocks are a single region).
HazardRec->Reset();
// Release any successors of the special Entry node.
ReleaseSuccessors(&EntrySU);
// Add all leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
AvailableQueue.push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// In any cycle where we can't schedule any instructions, we must
// stall or emit a noop, depending on the target.
bool CycleHasInsts = false;
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
unsigned MinDepth = ~0u;
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->getDepth() <= CurCycle) {
AvailableQueue.push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
} else if (PendingQueue[i]->getDepth() < MinDepth)
MinDepth = PendingQueue[i]->getDepth();
}
DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
SUnit *FoundSUnit = 0, *NotPreferredSUnit = 0;
bool HasNoopHazards = false;
while (!AvailableQueue.empty()) {
SUnit *CurSUnit = AvailableQueue.pop();
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
if (HT == ScheduleHazardRecognizer::NoHazard) {
if (HazardRec->ShouldPreferAnother(CurSUnit)) {
if (!NotPreferredSUnit) {
// If this is the first non-preferred node for this cycle, then
// record it and continue searching for a preferred node. If this
// is not the first non-preferred node, then treat it as though
// there had been a hazard.
NotPreferredSUnit = CurSUnit;
continue;
}
} else {
FoundSUnit = CurSUnit;
break;
}
}
// Remember if this is a noop hazard.
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
NotReady.push_back(CurSUnit);
}
// If we have a non-preferred node, push it back onto the available list.
// If we did not find a preferred node, then schedule this first
// non-preferred node.
if (NotPreferredSUnit) {
if (!FoundSUnit) {
DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
FoundSUnit = NotPreferredSUnit;
} else {
AvailableQueue.push(NotPreferredSUnit);
}
NotPreferredSUnit = 0;
}
// Add the nodes that aren't ready back onto the available list.
if (!NotReady.empty()) {
AvailableQueue.push_all(NotReady);
NotReady.clear();
}
// If we found a node to schedule...
if (FoundSUnit) {
// If we need to emit noops prior to this instruction, then do so.
unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
for (unsigned i = 0; i != NumPreNoops; ++i)
emitNoop(CurCycle);
// ... schedule the node...
ScheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
CycleHasInsts = true;
if (HazardRec->atIssueLimit()) {
DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
++CurCycle;
CycleHasInsts = false;
}
} else {
if (CycleHasInsts) {
DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem,
// just advance the current cycle and try again.
DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
++NumStalls;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
emitNoop(CurCycle);
}
++CurCycle;
CycleHasInsts = false;
}
}
#ifndef NDEBUG
unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
unsigned Noops = 0;
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
if (!Sequence[i])
++Noops;
assert(Sequence.size() - Noops == ScheduledNodes &&
"The number of nodes scheduled doesn't match the expected number!");
#endif // NDEBUG
}
// EmitSchedule - Emit the machine code in scheduled order.
void SchedulePostRATDList::EmitSchedule() {
RegionBegin = RegionEnd;
// If first instruction was a DBG_VALUE then put it back.
if (FirstDbgValue)
BB->splice(RegionEnd, BB, FirstDbgValue);
// Then re-insert them according to the given schedule.
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
if (SUnit *SU = Sequence[i])
BB->splice(RegionEnd, BB, SU->getInstr());
else
// Null SUnit* is a noop.
TII->insertNoop(*BB, RegionEnd);
// Update the Begin iterator, as the first instruction in the block
// may have been scheduled later.
if (i == 0)
RegionBegin = prior(RegionEnd);
}
// Reinsert any remaining debug_values.
for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
MachineInstr *DbgValue = P.first;
MachineBasicBlock::iterator OrigPrivMI = P.second;
BB->splice(++OrigPrivMI, BB, DbgValue);
}
DbgValues.clear();
FirstDbgValue = NULL;
}