llvm/lib/Support/CrashRecoveryContext.cpp
Zachary Turner 8d124b04c8 [Support] Ignore OutputDebugString exceptions in our crash recovery.
Since we use AddVectoredExceptionHandler, we get notified of
every exception that gets raised by a program.  Sometimes these
are not necessarily errors though, and this can be especially
true when linking against a library that we have no control
over, and may raise an exception internally which it intends
to catch.

In particular, the Windows API OutputDebugString does exactly
this.  It raises an exception inside of a __try / __except,
giving the debugger a chance to handle the exception to print
the message to the debug console.

But this doesn't interoperate nicely with our vectored exception
handler, which just sees another exception and decides that we
need to terminate the program.

Add a special case for this so that we ignore ODS exceptions
and continue normally.

Note that a better fix is to simply not use vectored exception
handlers and use SEH instead, but given that MinGW doesn't support
SEH, this is the only solution for MinGW.

Differential Revision: https://reviews.llvm.org/D33260

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303219 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-16 22:50:32 +00:00

387 lines
11 KiB
C++

//===--- CrashRecoveryContext.cpp - Crash Recovery ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Config/config.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/ThreadLocal.h"
#include <setjmp.h>
using namespace llvm;
namespace {
struct CrashRecoveryContextImpl;
static ManagedStatic<
sys::ThreadLocal<const CrashRecoveryContextImpl> > CurrentContext;
struct CrashRecoveryContextImpl {
// When threads are disabled, this links up all active
// CrashRecoveryContextImpls. When threads are enabled there's one thread
// per CrashRecoveryContext and CurrentContext is a thread-local, so only one
// CrashRecoveryContextImpl is active per thread and this is always null.
const CrashRecoveryContextImpl *Next;
CrashRecoveryContext *CRC;
::jmp_buf JumpBuffer;
volatile unsigned Failed : 1;
unsigned SwitchedThread : 1;
public:
CrashRecoveryContextImpl(CrashRecoveryContext *CRC) : CRC(CRC),
Failed(false),
SwitchedThread(false) {
Next = CurrentContext->get();
CurrentContext->set(this);
}
~CrashRecoveryContextImpl() {
if (!SwitchedThread)
CurrentContext->set(Next);
}
/// \brief Called when the separate crash-recovery thread was finished, to
/// indicate that we don't need to clear the thread-local CurrentContext.
void setSwitchedThread() {
#if defined(LLVM_ENABLE_THREADS) && LLVM_ENABLE_THREADS != 0
SwitchedThread = true;
#endif
}
void HandleCrash() {
// Eliminate the current context entry, to avoid re-entering in case the
// cleanup code crashes.
CurrentContext->set(Next);
assert(!Failed && "Crash recovery context already failed!");
Failed = true;
// FIXME: Stash the backtrace.
// Jump back to the RunSafely we were called under.
longjmp(JumpBuffer, 1);
}
};
}
static ManagedStatic<sys::Mutex> gCrashRecoveryContextMutex;
static bool gCrashRecoveryEnabled = false;
static ManagedStatic<sys::ThreadLocal<const CrashRecoveryContext>>
tlIsRecoveringFromCrash;
CrashRecoveryContextCleanup::~CrashRecoveryContextCleanup() {}
CrashRecoveryContext::~CrashRecoveryContext() {
// Reclaim registered resources.
CrashRecoveryContextCleanup *i = head;
const CrashRecoveryContext *PC = tlIsRecoveringFromCrash->get();
tlIsRecoveringFromCrash->set(this);
while (i) {
CrashRecoveryContextCleanup *tmp = i;
i = tmp->next;
tmp->cleanupFired = true;
tmp->recoverResources();
delete tmp;
}
tlIsRecoveringFromCrash->set(PC);
CrashRecoveryContextImpl *CRCI = (CrashRecoveryContextImpl *) Impl;
delete CRCI;
}
bool CrashRecoveryContext::isRecoveringFromCrash() {
return tlIsRecoveringFromCrash->get() != nullptr;
}
CrashRecoveryContext *CrashRecoveryContext::GetCurrent() {
if (!gCrashRecoveryEnabled)
return nullptr;
const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
if (!CRCI)
return nullptr;
return CRCI->CRC;
}
void CrashRecoveryContext::registerCleanup(CrashRecoveryContextCleanup *cleanup)
{
if (!cleanup)
return;
if (head)
head->prev = cleanup;
cleanup->next = head;
head = cleanup;
}
void
CrashRecoveryContext::unregisterCleanup(CrashRecoveryContextCleanup *cleanup) {
if (!cleanup)
return;
if (cleanup == head) {
head = cleanup->next;
if (head)
head->prev = nullptr;
}
else {
cleanup->prev->next = cleanup->next;
if (cleanup->next)
cleanup->next->prev = cleanup->prev;
}
delete cleanup;
}
#ifdef LLVM_ON_WIN32
#include "Windows/WindowsSupport.h"
// On Windows, we can make use of vectored exception handling to
// catch most crashing situations. Note that this does mean
// we will be alerted of exceptions *before* structured exception
// handling has the opportunity to catch it. But that isn't likely
// to cause problems because nowhere in the project is SEH being
// used.
//
// Vectored exception handling is built on top of SEH, and so it
// works on a per-thread basis.
//
// The vectored exception handler functionality was added in Windows
// XP, so if support for older versions of Windows is required,
// it will have to be added.
//
// If we want to support as far back as Win2k, we could use the
// SetUnhandledExceptionFilter API, but there's a risk of that
// being entirely overwritten (it's not a chain).
static LONG CALLBACK ExceptionHandler(PEXCEPTION_POINTERS ExceptionInfo)
{
switch (ExceptionInfo->ExceptionRecord->ExceptionCode)
{
case DBG_PRINTEXCEPTION_C:
case DBG_PRINTEXCEPTION_WIDE_C:
case 0x406D1388: // set debugger thread name
return EXCEPTION_CONTINUE_EXECUTION;
}
// Lookup the current thread local recovery object.
const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
if (!CRCI) {
// Something has gone horribly wrong, so let's just tell everyone
// to keep searching
CrashRecoveryContext::Disable();
return EXCEPTION_CONTINUE_SEARCH;
}
// TODO: We can capture the stack backtrace here and store it on the
// implementation if we so choose.
// Handle the crash
const_cast<CrashRecoveryContextImpl*>(CRCI)->HandleCrash();
// Note that we don't actually get here because HandleCrash calls
// longjmp, which means the HandleCrash function never returns.
llvm_unreachable("Handled the crash, should have longjmp'ed out of here");
}
// Because the Enable and Disable calls are static, it means that
// there may not actually be an Impl available, or even a current
// CrashRecoveryContext at all. So we make use of a thread-local
// exception table. The handles contained in here will either be
// non-NULL, valid VEH handles, or NULL.
static sys::ThreadLocal<const void> sCurrentExceptionHandle;
void CrashRecoveryContext::Enable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = true;
// We can set up vectored exception handling now. We will install our
// handler as the front of the list, though there's no assurances that
// it will remain at the front (another call could install itself before
// our handler). This 1) isn't likely, and 2) shouldn't cause problems.
PVOID handle = ::AddVectoredExceptionHandler(1, ExceptionHandler);
sCurrentExceptionHandle.set(handle);
}
void CrashRecoveryContext::Disable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (!gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = false;
PVOID currentHandle = const_cast<PVOID>(sCurrentExceptionHandle.get());
if (currentHandle) {
// Now we can remove the vectored exception handler from the chain
::RemoveVectoredExceptionHandler(currentHandle);
// Reset the handle in our thread-local set.
sCurrentExceptionHandle.set(NULL);
}
}
#else
// Generic POSIX implementation.
//
// This implementation relies on synchronous signals being delivered to the
// current thread. We use a thread local object to keep track of the active
// crash recovery context, and install signal handlers to invoke HandleCrash on
// the active object.
//
// This implementation does not to attempt to chain signal handlers in any
// reliable fashion -- if we get a signal outside of a crash recovery context we
// simply disable crash recovery and raise the signal again.
#include <signal.h>
static const int Signals[] =
{ SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGTRAP };
static const unsigned NumSignals = array_lengthof(Signals);
static struct sigaction PrevActions[NumSignals];
static void CrashRecoverySignalHandler(int Signal) {
// Lookup the current thread local recovery object.
const CrashRecoveryContextImpl *CRCI = CurrentContext->get();
if (!CRCI) {
// We didn't find a crash recovery context -- this means either we got a
// signal on a thread we didn't expect it on, the application got a signal
// outside of a crash recovery context, or something else went horribly
// wrong.
//
// Disable crash recovery and raise the signal again. The assumption here is
// that the enclosing application will terminate soon, and we won't want to
// attempt crash recovery again.
//
// This call of Disable isn't thread safe, but it doesn't actually matter.
CrashRecoveryContext::Disable();
raise(Signal);
// The signal will be thrown once the signal mask is restored.
return;
}
// Unblock the signal we received.
sigset_t SigMask;
sigemptyset(&SigMask);
sigaddset(&SigMask, Signal);
sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);
if (CRCI)
const_cast<CrashRecoveryContextImpl*>(CRCI)->HandleCrash();
}
void CrashRecoveryContext::Enable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = true;
// Setup the signal handler.
struct sigaction Handler;
Handler.sa_handler = CrashRecoverySignalHandler;
Handler.sa_flags = 0;
sigemptyset(&Handler.sa_mask);
for (unsigned i = 0; i != NumSignals; ++i) {
sigaction(Signals[i], &Handler, &PrevActions[i]);
}
}
void CrashRecoveryContext::Disable() {
sys::ScopedLock L(*gCrashRecoveryContextMutex);
if (!gCrashRecoveryEnabled)
return;
gCrashRecoveryEnabled = false;
// Restore the previous signal handlers.
for (unsigned i = 0; i != NumSignals; ++i)
sigaction(Signals[i], &PrevActions[i], nullptr);
}
#endif
bool CrashRecoveryContext::RunSafely(function_ref<void()> Fn) {
// If crash recovery is disabled, do nothing.
if (gCrashRecoveryEnabled) {
assert(!Impl && "Crash recovery context already initialized!");
CrashRecoveryContextImpl *CRCI = new CrashRecoveryContextImpl(this);
Impl = CRCI;
if (setjmp(CRCI->JumpBuffer) != 0) {
return false;
}
}
Fn();
return true;
}
void CrashRecoveryContext::HandleCrash() {
CrashRecoveryContextImpl *CRCI = (CrashRecoveryContextImpl *) Impl;
assert(CRCI && "Crash recovery context never initialized!");
CRCI->HandleCrash();
}
// FIXME: Portability.
static void setThreadBackgroundPriority() {
#ifdef __APPLE__
setpriority(PRIO_DARWIN_THREAD, 0, PRIO_DARWIN_BG);
#endif
}
static bool hasThreadBackgroundPriority() {
#ifdef __APPLE__
return getpriority(PRIO_DARWIN_THREAD, 0) == 1;
#else
return false;
#endif
}
namespace {
struct RunSafelyOnThreadInfo {
function_ref<void()> Fn;
CrashRecoveryContext *CRC;
bool UseBackgroundPriority;
bool Result;
};
}
static void RunSafelyOnThread_Dispatch(void *UserData) {
RunSafelyOnThreadInfo *Info =
reinterpret_cast<RunSafelyOnThreadInfo*>(UserData);
if (Info->UseBackgroundPriority)
setThreadBackgroundPriority();
Info->Result = Info->CRC->RunSafely(Info->Fn);
}
bool CrashRecoveryContext::RunSafelyOnThread(function_ref<void()> Fn,
unsigned RequestedStackSize) {
bool UseBackgroundPriority = hasThreadBackgroundPriority();
RunSafelyOnThreadInfo Info = { Fn, this, UseBackgroundPriority, false };
llvm_execute_on_thread(RunSafelyOnThread_Dispatch, &Info, RequestedStackSize);
if (CrashRecoveryContextImpl *CRC = (CrashRecoveryContextImpl *)Impl)
CRC->setSwitchedThread();
return Info.Result;
}