mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-07 20:40:28 +00:00
8c9f520b33
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14292 91177308-0d34-0410-b5e6-96231b3b80d8
2626 lines
100 KiB
C++
2626 lines
100 KiB
C++
//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PowerPC.h"
|
|
#include "PowerPCInstrBuilder.h"
|
|
#include "PowerPCInstrInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
|
|
/// PPC Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cFP, cLong
|
|
};
|
|
}
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID:
|
|
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: return cFP; // Floating Point is #3
|
|
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs are class #4
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
// getClassB - Just like getClass, but treat boolean values as ints.
|
|
static inline TypeClass getClassB(const Type *Ty) {
|
|
if (Ty == Type::BoolTy) return cInt;
|
|
return getClass(Ty);
|
|
}
|
|
|
|
namespace {
|
|
struct ISel : public FunctionPass, InstVisitor<ISel> {
|
|
TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
|
int ReturnAddressIndex; // FrameIndex for the return address
|
|
|
|
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
|
|
|
|
// MBBMap - Mapping between LLVM BB -> Machine BB
|
|
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
|
|
|
|
// AllocaMap - Mapping from fixed sized alloca instructions to the
|
|
// FrameIndex for the alloca.
|
|
std::map<AllocaInst*, unsigned> AllocaMap;
|
|
|
|
ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
// First pass over the function, lower any unknown intrinsic functions
|
|
// with the IntrinsicLowering class.
|
|
LowerUnknownIntrinsicFunctionCalls(Fn);
|
|
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
|
|
// Create all of the machine basic blocks for the function...
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
|
|
|
|
BB = &F->front();
|
|
|
|
// Set up a frame object for the return address. This is used by the
|
|
// llvm.returnaddress & llvm.frameaddress intrinisics.
|
|
ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
|
|
|
|
// Copy incoming arguments off of the stack...
|
|
LoadArgumentsToVirtualRegs(Fn);
|
|
|
|
// Instruction select everything except PHI nodes
|
|
visit(Fn);
|
|
|
|
// Select the PHI nodes
|
|
SelectPHINodes();
|
|
|
|
RegMap.clear();
|
|
MBBMap.clear();
|
|
AllocaMap.clear();
|
|
F = 0;
|
|
// We always build a machine code representation for the function
|
|
return true;
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC Simple Instruction Selection";
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = MBBMap[&LLVM_BB];
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void LowerUnknownIntrinsicFunctionCalls(Function &F);
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
|
|
/// from the stack into virtual registers.
|
|
///
|
|
void LoadArgumentsToVirtualRegs(Function &F);
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks,
|
|
/// not the current one.
|
|
///
|
|
void SelectPHINodes();
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed PowerPC code for each instruction.
|
|
|
|
// Control flow operators
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
|
|
struct ValueRecord {
|
|
Value *Val;
|
|
unsigned Reg;
|
|
const Type *Ty;
|
|
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
|
|
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
|
|
};
|
|
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args);
|
|
void visitCallInst(CallInst &I);
|
|
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Comparison operators...
|
|
void visitSetCondInst(SetCondInst &I);
|
|
unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
|
|
|
|
// Memory Instructions
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitFreeInst(FreeInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
|
|
void visitCastInst(CastInst &I);
|
|
void visitVANextInst(VANextInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
/// promote32 - Make a value 32-bits wide, and put it somewhere.
|
|
///
|
|
void promote32(unsigned targetReg, const ValueRecord &VR);
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg);
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
///
|
|
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy, unsigned TargetReg);
|
|
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned TargetReg);
|
|
|
|
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Reg);
|
|
void doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Val);
|
|
|
|
void emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned TargetReg);
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitSetCCOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg);
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg);
|
|
|
|
/// emitSelectOperation - Common code shared between visitSelectInst and the
|
|
/// constant expression support.
|
|
void emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg);
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Constant *C, unsigned Reg);
|
|
|
|
void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned LHS, unsigned RHS);
|
|
|
|
/// makeAnotherReg - This method returns the next register number we haven't
|
|
/// yet used.
|
|
///
|
|
/// Long values are handled somewhat specially. They are always allocated
|
|
/// as pairs of 32 bit integer values. The register number returned is the
|
|
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
|
|
/// of the long value.
|
|
///
|
|
unsigned makeAnotherReg(const Type *Ty) {
|
|
assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
|
|
"Current target doesn't have PPC reg info??");
|
|
const PowerPCRegisterInfo *MRI =
|
|
static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
|
|
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
|
|
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
|
|
// Create the lower part
|
|
F->getSSARegMap()->createVirtualRegister(RC);
|
|
// Create the upper part.
|
|
return F->getSSARegMap()->createVirtualRegister(RC)-1;
|
|
}
|
|
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
|
|
return F->getSSARegMap()->createVirtualRegister(RC);
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
// Just append to the end of the current bb.
|
|
MachineBasicBlock::iterator It = BB->end();
|
|
return getReg(V, BB, It);
|
|
}
|
|
unsigned getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt);
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned getFixedSizedAllocaFI(AllocaInst *AI);
|
|
};
|
|
}
|
|
|
|
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
|
|
/// instruction in the entry block, return it. Otherwise, return a null
|
|
/// pointer.
|
|
static AllocaInst *dyn_castFixedAlloca(Value *V) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
BasicBlock *BB = AI->getParent();
|
|
if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
|
|
return AI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt) {
|
|
// If this operand is a constant, emit the code to copy the constant into
|
|
// the register here...
|
|
//
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
copyConstantToRegister(MBB, IPt, C, Reg);
|
|
return Reg;
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
unsigned Reg1 = makeAnotherReg(V->getType());
|
|
unsigned Reg2 = makeAnotherReg(V->getType());
|
|
// Move the address of the global into the register
|
|
BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
|
|
BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
|
|
return Reg2;
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
|
|
// Do not emit noop casts at all.
|
|
if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
|
|
return getReg(CI->getOperand(0), MBB, IPt);
|
|
} else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
|
|
return Reg;
|
|
}
|
|
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = makeAnotherReg(V->getType());
|
|
RegMap[V] = Reg;
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
|
|
// Already computed this?
|
|
std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
|
|
if (I != AllocaMap.end() && I->first == AI) return I->second;
|
|
|
|
const Type *Ty = AI->getAllocatedType();
|
|
ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
TySize *= CUI->getValue(); // Get total allocated size...
|
|
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
|
|
|
|
// Create a new stack object using the frame manager...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
|
|
AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
|
|
return FrameIdx;
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Constant *C, unsigned R) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
unsigned Class = 0;
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
emitGEPOperation(MBB, IP, CE->getOperand(0),
|
|
CE->op_begin()+1, CE->op_end(), R);
|
|
return;
|
|
case Instruction::Cast:
|
|
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
|
|
return;
|
|
|
|
case Instruction::Xor: ++Class; // FALL THROUGH
|
|
case Instruction::Or: ++Class; // FALL THROUGH
|
|
case Instruction::And: ++Class; // FALL THROUGH
|
|
case Instruction::Sub: ++Class; // FALL THROUGH
|
|
case Instruction::Add:
|
|
emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
Class, R);
|
|
return;
|
|
|
|
case Instruction::Mul:
|
|
emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
|
|
return;
|
|
|
|
case Instruction::Div:
|
|
case Instruction::Rem:
|
|
emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode() == Instruction::Div, R);
|
|
return;
|
|
|
|
case Instruction::SetNE:
|
|
case Instruction::SetEQ:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT:
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode(), R);
|
|
return;
|
|
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:
|
|
emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode() == Instruction::Shl, CE->getType(), R);
|
|
return;
|
|
|
|
case Instruction::Select:
|
|
emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOperand(2), R);
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "Offending expr: " << C << "\n";
|
|
assert(0 && "Constant expression not yet handled!\n");
|
|
}
|
|
}
|
|
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClassB(C->getType());
|
|
|
|
if (Class == cLong) {
|
|
// Copy the value into the register pair.
|
|
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
|
|
unsigned hiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned loTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
|
|
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
|
|
BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
|
|
BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
|
|
return;
|
|
}
|
|
|
|
assert(Class <= cInt && "Type not handled yet!");
|
|
|
|
if (C->getType() == Type::BoolTy) {
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
|
|
} else if (Class == cByte || Class == cShort) {
|
|
ConstantInt *CI = cast<ConstantInt>(C);
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
|
|
} else {
|
|
ConstantInt *CI = cast<ConstantInt>(C);
|
|
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
|
|
if (TheVal < 32768 && TheVal >= -32768) {
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
|
|
} else {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
|
|
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
|
|
}
|
|
}
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
// We need to spill the constant to memory...
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
|
|
addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
// Copy zero (null pointer) to the register.
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
|
|
BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
|
|
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
|
|
} else {
|
|
std::cerr << "Offending constant: " << C << "\n";
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
|
|
/// the stack into virtual registers.
|
|
///
|
|
/// FIXME: When we can calculate which args are coming in via registers
|
|
/// source them from there instead.
|
|
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
unsigned GPR_remaining = 8;
|
|
unsigned FPR_remaining = 13;
|
|
unsigned GPR_idx = 3;
|
|
unsigned FPR_idx = 1;
|
|
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
|
|
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
|
|
bool ArgLive = !I->use_empty();
|
|
unsigned Reg = ArgLive ? getReg(*I) : 0;
|
|
int FI; // Frame object index
|
|
|
|
switch (getClassB(I->getType())) {
|
|
case cByte:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(1, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cShort:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(2, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cInt:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cLong:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
if (GPR_remaining > 1) {
|
|
BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
|
|
BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1).addReg(PPC32::R0+GPR_idx+1);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
|
|
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
|
|
}
|
|
}
|
|
ArgOffset += 4; // longs require 4 additional bytes
|
|
if (GPR_remaining > 1) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
break;
|
|
case cFP:
|
|
if (ArgLive) {
|
|
unsigned Opcode;
|
|
if (I->getType() == Type::FloatTy) {
|
|
Opcode = PPC32::LFS;
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
} else {
|
|
Opcode = PPC32::LFD;
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
}
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
|
|
}
|
|
}
|
|
if (I->getType() == Type::DoubleTy) {
|
|
ArgOffset += 4; // doubles require 4 additional bytes
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled argument type!");
|
|
}
|
|
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
}
|
|
|
|
// If the function takes variable number of arguments, add a frame offset for
|
|
// the start of the first vararg value... this is used to expand
|
|
// llvm.va_start.
|
|
if (Fn.getFunctionType()->isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
|
|
}
|
|
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks, not
|
|
/// the current one.
|
|
///
|
|
void ISel::SelectPHINodes() {
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const Function &LF = *F->getFunction(); // The LLVM function...
|
|
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
|
|
const BasicBlock *BB = I;
|
|
MachineBasicBlock &MBB = *MBBMap[I];
|
|
|
|
// Loop over all of the PHI nodes in the LLVM basic block...
|
|
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
|
|
|
|
// Create a new machine instr PHI node, and insert it.
|
|
unsigned PHIReg = getReg(*PN);
|
|
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
PPC32::PHI, PN->getNumOperands(), PHIReg);
|
|
|
|
MachineInstr *LongPhiMI = 0;
|
|
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
|
|
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
PPC32::PHI, PN->getNumOperands(), PHIReg+1);
|
|
|
|
// PHIValues - Map of blocks to incoming virtual registers. We use this
|
|
// so that we only initialize one incoming value for a particular block,
|
|
// even if the block has multiple entries in the PHI node.
|
|
//
|
|
std::map<MachineBasicBlock*, unsigned> PHIValues;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
|
|
unsigned ValReg;
|
|
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
|
|
PHIValues.lower_bound(PredMBB);
|
|
|
|
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
|
|
// We already inserted an initialization of the register for this
|
|
// predecessor. Recycle it.
|
|
ValReg = EntryIt->second;
|
|
|
|
} else {
|
|
// Get the incoming value into a virtual register.
|
|
//
|
|
Value *Val = PN->getIncomingValue(i);
|
|
|
|
// If this is a constant or GlobalValue, we may have to insert code
|
|
// into the basic block to compute it into a virtual register.
|
|
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
|
|
isa<GlobalValue>(Val)) {
|
|
// Simple constants get emitted at the end of the basic block,
|
|
// before any terminator instructions. We "know" that the code to
|
|
// move a constant into a register will never clobber any flags.
|
|
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
|
|
} else {
|
|
// Because we don't want to clobber any values which might be in
|
|
// physical registers with the computation of this constant (which
|
|
// might be arbitrarily complex if it is a constant expression),
|
|
// just insert the computation at the top of the basic block.
|
|
MachineBasicBlock::iterator PI = PredMBB->begin();
|
|
|
|
// Skip over any PHI nodes though!
|
|
while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
|
|
++PI;
|
|
|
|
ValReg = getReg(Val, PredMBB, PI);
|
|
}
|
|
|
|
// Remember that we inserted a value for this PHI for this predecessor
|
|
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
|
|
}
|
|
|
|
PhiMI->addRegOperand(ValReg);
|
|
PhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
if (LongPhiMI) {
|
|
LongPhiMI->addRegOperand(ValReg+1);
|
|
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
}
|
|
}
|
|
|
|
// Now that we emitted all of the incoming values for the PHI node, make
|
|
// sure to reposition the InsertPoint after the PHI that we just added.
|
|
// This is needed because we might have inserted a constant into this
|
|
// block, right after the PHI's which is before the old insert point!
|
|
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
|
|
++PHIInsertPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
|
|
// it into the conditional branch or select instruction which is the only user
|
|
// of the cc instruction. This is the case if the conditional branch is the
|
|
// only user of the setcc, and if the setcc is in the same basic block as the
|
|
// conditional branch. We also don't handle long arguments below, so we reject
|
|
// them here as well.
|
|
//
|
|
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
|
if (SCI->hasOneUse()) {
|
|
Instruction *User = cast<Instruction>(SCI->use_back());
|
|
if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
|
|
SCI->getParent() == User->getParent() &&
|
|
(getClassB(SCI->getOperand(0)->getType()) != cLong ||
|
|
SCI->getOpcode() == Instruction::SetEQ ||
|
|
SCI->getOpcode() == Instruction::SetNE))
|
|
return SCI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return a fixed numbering for setcc instructions which does not depend on the
|
|
// order of the opcodes.
|
|
//
|
|
static unsigned getSetCCNumber(unsigned Opcode) {
|
|
switch(Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return 0;
|
|
case Instruction::SetNE: return 1;
|
|
case Instruction::SetLT: return 2;
|
|
case Instruction::SetGE: return 3;
|
|
case Instruction::SetGT: return 4;
|
|
case Instruction::SetLE: return 5;
|
|
}
|
|
}
|
|
|
|
/// emitUCOM - emits an unordered FP compare.
|
|
void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
unsigned LHS, unsigned RHS) {
|
|
BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
|
|
}
|
|
|
|
// EmitComparison - This function emits a comparison of the two operands,
|
|
// returning the extended setcc code to use.
|
|
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP) {
|
|
// The arguments are already supposed to be of the same type.
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned Class = getClassB(CompTy);
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// Special case handling of: cmp R, i
|
|
if (isa<ConstantPointerNull>(Op1)) {
|
|
BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
|
|
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
if (Class == cByte || Class == cShort || Class == cInt) {
|
|
unsigned Op1v = CI->getRawValue();
|
|
|
|
// Mask off any upper bits of the constant, if there are any...
|
|
Op1v &= (1ULL << (8 << Class)) - 1;
|
|
|
|
// Compare immediate or promote to reg?
|
|
if (Op1v <= 32767) {
|
|
BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
|
|
} else {
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
return OpNum;
|
|
} else {
|
|
assert(Class == cLong && "Unknown integer class!");
|
|
unsigned LowCst = CI->getRawValue();
|
|
unsigned HiCst = CI->getRawValue() >> 32;
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = Op0r;
|
|
if (LowCst != 0) {
|
|
unsigned LoLow = makeAnotherReg(Type::IntTy);
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
|
|
BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow).addImm(LowCst >> 16);
|
|
}
|
|
unsigned HiTmp = Op0r+1;
|
|
if (HiCst != 0) {
|
|
unsigned HiLow = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
|
|
BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow).addImm(HiCst >> 16);
|
|
}
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
//BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
|
|
return OpNum;
|
|
} else {
|
|
// Emit a sequence of code which compares the high and low parts once
|
|
// each, then uses a conditional move to handle the overflow case. For
|
|
// example, a setlt for long would generate code like this:
|
|
//
|
|
// AL = lo(op1) < lo(op2) // Always unsigned comparison
|
|
// BL = hi(op1) < hi(op2) // Signedness depends on operands
|
|
// dest = hi(op1) == hi(op2) ? BL : AL;
|
|
//
|
|
|
|
// FIXME: Not Yet Implemented
|
|
return OpNum;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown type class!");
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cFP:
|
|
emitUCOM(MBB, IP, Op0r, Op1r);
|
|
break;
|
|
|
|
case cLong:
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
//BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
|
|
break; // Allow the sete or setne to be generated from flags set by OR
|
|
} else {
|
|
// Emit a sequence of code which compares the high and low parts once
|
|
// each, then uses a conditional move to handle the overflow case. For
|
|
// example, a setlt for long would generate code like this:
|
|
//
|
|
// AL = lo(op1) < lo(op2) // Signedness depends on operands
|
|
// BL = hi(op1) < hi(op2) // Always unsigned comparison
|
|
// dest = hi(op1) == hi(op2) ? BL : AL;
|
|
//
|
|
|
|
// FIXME: Not Yet Implemented
|
|
return OpNum;
|
|
}
|
|
}
|
|
return OpNum;
|
|
}
|
|
|
|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
|
|
/// register, then move it to wherever the result should be.
|
|
///
|
|
void ISel::visitSetCondInst(SetCondInst &I) {
|
|
if (canFoldSetCCIntoBranchOrSelect(&I))
|
|
return; // Fold this into a branch or select.
|
|
|
|
unsigned DestReg = getReg(I);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),DestReg);
|
|
}
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
/// FIXME: this is wrong. we should figure out a way to guarantee
|
|
/// TargetReg is a CR and then make it a no-op
|
|
void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg) {
|
|
unsigned OpNum = getSetCCNumber(Opcode);
|
|
OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
|
|
|
|
// The value is already in CR0 at this point, do nothing.
|
|
}
|
|
|
|
|
|
void ISel::visitSelectInst(SelectInst &SI) {
|
|
unsigned DestReg = getReg(SI);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),SI.getFalseValue(), DestReg);
|
|
}
|
|
|
|
/// emitSelect - Common code shared between visitSelectInst and the constant
|
|
/// expression support.
|
|
/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
|
|
/// no select instruction. FSEL only works for comparisons against zero.
|
|
void ISel::emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg) {
|
|
unsigned SelectClass = getClassB(TrueVal->getType());
|
|
|
|
unsigned TrueReg = getReg(TrueVal, MBB, IP);
|
|
unsigned FalseReg = getReg(FalseVal, MBB, IP);
|
|
|
|
if (TrueReg == FalseReg) {
|
|
if (SelectClass == cFP) {
|
|
BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
|
|
}
|
|
|
|
if (SelectClass == cLong)
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1).addReg(TrueReg+1);
|
|
return;
|
|
}
|
|
|
|
unsigned CondReg = getReg(Cond, MBB, IP);
|
|
unsigned numZeros = makeAnotherReg(Type::IntTy);
|
|
unsigned falseHi = makeAnotherReg(Type::IntTy);
|
|
unsigned falseAll = makeAnotherReg(Type::IntTy);
|
|
unsigned trueAll = makeAnotherReg(Type::IntTy);
|
|
unsigned Temp1 = makeAnotherReg(Type::IntTy);
|
|
unsigned Temp2 = makeAnotherReg(Type::IntTy);
|
|
|
|
BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26).addImm(0).addImm(0);
|
|
BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
|
|
BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
|
|
BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
|
|
BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
|
|
|
|
if (SelectClass == cLong) {
|
|
unsigned Temp3 = makeAnotherReg(Type::IntTy);
|
|
unsigned Temp4 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
|
|
BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
|
|
/// operand, in the specified target register.
|
|
///
|
|
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
|
|
bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
|
|
|
|
Value *Val = VR.Val;
|
|
const Type *Ty = VR.Ty;
|
|
if (Val) {
|
|
if (Constant *C = dyn_cast<Constant>(Val)) {
|
|
Val = ConstantExpr::getCast(C, Type::IntTy);
|
|
Ty = Type::IntTy;
|
|
}
|
|
|
|
// If this is a simple constant, just emit a load directly to avoid the copy.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
|
|
|
|
if (TheVal < 32768 && TheVal >= -32768) {
|
|
BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
|
|
} else {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(TheVal >> 16);
|
|
BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg).addImm(TheVal & 0xFFFF);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Make sure we have the register number for this value...
|
|
unsigned Reg = Val ? getReg(Val) : VR.Reg;
|
|
|
|
switch (getClassB(Ty)) {
|
|
case cByte:
|
|
// Extend value into target register (8->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(24).addZImm(31);
|
|
else
|
|
BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cShort:
|
|
// Extend value into target register (16->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(16).addZImm(31);
|
|
else
|
|
BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cInt:
|
|
// Move value into target register (32->32)
|
|
BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
|
|
break;
|
|
default:
|
|
assert(0 && "Unpromotable operand class in promote32");
|
|
}
|
|
}
|
|
|
|
// just emit blr.
|
|
void ISel::visitReturnInst(ReturnInst &I) {
|
|
Value *RetVal = I.getOperand(0);
|
|
|
|
switch (getClassB(RetVal->getType())) {
|
|
case cByte: // integral return values: extend or move into r3 and return
|
|
case cShort:
|
|
case cInt:
|
|
promote32(PPC32::R3, ValueRecord(RetVal));
|
|
break;
|
|
case cFP: { // Floats & Doubles: Return in f1
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
|
|
break;
|
|
}
|
|
case cLong: {
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
|
|
BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
|
|
break;
|
|
}
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
BuildMI(BB, PPC32::BLR, 1).addImm(0);
|
|
}
|
|
|
|
// getBlockAfter - Return the basic block which occurs lexically after the
|
|
// specified one.
|
|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
|
|
Function::iterator I = BB; ++I; // Get iterator to next block
|
|
return I != BB->getParent()->end() ? &*I : 0;
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through (but we don't currently).
|
|
///
|
|
void ISel::visitBranchInst(BranchInst &BI) {
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.isConditional())
|
|
BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
|
|
|
|
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
|
|
|
|
if (!BI.isConditional()) { // Unconditional branch?
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
return;
|
|
}
|
|
|
|
// See if we can fold the setcc into the branch itself...
|
|
SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
|
|
if (SCI == 0) {
|
|
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
|
|
// computed some other way...
|
|
unsigned condReg = getReg(BI.getCondition());
|
|
BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg).addImm(0);
|
|
if (BI.getSuccessor(1) == NextBB) {
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
} else {
|
|
BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
|
|
|
|
const Type *CompTy = SCI->getOperand(0)->getType();
|
|
bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> je je
|
|
// setne -> jne jne
|
|
// setlt -> jl jb
|
|
// setge -> jge jae
|
|
// setgt -> jg ja
|
|
// setle -> jle jbe
|
|
|
|
static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
|
|
unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
|
|
unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
|
|
unsigned BIval = BITab[0];
|
|
|
|
if (BI.getSuccessor(0) != NextBB) {
|
|
BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.getSuccessor(1) != NextBB)
|
|
BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
} else {
|
|
// Change to the inverse condition...
|
|
if (BI.getSuccessor(1) != NextBB) {
|
|
BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// doCall - This emits an abstract call instruction, setting up the arguments
|
|
/// and the return value as appropriate. For the actual function call itself,
|
|
/// it inserts the specified CallMI instruction into the stream.
|
|
///
|
|
/// FIXME: See Documentation at the following URL for "correct" behavior
|
|
/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
|
|
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args) {
|
|
// Count how many bytes are to be pushed on the stack...
|
|
unsigned NumBytes = 0;
|
|
|
|
if (!Args.empty()) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte: case cShort: case cInt:
|
|
NumBytes += 4; break;
|
|
case cLong:
|
|
NumBytes += 8; break;
|
|
case cFP:
|
|
NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
unsigned ArgOffset = 0;
|
|
unsigned GPR_remaining = 8;
|
|
unsigned FPR_remaining = 13;
|
|
unsigned GPR_idx = 3;
|
|
unsigned FPR_idx = 1;
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
unsigned ArgReg;
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte:
|
|
case cShort:
|
|
// Promote arg to 32 bits wide into a temporary register...
|
|
ArgReg = makeAnotherReg(Type::UIntTy);
|
|
promote32(ArgReg, Args[i]);
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
|
|
} else {
|
|
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
|
|
}
|
|
break;
|
|
case cInt:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
|
|
} else {
|
|
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
|
|
}
|
|
break;
|
|
case cLong:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 1) {
|
|
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
|
|
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1).addReg(ArgReg+1);
|
|
} else {
|
|
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
|
|
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4).addReg(PPC32::R1);
|
|
}
|
|
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining -= 1; // uses up 2 GPRs
|
|
GPR_idx += 1;
|
|
}
|
|
break;
|
|
case cFP:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
if (Args[i].Ty == Type::FloatTy) {
|
|
// Reg or stack?
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
|
|
}
|
|
} else {
|
|
assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
|
|
// Reg or stack?
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
|
|
}
|
|
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
ArgOffset += 4;
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
|
|
}
|
|
|
|
BB->push_back(CallMI);
|
|
|
|
BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
|
|
|
|
// If there is a return value, scavenge the result from the location the call
|
|
// leaves it in...
|
|
//
|
|
if (Ret.Ty != Type::VoidTy) {
|
|
unsigned DestClass = getClassB(Ret.Ty);
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
// Integral results are in r3
|
|
BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
|
|
case cFP: // Floating-point return values live in f1
|
|
BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
|
|
break;
|
|
case cLong: // Long values are in r3:r4
|
|
BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
|
|
BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCallInst - Push args on stack and do a procedure call instruction.
|
|
void ISel::visitCallInst(CallInst &CI) {
|
|
MachineInstr *TheCall;
|
|
if (Function *F = CI.getCalledFunction()) {
|
|
// Is it an intrinsic function call?
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
|
|
return;
|
|
}
|
|
|
|
// Emit a CALL instruction with PC-relative displacement.
|
|
TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
|
|
} else { // Emit an indirect call through the CTR
|
|
unsigned Reg = getReg(CI.getCalledValue());
|
|
BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
|
|
TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
Args.push_back(ValueRecord(CI.getOperand(i)));
|
|
|
|
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
|
|
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
|
|
///
|
|
static Value *dyncastIsNan(Value *V) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(V))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::isunordered)
|
|
return CI->getOperand(1);
|
|
return 0;
|
|
}
|
|
|
|
/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
|
|
/// or's whos operands are all calls to the isnan predicate.
|
|
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
|
|
assert(dyncastIsNan(V) && "The value isn't an isnan call!");
|
|
|
|
// Check all uses, which will be or's of isnans if this predicate is true.
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
if (I->getOpcode() != Instruction::Or) return false;
|
|
if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
|
|
if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
|
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::not_intrinsic:
|
|
case Intrinsic::vastart:
|
|
case Intrinsic::vacopy:
|
|
case Intrinsic::vaend:
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
// FIXME: should lower this ourselves
|
|
// case Intrinsic::isunordered:
|
|
// We directly implement these intrinsics
|
|
break;
|
|
case Intrinsic::readio: {
|
|
// On PPC, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile load.
|
|
Instruction *Before = CI->getPrev();
|
|
LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
|
|
CI->replaceAllUsesWith(LI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
case Intrinsic::writeio: {
|
|
// On PPC, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile store.
|
|
Instruction *Before = CI->getPrev();
|
|
StoreInst *LI = new StoreInst(CI->getOperand(1),
|
|
CI->getOperand(2), true, CI);
|
|
CI->replaceAllUsesWith(LI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
default:
|
|
// All other intrinsic calls we must lower.
|
|
Instruction *Before = CI->getPrev();
|
|
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
|
if (Before) { // Move iterator to instruction after call
|
|
I = Before; ++I;
|
|
} else {
|
|
I = BB->begin();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
|
|
unsigned TmpReg1, TmpReg2, TmpReg3;
|
|
switch (ID) {
|
|
case Intrinsic::vastart:
|
|
// Get the address of the first vararg value...
|
|
TmpReg1 = getReg(CI);
|
|
addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
|
|
return;
|
|
|
|
case Intrinsic::vacopy:
|
|
TmpReg1 = getReg(CI);
|
|
TmpReg2 = getReg(CI.getOperand(1));
|
|
BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
|
|
return;
|
|
case Intrinsic::vaend: return;
|
|
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
if (ID == Intrinsic::returnaddress) {
|
|
// Just load the return address
|
|
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
|
|
ReturnAddressIndex);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
|
|
ReturnAddressIndex, -4, false);
|
|
}
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
|
|
}
|
|
return;
|
|
|
|
#if 0
|
|
// This may be useful for supporting isunordered
|
|
case Intrinsic::isnan:
|
|
// If this is only used by 'isunordered' style comparisons, don't emit it.
|
|
if (isOnlyUsedByUnorderedComparisons(&CI)) return;
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
|
|
TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC32::MFCR, TmpReg2);
|
|
TmpReg3 = getReg(CI);
|
|
BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
|
|
return;
|
|
#endif
|
|
|
|
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
|
|
}
|
|
}
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
|
|
/// Xor.
|
|
///
|
|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
unsigned DestReg = getReg(B);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
|
|
unsigned Class = getClassB(B.getType());
|
|
|
|
emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
|
|
}
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg) {
|
|
|
|
// Special case: op Reg, <const fp>
|
|
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
|
|
// Create a constant pool entry for this constant.
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(Op1C);
|
|
const Type *Ty = Op1->getType();
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
{ PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
|
|
{ PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
|
|
};
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned TempReg = makeAnotherReg(Ty);
|
|
unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
|
|
addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
|
|
|
|
unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
|
|
return;
|
|
}
|
|
|
|
// Special case: R1 = op <const fp>, R2
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
|
|
if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
|
|
// -0.0 - X === -X
|
|
unsigned op1Reg = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
} else {
|
|
// R1 = op CST, R2 --> R1 = opr R2, CST
|
|
|
|
// Create a constant pool entry for this constant.
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
{ PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
|
|
{ PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
|
|
};
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned TempReg = makeAnotherReg(Ty);
|
|
unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
|
|
addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
|
|
|
|
unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
|
|
return;
|
|
}
|
|
|
|
// General case.
|
|
static const unsigned OpcodeTab[4] = {
|
|
PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
|
|
};
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass];
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
|
|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
|
|
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
|
|
/// Or, 4 for Xor.
|
|
///
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg) {
|
|
unsigned Class = getClassB(Op0->getType());
|
|
|
|
// Arithmetic and Bitwise operators
|
|
static const unsigned OpcodeTab[5] = {
|
|
PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
|
|
};
|
|
// Otherwise, code generate the full operation with a constant.
|
|
static const unsigned BottomTab[] = {
|
|
PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
|
|
};
|
|
static const unsigned TopTab[] = {
|
|
PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
|
|
};
|
|
|
|
if (Class == cFP) {
|
|
assert(OperatorClass < 2 && "No logical ops for FP!");
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
|
|
return;
|
|
}
|
|
|
|
if (Op0->getType() == Type::BoolTy) {
|
|
if (OperatorClass == 3)
|
|
// If this is an or of two isnan's, emit an FP comparison directly instead
|
|
// of or'ing two isnan's together.
|
|
if (Value *LHS = dyncastIsNan(Op0))
|
|
if (Value *RHS = dyncastIsNan(Op1)) {
|
|
unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
emitUCOM(MBB, IP, Op0Reg, Op1Reg);
|
|
BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4).addImm(31).addImm(31);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// sub 0, X -> neg X
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
|
|
if (OperatorClass == 1 && CI->isNullValue()) {
|
|
unsigned op1Reg = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
|
|
|
|
if (Class == cLong) {
|
|
unsigned zeroes = makeAnotherReg(Type::IntTy);
|
|
unsigned overflow = makeAnotherReg(Type::IntTy);
|
|
unsigned T = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27).addImm(5).addImm(31);
|
|
BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
|
|
BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case: op Reg, <const int>
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// xor X, -1 -> not X
|
|
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
|
|
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
|
|
if (Class == cLong) // Invert the top part too
|
|
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
|
|
return;
|
|
}
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass];
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
if (Class != cLong) {
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
return;
|
|
}
|
|
|
|
// If the constant is zero in the low 32-bits, just copy the low part
|
|
// across and apply the normal 32-bit operation to the high parts. There
|
|
// will be no carry or borrow into the top.
|
|
if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
|
|
if (OperatorClass != 2) // All but and...
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
|
|
else
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
|
|
return;
|
|
}
|
|
|
|
// If this is a long value and the high or low bits have a special
|
|
// property, emit some special cases.
|
|
unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
|
|
|
|
// If this is a logical operation and the top 32-bits are zero, just
|
|
// operate on the lower 32.
|
|
if (Op1h == 0 && OperatorClass > 1) {
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
if (OperatorClass != 2) // All but and
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
|
|
else
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
|
|
return;
|
|
}
|
|
|
|
// TODO: We could handle lots of other special cases here, such as AND'ing
|
|
// with 0xFFFFFFFF00000000 -> noop, etc.
|
|
|
|
BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
|
|
BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
|
|
return;
|
|
}
|
|
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
if (Class != cLong) {
|
|
unsigned Opcode = OpcodeTab[OperatorClass];
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
} else {
|
|
BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
|
|
BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/// doMultiply - Emit appropriate instructions to multiply together the
|
|
/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
|
|
/// result should be given as DestTy.
|
|
///
|
|
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned op1Reg) {
|
|
unsigned Class = getClass(DestTy);
|
|
switch (Class) {
|
|
case cLong:
|
|
BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1).addReg(op1Reg+1);
|
|
case cInt:
|
|
case cShort:
|
|
case cByte:
|
|
BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
|
|
return;
|
|
default:
|
|
assert(0 && "doMultiply cannot operate on unknown type!");
|
|
}
|
|
}
|
|
|
|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
// returns zero when the input is not exactly a power of two.
|
|
static unsigned ExactLog2(unsigned Val) {
|
|
if (Val == 0 || (Val & (Val-1))) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count+1;
|
|
}
|
|
|
|
|
|
/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
|
|
/// 16, or 32-bit integer multiply by a constant.
|
|
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned ConstRHS) {
|
|
unsigned Class = getClass(DestTy);
|
|
// Handle special cases here.
|
|
switch (ConstRHS) {
|
|
case 0:
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
|
|
return;
|
|
case 1:
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
|
|
return;
|
|
case 2:
|
|
BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
|
|
return;
|
|
}
|
|
|
|
// If the element size is exactly a power of 2, use a shift to get it.
|
|
if (unsigned Shift = ExactLog2(ConstRHS)) {
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown class for this function!");
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg).addImm(Shift-1).addImm(0).addImm(31-Shift-1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Most general case, emit a normal multiply...
|
|
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0).addImm(ConstRHS >> 16);
|
|
BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
|
|
|
|
// Emit a MUL to multiply the register holding the index by
|
|
// elementSize, putting the result in OffsetReg.
|
|
doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
|
|
}
|
|
|
|
void ISel::visitMul(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
|
|
Value *Op0 = I.getOperand(0);
|
|
Value *Op1 = I.getOperand(1);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitMultiply(BB, IP, Op0, Op1, ResultReg);
|
|
}
|
|
|
|
void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned DestReg) {
|
|
MachineBasicBlock &BB = *MBB;
|
|
TypeClass Class = getClass(Op0->getType());
|
|
|
|
// Simple scalar multiply?
|
|
unsigned Op0Reg = getReg(Op0, &BB, IP);
|
|
switch (Class) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
|
|
doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
|
|
} else {
|
|
unsigned Op1Reg = getReg(Op1, &BB, IP);
|
|
doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
|
|
}
|
|
return;
|
|
case cFP:
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
|
|
return;
|
|
case cLong:
|
|
break;
|
|
}
|
|
|
|
// Long value. We have to do things the hard way...
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned CLow = CI->getRawValue();
|
|
unsigned CHi = CI->getRawValue() >> 32;
|
|
|
|
if (CLow == 0) {
|
|
// If the low part of the constant is all zeros, things are simple.
|
|
BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
|
|
doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
|
|
return;
|
|
}
|
|
|
|
// Multiply the two low parts
|
|
unsigned OverflowReg = 0;
|
|
if (CLow == 1) {
|
|
BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
|
|
} else {
|
|
unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
|
|
unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
|
|
OverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0).addImm(CLow >> 16);
|
|
BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
|
|
BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
|
|
BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1RegL);
|
|
}
|
|
|
|
unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
|
|
doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
|
|
|
|
unsigned AHBLplusOverflowReg;
|
|
if (OverflowReg) {
|
|
AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
|
|
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
|
|
} else {
|
|
AHBLplusOverflowReg = AHBLReg;
|
|
}
|
|
|
|
if (CHi == 0) {
|
|
BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg).addReg(AHBLplusOverflowReg);
|
|
} else {
|
|
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
|
|
doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
|
|
|
|
BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
|
|
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// General 64x64 multiply
|
|
|
|
unsigned Op1Reg = getReg(Op1, &BB, IP);
|
|
|
|
// Multiply the two low parts... capturing carry into EDX
|
|
BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
|
|
|
|
unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
|
|
|
|
unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
|
|
BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
|
|
|
|
unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
|
|
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
|
|
|
|
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
|
|
BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
|
|
|
|
BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
|
|
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg);
|
|
}
|
|
|
|
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned ResultReg) {
|
|
const Type *Ty = Op0->getType();
|
|
unsigned Class = getClass(Ty);
|
|
switch (Class) {
|
|
case cFP: // Floating point divide
|
|
if (isDiv) {
|
|
emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
|
|
return;
|
|
} else { // Floating point remainder...
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
|
|
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
|
|
}
|
|
return;
|
|
case cLong: {
|
|
static const char *FnName[] =
|
|
{ "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
|
|
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
|
|
return;
|
|
}
|
|
case cByte: case cShort: case cInt:
|
|
break; // Small integrals, handled below...
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Special case signed division by power of 2.
|
|
if (isDiv)
|
|
if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
|
|
assert(Class != cLong && "This doesn't handle 64-bit divides!");
|
|
int V = CI->getValue();
|
|
|
|
if (V == 1) { // X /s 1 => X
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
if (V == -1) { // X /s -1 => -X
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
bool isNeg = false;
|
|
if (V < 0) { // Not a positive power of 2?
|
|
V = -V;
|
|
isNeg = true; // Maybe it's a negative power of 2.
|
|
}
|
|
if (unsigned Log = ExactLog2(V)) {
|
|
--Log;
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Op0->getType());
|
|
if (Log != 1)
|
|
BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(Log-1);
|
|
else
|
|
BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
|
|
|
|
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log).addImm(32-Log).addImm(31);
|
|
|
|
unsigned TmpReg3 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
|
|
|
|
unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
|
|
BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
|
|
|
|
if (isNeg)
|
|
BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
|
|
if (isDiv) {
|
|
if (Ty->isSigned()) {
|
|
BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
} else {
|
|
BuildMI(*BB, IP, PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
}
|
|
} else { // Remainder
|
|
unsigned TmpReg1 = makeAnotherReg(Op0->getType());
|
|
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
|
|
|
|
if (Ty->isSigned()) {
|
|
BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
|
|
} else {
|
|
BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
|
|
}
|
|
BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
|
|
BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
|
|
}
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void ISel::visitShiftInst(ShiftInst &I) {
|
|
MachineBasicBlock::iterator IP = BB->end ();
|
|
emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
|
|
I.getOpcode () == Instruction::Shl, I.getType (),
|
|
getReg (I));
|
|
}
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg) {
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
bool isSigned = ResultTy->isSigned ();
|
|
unsigned Class = getClass (ResultTy);
|
|
|
|
// Longs, as usual, are handled specially...
|
|
if (Class == cLong) {
|
|
// If we have a constant shift, we can generate much more efficient code
|
|
// than otherwise...
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
unsigned Amount = CUI->getValue();
|
|
if (Amount < 32) {
|
|
if (isLeftShift) {
|
|
// FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(Amount).addImm(0).addImm(31-Amount);
|
|
BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg).addImm(Amount).addImm(32-Amount).addImm(31);
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
// FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
|
|
BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(0).addImm(Amount-1);
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
|
|
}
|
|
} else { // Shifting more than 32 bits
|
|
Amount -= 32;
|
|
if (isLeftShift) {
|
|
if (Amount != 0) {
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
|
|
}
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
|
|
} else {
|
|
if (Amount != 0) {
|
|
if (isSigned)
|
|
BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1).addImm(Amount);
|
|
else
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
|
|
}
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
|
|
}
|
|
}
|
|
} else {
|
|
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
|
|
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
|
|
BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1).addReg(ShiftAmountReg);
|
|
BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg).addReg(TmpReg1);
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
|
|
BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg).addReg(TmpReg5);
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4).addReg(TmpReg6);
|
|
BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
|
|
} else {
|
|
if (isSigned) {
|
|
// FIXME: Unimplmented
|
|
// Page C-3 of the PowerPC 32bit Programming Environments Manual
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
|
|
BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg).addReg(ShiftAmountReg);
|
|
BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
|
|
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
|
|
BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
|
|
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4).addReg(TmpReg6);
|
|
BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1).addReg(ShiftAmountReg);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
unsigned Amount = CUI->getValue();
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
if (isSigned) {
|
|
BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
|
|
}
|
|
}
|
|
} else { // The shift amount is non-constant.
|
|
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
|
|
} else {
|
|
BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions
|
|
///
|
|
void ISel::visitLoadInst(LoadInst &I) {
|
|
static const unsigned Opcodes[] = { PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS };
|
|
unsigned Class = getClassB(I.getType());
|
|
unsigned Opcode = Opcodes[Class];
|
|
if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
|
|
|
|
unsigned DestReg = getReg(I);
|
|
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
if (Class == cLong) {
|
|
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
|
|
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
|
|
}
|
|
} else {
|
|
unsigned SrcAddrReg = getReg(I.getOperand(0));
|
|
|
|
if (Class == cLong) {
|
|
BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
|
|
BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
|
|
} else {
|
|
BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions
|
|
///
|
|
void ISel::visitStoreInst(StoreInst &I) {
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
unsigned AddressReg = getReg(I.getOperand(1));
|
|
|
|
const Type *ValTy = I.getOperand(0)->getType();
|
|
unsigned Class = getClassB(ValTy);
|
|
|
|
if (Class == cLong) {
|
|
BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
|
|
BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
|
|
return;
|
|
}
|
|
|
|
static const unsigned Opcodes[] = {
|
|
PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
|
|
BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
|
|
}
|
|
|
|
|
|
/// visitCastInst - Here we have various kinds of copying with or without sign
|
|
/// extension going on.
|
|
///
|
|
void ISel::visitCastInst(CastInst &CI) {
|
|
Value *Op = CI.getOperand(0);
|
|
|
|
unsigned SrcClass = getClassB(Op->getType());
|
|
unsigned DestClass = getClassB(CI.getType());
|
|
// Noop casts are not emitted: getReg will return the source operand as the
|
|
// register to use for any uses of the noop cast.
|
|
if (DestClass == SrcClass)
|
|
return;
|
|
|
|
// If this is a cast from a 32-bit integer to a Long type, and the only uses
|
|
// of the case are GEP instructions, then the cast does not need to be
|
|
// generated explicitly, it will be folded into the GEP.
|
|
if (DestClass == cLong && SrcClass == cInt) {
|
|
bool AllUsesAreGEPs = true;
|
|
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
|
|
if (!isa<GetElementPtrInst>(*I)) {
|
|
AllUsesAreGEPs = false;
|
|
break;
|
|
}
|
|
|
|
// No need to codegen this cast if all users are getelementptr instrs...
|
|
if (AllUsesAreGEPs) return;
|
|
}
|
|
|
|
unsigned DestReg = getReg(CI);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
|
|
}
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and constant
|
|
/// expression cast support.
|
|
///
|
|
void ISel::emitCastOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy,
|
|
unsigned DestReg) {
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcClass = getClassB(SrcTy);
|
|
unsigned DestClass = getClassB(DestTy);
|
|
unsigned SrcReg = getReg(Src, BB, IP);
|
|
|
|
// Implement casts to bool by using compare on the operand followed by set if
|
|
// not zero on the result.
|
|
if (DestTy == Type::BoolTy) {
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
|
|
BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
case cLong: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
|
|
BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
|
|
BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
|
|
break;
|
|
}
|
|
case cFP:
|
|
// FIXME
|
|
// Load -0.0
|
|
// Compare
|
|
// move to CR1
|
|
// Negate -0.0
|
|
// Compare
|
|
// CROR
|
|
// MFCR
|
|
// Left-align
|
|
// SRA ?
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Implement casts between values of the same type class (as determined by
|
|
// getClass) by using a register-to-register move.
|
|
if (SrcClass == DestClass) {
|
|
if (SrcClass <= cInt) {
|
|
BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
} else if (SrcClass == cFP && SrcTy == DestTy) {
|
|
BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
|
|
} else if (SrcClass == cFP) {
|
|
if (SrcTy == Type::FloatTy) { // float -> double
|
|
assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
|
|
BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
|
|
} else { // double -> float
|
|
assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
|
|
"Unknown cFP member!");
|
|
BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
|
|
}
|
|
} else if (SrcClass == cLong) {
|
|
BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
|
|
} else {
|
|
assert(0 && "Cannot handle this type of cast instruction!");
|
|
abort();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle cast of SMALLER int to LARGER int using a move with sign extension
|
|
// or zero extension, depending on whether the source type was signed.
|
|
if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
|
|
SrcClass < DestClass) {
|
|
bool isLong = DestClass == cLong;
|
|
if (isLong) DestClass = cInt;
|
|
|
|
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
|
|
if (SrcClass < cInt) {
|
|
if (isUnsigned) {
|
|
unsigned shift = (SrcClass == cByte) ? 24 : 16;
|
|
BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
|
|
} else {
|
|
BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
}
|
|
} else {
|
|
BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
}
|
|
|
|
if (isLong) { // Handle upper 32 bits as appropriate...
|
|
if (isUnsigned) // Zero out top bits...
|
|
BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
|
|
else // Sign extend bottom half...
|
|
BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case long -> int ...
|
|
if (SrcClass == cLong && DestClass == cInt) {
|
|
BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle cast of LARGER int to SMALLER int with a clear or sign extend
|
|
if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
|
|
&& SrcClass > DestClass) {
|
|
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
|
|
if (isUnsigned) {
|
|
unsigned shift = (SrcClass == cByte) ? 24 : 16;
|
|
BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
|
|
} else {
|
|
BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle casts from integer to floating point now...
|
|
if (DestClass == cFP) {
|
|
|
|
// Emit a library call for long to float conversion
|
|
if (SrcClass == cLong) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(SrcReg, SrcTy));
|
|
MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
|
|
doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
|
|
return;
|
|
}
|
|
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
switch (SrcTy->getTypeID()) {
|
|
case Type::BoolTyID:
|
|
case Type::SByteTyID:
|
|
BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
|
|
break;
|
|
case Type::UByteTyID:
|
|
BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(24).addImm(31);
|
|
break;
|
|
case Type::ShortTyID:
|
|
BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
|
|
break;
|
|
case Type::UShortTyID:
|
|
BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(16).addImm(31);
|
|
break;
|
|
case Type::IntTyID:
|
|
BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case Type::UIntTyID:
|
|
BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
default: // No promotion needed...
|
|
break;
|
|
}
|
|
|
|
SrcReg = TmpReg;
|
|
|
|
// Spill the integer to memory and reload it from there.
|
|
// Also spill room for a special conversion constant
|
|
int ConstantFrameIndex =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
int ValueFrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
|
|
unsigned constantHi = makeAnotherReg(Type::IntTy);
|
|
unsigned constantLo = makeAnotherReg(Type::IntTy);
|
|
unsigned ConstF = makeAnotherReg(Type::DoubleTy);
|
|
unsigned TempF = makeAnotherReg(Type::DoubleTy);
|
|
|
|
if (!SrcTy->isSigned()) {
|
|
BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
|
|
BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), ValueFrameIdx, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
|
|
BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
|
|
} else {
|
|
unsigned TempLo = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
|
|
BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0).addImm(0x8000);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
|
|
BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), ValueFrameIdx, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
|
|
BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle casts from floating point to integer now...
|
|
if (SrcClass == cFP) {
|
|
|
|
// emit library call
|
|
if (DestClass == cLong) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(SrcReg, SrcTy));
|
|
MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
|
|
doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
|
|
return;
|
|
}
|
|
|
|
int ValueFrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
|
|
// load into 32 bit value, and then truncate as necessary
|
|
// FIXME: This is wrong for unsigned dest types
|
|
//if (DestTy->isSigned()) {
|
|
unsigned TempReg = makeAnotherReg(Type::DoubleTy);
|
|
BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(TempReg), ValueFrameIdx);
|
|
addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), ValueFrameIdx+4);
|
|
//} else {
|
|
//}
|
|
|
|
// FIXME: Truncate return value
|
|
return;
|
|
}
|
|
|
|
// Anything we haven't handled already, we can't (yet) handle at all.
|
|
assert(0 && "Unhandled cast instruction!");
|
|
abort();
|
|
}
|
|
|
|
/// visitVANextInst - Implement the va_next instruction...
|
|
///
|
|
void ISel::visitVANextInst(VANextInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
unsigned Size;
|
|
switch (I.getArgType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
Size = 4;
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
case Type::DoubleTyID:
|
|
Size = 8;
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList pointer...
|
|
BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
|
|
}
|
|
|
|
void ISel::visitVAArgInst(VAArgInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
switch (I.getType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
|
|
BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// visitGetElementPtrInst - instruction-select GEP instructions
|
|
///
|
|
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
unsigned outputReg = getReg(I);
|
|
emitGEPOperation(BB, BB->end(), I.getOperand(0),I.op_begin()+1, I.op_end(), outputReg);
|
|
}
|
|
|
|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
|
|
Src = CPR->getValue();
|
|
|
|
std::vector<Value*> GEPOps;
|
|
GEPOps.resize(IdxEnd-IdxBegin+1);
|
|
GEPOps[0] = Src;
|
|
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
|
|
|
|
std::vector<const Type*> GEPTypes;
|
|
GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
|
|
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
|
|
|
|
// Keep emitting instructions until we consume the entire GEP instruction.
|
|
while (!GEPOps.empty()) {
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
|
|
Value *idx = GEPOps.back();
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
|
|
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
|
|
// operand on X86. Handle this case directly now...
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
// We want to add BaseReg to(idxReg * sizeof ElementType). First, we
|
|
// must find the size of the pointed-to type (Not coincidentally, the next
|
|
// type is the type of the elements in the array).
|
|
const Type *ElTy = SqTy->getElementType();
|
|
unsigned elementSize = TD.getTypeSize(ElTy);
|
|
|
|
if (elementSize == 1) {
|
|
// If the element size is 1, we don't have to multiply, just add
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
|
|
--IP; // Insert the next instruction before this one.
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
} else {
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
|
|
|
|
// Make sure we can back the iterator up to point to the first
|
|
// instruction emitted.
|
|
MachineBasicBlock::iterator BeforeIt = IP;
|
|
if (IP == MBB->begin())
|
|
BeforeIt = MBB->end();
|
|
else
|
|
--BeforeIt;
|
|
doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
|
|
|
|
// Emit an ADD to add OffsetReg to the basePtr.
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
|
|
|
|
// Step to the first instruction of the multiply.
|
|
if (BeforeIt == MBB->end())
|
|
IP = MBB->begin();
|
|
else
|
|
IP = ++BeforeIt;
|
|
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
}
|
|
}
|
|
}
|
|
|
|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
|
|
/// frame manager, otherwise do it the hard way.
|
|
///
|
|
void ISel::visitAllocaInst(AllocaInst &I) {
|
|
// If this is a fixed size alloca in the entry block for the function, we
|
|
// statically stack allocate the space, so we don't need to do anything here.
|
|
//
|
|
if (dyn_castFixedAlloca(&I)) return;
|
|
|
|
// Find the data size of the alloca inst's getAllocatedType.
|
|
const Type *Ty = I.getAllocatedType();
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
|
|
// Create a register to hold the temporary result of multiplying the type size
|
|
// constant by the variable amount.
|
|
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
|
|
unsigned SrcReg1 = getReg(I.getArraySize());
|
|
|
|
// TotalSizeReg = mul <numelements>, <TypeSize>
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
|
|
|
|
// AddedSize = add <TotalSizeReg>, 15
|
|
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
|
|
|
|
// AlignedSize = and <AddedSize>, ~15
|
|
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0).addImm(0).addImm(27);
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
|
|
|
|
// Put a pointer to the space into the result register, by copying
|
|
// the stack pointer.
|
|
BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
F->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// visitMallocInst - Malloc instructions are code generated into direct calls
|
|
/// to the library malloc.
|
|
///
|
|
void ISel::visitMallocInst(MallocInst &I) {
|
|
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
|
|
unsigned Arg;
|
|
|
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
|
|
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
|
|
} else {
|
|
Arg = makeAnotherReg(Type::UIntTy);
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Arg, Type::UIntTy));
|
|
MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
|
|
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
|
|
/// function.
|
|
///
|
|
void ISel::visitFreeInst(FreeInst &I) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(I.getOperand(0)));
|
|
MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
|
|
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
|
|
}
|
|
|
|
/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation is a very simple peep-hole fashion. The
|
|
/// generated code sucks but the implementation is nice and simple.
|
|
///
|
|
FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|