mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-15 07:59:57 +00:00
da4a9a639e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280247 91177308-0d34-0410-b5e6-96231b3b80d8
1245 lines
38 KiB
ReStructuredText
1245 lines
38 KiB
ReStructuredText
=====================================
|
|
Coroutines in LLVM
|
|
=====================================
|
|
|
|
.. contents::
|
|
:local:
|
|
:depth: 3
|
|
|
|
.. warning::
|
|
This is a work in progress. Compatibility across LLVM releases is not
|
|
guaranteed.
|
|
|
|
Introduction
|
|
============
|
|
|
|
.. _coroutine handle:
|
|
|
|
LLVM coroutines are functions that have one or more `suspend points`_.
|
|
When a suspend point is reached, the execution of a coroutine is suspended and
|
|
control is returned back to its caller. A suspended coroutine can be resumed
|
|
to continue execution from the last suspend point or it can be destroyed.
|
|
|
|
In the following example, we call function `f` (which may or may not be a
|
|
coroutine itself) that returns a handle to a suspended coroutine
|
|
(**coroutine handle**) that is used by `main` to resume the coroutine twice and
|
|
then destroy it:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define i32 @main() {
|
|
entry:
|
|
%hdl = call i8* @f(i32 4)
|
|
call void @llvm.coro.resume(i8* %hdl)
|
|
call void @llvm.coro.resume(i8* %hdl)
|
|
call void @llvm.coro.destroy(i8* %hdl)
|
|
ret i32 0
|
|
}
|
|
|
|
.. _coroutine frame:
|
|
|
|
In addition to the function stack frame which exists when a coroutine is
|
|
executing, there is an additional region of storage that contains objects that
|
|
keep the coroutine state when a coroutine is suspended. This region of storage
|
|
is called **coroutine frame**. It is created when a coroutine is called and
|
|
destroyed when a coroutine runs to completion or destroyed by a call to
|
|
the `coro.destroy`_ intrinsic.
|
|
|
|
An LLVM coroutine is represented as an LLVM function that has calls to
|
|
`coroutine intrinsics`_ defining the structure of the coroutine.
|
|
After lowering, a coroutine is split into several
|
|
functions that represent three different ways of how control can enter the
|
|
coroutine:
|
|
|
|
1. a ramp function, which represents an initial invocation of the coroutine that
|
|
creates the coroutine frame and executes the coroutine code until it
|
|
encounters a suspend point or reaches the end of the function;
|
|
|
|
2. a coroutine resume function that is invoked when the coroutine is resumed;
|
|
|
|
3. a coroutine destroy function that is invoked when the coroutine is destroyed.
|
|
|
|
.. note:: Splitting out resume and destroy functions are just one of the
|
|
possible ways of lowering the coroutine. We chose it for initial
|
|
implementation as it matches closely the mental model and results in
|
|
reasonably nice code.
|
|
|
|
Coroutines by Example
|
|
=====================
|
|
|
|
Coroutine Representation
|
|
------------------------
|
|
|
|
Let's look at an example of an LLVM coroutine with the behavior sketched
|
|
by the following pseudo-code.
|
|
|
|
.. code-block:: c++
|
|
|
|
void *f(int n) {
|
|
for(;;) {
|
|
print(n++);
|
|
<suspend> // returns a coroutine handle on first suspend
|
|
}
|
|
}
|
|
|
|
This coroutine calls some function `print` with value `n` as an argument and
|
|
suspends execution. Every time this coroutine resumes, it calls `print` again with an argument one bigger than the last time. This coroutine never completes by itself and must be destroyed explicitly. If we use this coroutine with
|
|
a `main` shown in the previous section. It will call `print` with values 4, 5
|
|
and 6 after which the coroutine will be destroyed.
|
|
|
|
The LLVM IR for this coroutine looks like this:
|
|
|
|
.. code-block:: none
|
|
|
|
define i8* @f(i32 %n) {
|
|
entry:
|
|
%id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
|
|
%size = call i32 @llvm.coro.size.i32()
|
|
%alloc = call i8* @malloc(i32 %size)
|
|
%hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
|
|
br label %loop
|
|
loop:
|
|
%n.val = phi i32 [ %n, %entry ], [ %inc, %loop ]
|
|
%inc = add nsw i32 %n.val, 1
|
|
call void @print(i32 %n.val)
|
|
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
|
|
switch i8 %0, label %suspend [i8 0, label %loop
|
|
i8 1, label %cleanup]
|
|
cleanup:
|
|
%mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
|
|
call void @free(i8* %mem)
|
|
br label %suspend
|
|
suspend:
|
|
call void @llvm.coro.end(i8* %hdl, i1 false)
|
|
ret i8* %hdl
|
|
}
|
|
|
|
The `entry` block establishes the coroutine frame. The `coro.size`_ intrinsic is
|
|
lowered to a constant representing the size required for the coroutine frame.
|
|
The `coro.begin`_ intrinsic initializes the coroutine frame and returns the
|
|
coroutine handle. The second parameter of `coro.begin` is given a block of memory
|
|
to be used if the coroutine frame needs to be allocated dynamically.
|
|
The `coro.id`_ intrinsic serves as coroutine identity useful in cases when the
|
|
`coro.begin`_ intrinsic get duplicated by optimization passes such as
|
|
jump-threading.
|
|
|
|
The `cleanup` block destroys the coroutine frame. The `coro.free`_ intrinsic,
|
|
given the coroutine handle, returns a pointer of the memory block to be freed or
|
|
`null` if the coroutine frame was not allocated dynamically. The `cleanup`
|
|
block is entered when coroutine runs to completion by itself or destroyed via
|
|
call to the `coro.destroy`_ intrinsic.
|
|
|
|
The `suspend` block contains code to be executed when coroutine runs to
|
|
completion or suspended. The `coro.end`_ intrinsic marks the point where
|
|
a coroutine needs to return control back to the caller if it is not an initial
|
|
invocation of the coroutine.
|
|
|
|
The `loop` blocks represents the body of the coroutine. The `coro.suspend`_
|
|
intrinsic in combination with the following switch indicates what happens to
|
|
control flow when a coroutine is suspended (default case), resumed (case 0) or
|
|
destroyed (case 1).
|
|
|
|
Coroutine Transformation
|
|
------------------------
|
|
|
|
One of the steps of coroutine lowering is building the coroutine frame. The
|
|
def-use chains are analyzed to determine which objects need be kept alive across
|
|
suspend points. In the coroutine shown in the previous section, use of virtual register
|
|
`%n.val` is separated from the definition by a suspend point, therefore, it
|
|
cannot reside on the stack frame since the latter goes away once the coroutine
|
|
is suspended and control is returned back to the caller. An i32 slot is
|
|
allocated in the coroutine frame and `%n.val` is spilled and reloaded from that
|
|
slot as needed.
|
|
|
|
We also store addresses of the resume and destroy functions so that the
|
|
`coro.resume` and `coro.destroy` intrinsics can resume and destroy the coroutine
|
|
when its identity cannot be determined statically at compile time. For our
|
|
example, the coroutine frame will be:
|
|
|
|
.. code-block:: text
|
|
|
|
%f.frame = type { void (%f.frame*)*, void (%f.frame*)*, i32 }
|
|
|
|
After resume and destroy parts are outlined, function `f` will contain only the
|
|
code responsible for creation and initialization of the coroutine frame and
|
|
execution of the coroutine until a suspend point is reached:
|
|
|
|
.. code-block:: none
|
|
|
|
define i8* @f(i32 %n) {
|
|
entry:
|
|
%id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
|
|
%alloc = call noalias i8* @malloc(i32 24)
|
|
%0 = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
|
|
%frame = bitcast i8* %0 to %f.frame*
|
|
%1 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 0
|
|
store void (%f.frame*)* @f.resume, void (%f.frame*)** %1
|
|
%2 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 1
|
|
store void (%f.frame*)* @f.destroy, void (%f.frame*)** %2
|
|
|
|
%inc = add nsw i32 %n, 1
|
|
%inc.spill.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 2
|
|
store i32 %inc, i32* %inc.spill.addr
|
|
call void @print(i32 %n)
|
|
|
|
ret i8* %frame
|
|
}
|
|
|
|
Outlined resume part of the coroutine will reside in function `f.resume`:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define internal fastcc void @f.resume(%f.frame* %frame.ptr.resume) {
|
|
entry:
|
|
%inc.spill.addr = getelementptr %f.frame, %f.frame* %frame.ptr.resume, i64 0, i32 2
|
|
%inc.spill = load i32, i32* %inc.spill.addr, align 4
|
|
%inc = add i32 %n.val, 1
|
|
store i32 %inc, i32* %inc.spill.addr, align 4
|
|
tail call void @print(i32 %inc)
|
|
ret void
|
|
}
|
|
|
|
Whereas function `f.destroy` will contain the cleanup code for the coroutine:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define internal fastcc void @f.destroy(%f.frame* %frame.ptr.destroy) {
|
|
entry:
|
|
%0 = bitcast %f.frame* %frame.ptr.destroy to i8*
|
|
tail call void @free(i8* %0)
|
|
ret void
|
|
}
|
|
|
|
Avoiding Heap Allocations
|
|
-------------------------
|
|
|
|
A particular coroutine usage pattern, which is illustrated by the `main`
|
|
function in the overview section, where a coroutine is created, manipulated and
|
|
destroyed by the same calling function, is common for coroutines implementing
|
|
RAII idiom and is suitable for allocation elision optimization which avoid
|
|
dynamic allocation by storing the coroutine frame as a static `alloca` in its
|
|
caller.
|
|
|
|
In the entry block, we will call `coro.alloc`_ intrinsic that will return `true`
|
|
when dynamic allocation is required, and `false` if dynamic allocation is
|
|
elided.
|
|
|
|
.. code-block:: none
|
|
|
|
entry:
|
|
%id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
|
|
%need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
|
|
br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
|
|
dyn.alloc:
|
|
%size = call i32 @llvm.coro.size.i32()
|
|
%alloc = call i8* @CustomAlloc(i32 %size)
|
|
br label %coro.begin
|
|
coro.begin:
|
|
%phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ]
|
|
%hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)
|
|
|
|
In the cleanup block, we will make freeing the coroutine frame conditional on
|
|
`coro.free`_ intrinsic. If allocation is elided, `coro.free`_ returns `null`
|
|
thus skipping the deallocation code:
|
|
|
|
.. code-block:: text
|
|
|
|
cleanup:
|
|
%mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
|
|
%need.dyn.free = icmp ne i8* %mem, null
|
|
br i1 %need.dyn.free, label %dyn.free, label %if.end
|
|
dyn.free:
|
|
call void @CustomFree(i8* %mem)
|
|
br label %if.end
|
|
if.end:
|
|
...
|
|
|
|
With allocations and deallocations represented as described as above, after
|
|
coroutine heap allocation elision optimization, the resulting main will be:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define i32 @main() {
|
|
entry:
|
|
call void @print(i32 4)
|
|
call void @print(i32 5)
|
|
call void @print(i32 6)
|
|
ret i32 0
|
|
}
|
|
|
|
Multiple Suspend Points
|
|
-----------------------
|
|
|
|
Let's consider the coroutine that has more than one suspend point:
|
|
|
|
.. code-block:: c++
|
|
|
|
void *f(int n) {
|
|
for(;;) {
|
|
print(n++);
|
|
<suspend>
|
|
print(-n);
|
|
<suspend>
|
|
}
|
|
}
|
|
|
|
Matching LLVM code would look like (with the rest of the code remaining the same
|
|
as the code in the previous section):
|
|
|
|
.. code-block:: text
|
|
|
|
loop:
|
|
%n.addr = phi i32 [ %n, %entry ], [ %inc, %loop.resume ]
|
|
call void @print(i32 %n.addr) #4
|
|
%2 = call i8 @llvm.coro.suspend(token none, i1 false)
|
|
switch i8 %2, label %suspend [i8 0, label %loop.resume
|
|
i8 1, label %cleanup]
|
|
loop.resume:
|
|
%inc = add nsw i32 %n.addr, 1
|
|
%sub = xor i32 %n.addr, -1
|
|
call void @print(i32 %sub)
|
|
%3 = call i8 @llvm.coro.suspend(token none, i1 false)
|
|
switch i8 %3, label %suspend [i8 0, label %loop
|
|
i8 1, label %cleanup]
|
|
|
|
In this case, the coroutine frame would include a suspend index that will
|
|
indicate at which suspend point the coroutine needs to resume. The resume
|
|
function will use an index to jump to an appropriate basic block and will look
|
|
as follows:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define internal fastcc void @f.Resume(%f.Frame* %FramePtr) {
|
|
entry.Resume:
|
|
%index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 2
|
|
%index = load i8, i8* %index.addr, align 1
|
|
%switch = icmp eq i8 %index, 0
|
|
%n.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 3
|
|
%n = load i32, i32* %n.addr, align 4
|
|
br i1 %switch, label %loop.resume, label %loop
|
|
|
|
loop.resume:
|
|
%sub = xor i32 %n, -1
|
|
call void @print(i32 %sub)
|
|
br label %suspend
|
|
loop:
|
|
%inc = add nsw i32 %n, 1
|
|
store i32 %inc, i32* %n.addr, align 4
|
|
tail call void @print(i32 %inc)
|
|
br label %suspend
|
|
|
|
suspend:
|
|
%storemerge = phi i8 [ 0, %loop ], [ 1, %loop.resume ]
|
|
store i8 %storemerge, i8* %index.addr, align 1
|
|
ret void
|
|
}
|
|
|
|
If different cleanup code needs to get executed for different suspend points,
|
|
a similar switch will be in the `f.destroy` function.
|
|
|
|
.. note ::
|
|
|
|
Using suspend index in a coroutine state and having a switch in `f.resume` and
|
|
`f.destroy` is one of the possible implementation strategies. We explored
|
|
another option where a distinct `f.resume1`, `f.resume2`, etc. are created for
|
|
every suspend point, and instead of storing an index, the resume and destroy
|
|
function pointers are updated at every suspend. Early testing showed that the
|
|
current approach is easier on the optimizer than the latter so it is a
|
|
lowering strategy implemented at the moment.
|
|
|
|
Distinct Save and Suspend
|
|
-------------------------
|
|
|
|
In the previous example, setting a resume index (or some other state change that
|
|
needs to happen to prepare a coroutine for resumption) happens at the same time as
|
|
a suspension of a coroutine. However, in certain cases, it is necessary to control
|
|
when coroutine is prepared for resumption and when it is suspended.
|
|
|
|
In the following example, a coroutine represents some activity that is driven
|
|
by completions of asynchronous operations `async_op1` and `async_op2` which get
|
|
a coroutine handle as a parameter and resume the coroutine once async
|
|
operation is finished.
|
|
|
|
.. code-block:: text
|
|
|
|
void g() {
|
|
for (;;)
|
|
if (cond()) {
|
|
async_op1(<coroutine-handle>); // will resume once async_op1 completes
|
|
<suspend>
|
|
do_one();
|
|
}
|
|
else {
|
|
async_op2(<coroutine-handle>); // will resume once async_op2 completes
|
|
<suspend>
|
|
do_two();
|
|
}
|
|
}
|
|
}
|
|
|
|
In this case, coroutine should be ready for resumption prior to a call to
|
|
`async_op1` and `async_op2`. The `coro.save`_ intrinsic is used to indicate a
|
|
point when coroutine should be ready for resumption (namely, when a resume index
|
|
should be stored in the coroutine frame, so that it can be resumed at the
|
|
correct resume point):
|
|
|
|
.. code-block:: text
|
|
|
|
if.true:
|
|
%save1 = call token @llvm.coro.save(i8* %hdl)
|
|
call void async_op1(i8* %hdl)
|
|
%suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
|
|
switch i8 %suspend1, label %suspend [i8 0, label %resume1
|
|
i8 1, label %cleanup]
|
|
if.false:
|
|
%save2 = call token @llvm.coro.save(i8* %hdl)
|
|
call void async_op2(i8* %hdl)
|
|
%suspend2 = call i1 @llvm.coro.suspend(token %save2, i1 false)
|
|
switch i8 %suspend1, label %suspend [i8 0, label %resume2
|
|
i8 1, label %cleanup]
|
|
|
|
.. _coroutine promise:
|
|
|
|
Coroutine Promise
|
|
-----------------
|
|
|
|
A coroutine author or a frontend may designate a distinguished `alloca` that can
|
|
be used to communicate with the coroutine. This distinguished alloca is called
|
|
**coroutine promise** and is provided as the second parameter to the
|
|
`coro.id`_ intrinsic.
|
|
|
|
The following coroutine designates a 32 bit integer `promise` and uses it to
|
|
store the current value produced by a coroutine.
|
|
|
|
.. code-block:: text
|
|
|
|
define i8* @f(i32 %n) {
|
|
entry:
|
|
%promise = alloca i32
|
|
%pv = bitcast i32* %promise to i8*
|
|
%id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
|
|
%need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
|
|
br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
|
|
dyn.alloc:
|
|
%size = call i32 @llvm.coro.size.i32()
|
|
%alloc = call i8* @malloc(i32 %size)
|
|
br label %coro.begin
|
|
coro.begin:
|
|
%phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ]
|
|
%hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)
|
|
br label %loop
|
|
loop:
|
|
%n.val = phi i32 [ %n, %coro.begin ], [ %inc, %loop ]
|
|
%inc = add nsw i32 %n.val, 1
|
|
store i32 %n.val, i32* %promise
|
|
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
|
|
switch i8 %0, label %suspend [i8 0, label %loop
|
|
i8 1, label %cleanup]
|
|
cleanup:
|
|
%mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
|
|
call void @free(i8* %mem)
|
|
br label %suspend
|
|
suspend:
|
|
call void @llvm.coro.end(i8* %hdl, i1 false)
|
|
ret i8* %hdl
|
|
}
|
|
|
|
A coroutine consumer can rely on the `coro.promise`_ intrinsic to access the
|
|
coroutine promise.
|
|
|
|
.. code-block:: llvm
|
|
|
|
define i32 @main() {
|
|
entry:
|
|
%hdl = call i8* @f(i32 4)
|
|
%promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
|
|
%promise.addr = bitcast i8* %promise.addr.raw to i32*
|
|
%val0 = load i32, i32* %promise.addr
|
|
call void @print(i32 %val0)
|
|
call void @llvm.coro.resume(i8* %hdl)
|
|
%val1 = load i32, i32* %promise.addr
|
|
call void @print(i32 %val1)
|
|
call void @llvm.coro.resume(i8* %hdl)
|
|
%val2 = load i32, i32* %promise.addr
|
|
call void @print(i32 %val2)
|
|
call void @llvm.coro.destroy(i8* %hdl)
|
|
ret i32 0
|
|
}
|
|
|
|
After example in this section is compiled, result of the compilation will be:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define i32 @main() {
|
|
entry:
|
|
tail call void @print(i32 4)
|
|
tail call void @print(i32 5)
|
|
tail call void @print(i32 6)
|
|
ret i32 0
|
|
}
|
|
|
|
.. _final:
|
|
.. _final suspend:
|
|
|
|
Final Suspend
|
|
-------------
|
|
|
|
A coroutine author or a frontend may designate a particular suspend to be final,
|
|
by setting the second argument of the `coro.suspend`_ intrinsic to `true`.
|
|
Such a suspend point has two properties:
|
|
|
|
* it is possible to check whether a suspended coroutine is at the final suspend
|
|
point via `coro.done`_ intrinsic;
|
|
|
|
* a resumption of a coroutine stopped at the final suspend point leads to
|
|
undefined behavior. The only possible action for a coroutine at a final
|
|
suspend point is destroying it via `coro.destroy`_ intrinsic.
|
|
|
|
From the user perspective, the final suspend point represents an idea of a
|
|
coroutine reaching the end. From the compiler perspective, it is an optimization
|
|
opportunity for reducing number of resume points (and therefore switch cases) in
|
|
the resume function.
|
|
|
|
The following is an example of a function that keeps resuming the coroutine
|
|
until the final suspend point is reached after which point the coroutine is
|
|
destroyed:
|
|
|
|
.. code-block:: llvm
|
|
|
|
define i32 @main() {
|
|
entry:
|
|
%hdl = call i8* @f(i32 4)
|
|
br label %while
|
|
while:
|
|
call void @llvm.coro.resume(i8* %hdl)
|
|
%done = call i1 @llvm.coro.done(i8* %hdl)
|
|
br i1 %done, label %end, label %while
|
|
end:
|
|
call void @llvm.coro.destroy(i8* %hdl)
|
|
ret i32 0
|
|
}
|
|
|
|
Usually, final suspend point is a frontend injected suspend point that does not
|
|
correspond to any explicitly authored suspend point of the high level language.
|
|
For example, for a Python generator that has only one suspend point:
|
|
|
|
.. code-block:: python
|
|
|
|
def coroutine(n):
|
|
for i in range(n):
|
|
yield i
|
|
|
|
Python frontend would inject two more suspend points, so that the actual code
|
|
looks like this:
|
|
|
|
.. code-block:: c
|
|
|
|
void* coroutine(int n) {
|
|
int current_value;
|
|
<designate current_value to be coroutine promise>
|
|
<SUSPEND> // injected suspend point, so that the coroutine starts suspended
|
|
for (int i = 0; i < n; ++i) {
|
|
current_value = i; <SUSPEND>; // corresponds to "yield i"
|
|
}
|
|
<SUSPEND final=true> // injected final suspend point
|
|
}
|
|
|
|
and python iterator `__next__` would look like:
|
|
|
|
.. code-block:: c++
|
|
|
|
int __next__(void* hdl) {
|
|
coro.resume(hdl);
|
|
if (coro.done(hdl)) throw StopIteration();
|
|
return *(int*)coro.promise(hdl, 4, false);
|
|
}
|
|
|
|
Intrinsics
|
|
==========
|
|
|
|
Coroutine Manipulation Intrinsics
|
|
---------------------------------
|
|
|
|
Intrinsics described in this section are used to manipulate an existing
|
|
coroutine. They can be used in any function which happen to have a pointer
|
|
to a `coroutine frame`_ or a pointer to a `coroutine promise`_.
|
|
|
|
.. _coro.destroy:
|
|
|
|
'llvm.coro.destroy' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Syntax:
|
|
"""""""
|
|
|
|
::
|
|
|
|
declare void @llvm.coro.destroy(i8* <handle>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.destroy``' intrinsic destroys a suspended
|
|
coroutine.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The argument is a coroutine handle to a suspended coroutine.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
When possible, the `coro.destroy` intrinsic is replaced with a direct call to
|
|
the coroutine destroy function. Otherwise it is replaced with an indirect call
|
|
based on the function pointer for the destroy function stored in the coroutine
|
|
frame. Destroying a coroutine that is not suspended leads to undefined behavior.
|
|
|
|
.. _coro.resume:
|
|
|
|
'llvm.coro.resume' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
::
|
|
|
|
declare void @llvm.coro.resume(i8* <handle>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.resume``' intrinsic resumes a suspended coroutine.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The argument is a handle to a suspended coroutine.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
When possible, the `coro.resume` intrinsic is replaced with a direct call to the
|
|
coroutine resume function. Otherwise it is replaced with an indirect call based
|
|
on the function pointer for the resume function stored in the coroutine frame.
|
|
Resuming a coroutine that is not suspended leads to undefined behavior.
|
|
|
|
.. _coro.done:
|
|
|
|
'llvm.coro.done' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
::
|
|
|
|
declare i1 @llvm.coro.done(i8* <handle>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.done``' intrinsic checks whether a suspended coroutine is at
|
|
the final suspend point or not.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The argument is a handle to a suspended coroutine.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
Using this intrinsic on a coroutine that does not have a `final suspend`_ point
|
|
or on a coroutine that is not suspended leads to undefined behavior.
|
|
|
|
.. _coro.promise:
|
|
|
|
'llvm.coro.promise' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
::
|
|
|
|
declare i8* @llvm.coro.promise(i8* <ptr>, i32 <alignment>, i1 <from>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.promise``' intrinsic obtains a pointer to a
|
|
`coroutine promise`_ given a coroutine handle and vice versa.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument is a handle to a coroutine if `from` is false. Otherwise,
|
|
it is a pointer to a coroutine promise.
|
|
|
|
The second argument is an alignment requirements of the promise.
|
|
If a frontend designated `%promise = alloca i32` as a promise, the alignment
|
|
argument to `coro.promise` should be the alignment of `i32` on the target
|
|
platform. If a frontend designated `%promise = alloca i32, align 16` as a
|
|
promise, the alignment argument should be 16.
|
|
This argument only accepts constants.
|
|
|
|
The third argument is a boolean indicating a direction of the transformation.
|
|
If `from` is true, the intrinsic returns a coroutine handle given a pointer
|
|
to a promise. If `from` is false, the intrinsics return a pointer to a promise
|
|
from a coroutine handle. This argument only accepts constants.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
Using this intrinsic on a coroutine that does not have a coroutine promise
|
|
leads to undefined behavior. It is possible to read and modify coroutine
|
|
promise of the coroutine which is currently executing. The coroutine author and
|
|
a coroutine user are responsible to makes sure there is no data races.
|
|
|
|
Example:
|
|
""""""""
|
|
|
|
.. code-block:: text
|
|
|
|
define i8* @f(i32 %n) {
|
|
entry:
|
|
%promise = alloca i32
|
|
%pv = bitcast i32* %promise to i8*
|
|
; the second argument to coro.id points to the coroutine promise.
|
|
%id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
|
|
...
|
|
%hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
|
|
...
|
|
store i32 42, i32* %promise ; store something into the promise
|
|
...
|
|
ret i8* %hdl
|
|
}
|
|
|
|
define i32 @main() {
|
|
entry:
|
|
%hdl = call i8* @f(i32 4) ; starts the coroutine and returns its handle
|
|
%promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
|
|
%promise.addr = bitcast i8* %promise.addr.raw to i32*
|
|
%val = load i32, i32* %promise.addr ; load a value from the promise
|
|
call void @print(i32 %val)
|
|
call void @llvm.coro.destroy(i8* %hdl)
|
|
ret i32 0
|
|
}
|
|
|
|
.. _coroutine intrinsics:
|
|
|
|
Coroutine Structure Intrinsics
|
|
------------------------------
|
|
Intrinsics described in this section are used within a coroutine to describe
|
|
the coroutine structure. They should not be used outside of a coroutine.
|
|
|
|
.. _coro.size:
|
|
|
|
'llvm.coro.size' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i32 @llvm.coro.size.i32()
|
|
declare i64 @llvm.coro.size.i64()
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.size``' intrinsic returns the number of bytes
|
|
required to store a `coroutine frame`_.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
None
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
The `coro.size` intrinsic is lowered to a constant representing the size of
|
|
the coroutine frame.
|
|
|
|
.. _coro.begin:
|
|
|
|
'llvm.coro.begin' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i8* @llvm.coro.begin(token <id>, i8* <mem>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.begin``' intrinsic returns an address of the coroutine frame.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument is a token returned by a call to '``llvm.coro.id``'
|
|
identifying the coroutine.
|
|
|
|
The second argument is a pointer to a block of memory where coroutine frame
|
|
will be stored if it is allocated dynamically.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
Depending on the alignment requirements of the objects in the coroutine frame
|
|
and/or on the codegen compactness reasons the pointer returned from `coro.begin`
|
|
may be at offset to the `%mem` argument. (This could be beneficial if
|
|
instructions that express relative access to data can be more compactly encoded
|
|
with small positive and negative offsets).
|
|
|
|
A frontend should emit exactly one `coro.begin` intrinsic per coroutine.
|
|
|
|
.. _coro.free:
|
|
|
|
'llvm.coro.free' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i8* @llvm.coro.free(token %id, i8* <frame>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.free``' intrinsic returns a pointer to a block of memory where
|
|
coroutine frame is stored or `null` if this instance of a coroutine did not use
|
|
dynamically allocated memory for its coroutine frame.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument is a token returned by a call to '``llvm.coro.id``'
|
|
identifying the coroutine.
|
|
|
|
The second argument is a pointer to the coroutine frame. This should be the same
|
|
pointer that was returned by prior `coro.begin` call.
|
|
|
|
Example (custom deallocation function):
|
|
"""""""""""""""""""""""""""""""""""""""
|
|
|
|
.. code-block:: text
|
|
|
|
cleanup:
|
|
%mem = call i8* @llvm.coro.free(token %id, i8* %frame)
|
|
%mem_not_null = icmp ne i8* %mem, null
|
|
br i1 %mem_not_null, label %if.then, label %if.end
|
|
if.then:
|
|
call void @CustomFree(i8* %mem)
|
|
br label %if.end
|
|
if.end:
|
|
ret void
|
|
|
|
Example (standard deallocation functions):
|
|
""""""""""""""""""""""""""""""""""""""""""
|
|
|
|
.. code-block:: text
|
|
|
|
cleanup:
|
|
%mem = call i8* @llvm.coro.free(token %id, i8* %frame)
|
|
call void @free(i8* %mem)
|
|
ret void
|
|
|
|
.. _coro.alloc:
|
|
|
|
'llvm.coro.alloc' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i1 @llvm.coro.alloc(token <id>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.alloc``' intrinsic returns `true` if dynamic allocation is
|
|
required to obtain a memory for the corutine frame and `false` otherwise.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument is a token returned by a call to '``llvm.coro.id``'
|
|
identifying the coroutine.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
A frontend should emit at most one `coro.alloc` intrinsic per coroutine.
|
|
The intrinsic is used to suppress dynamic allocation of the coroutine frame
|
|
when possible.
|
|
|
|
Example:
|
|
""""""""
|
|
|
|
.. code-block:: text
|
|
|
|
entry:
|
|
%id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
|
|
%dyn.alloc.required = call i1 @llvm.coro.alloc(token %id)
|
|
br i1 %dyn.alloc.required, label %coro.alloc, label %coro.begin
|
|
|
|
coro.alloc:
|
|
%frame.size = call i32 @llvm.coro.size()
|
|
%alloc = call i8* @MyAlloc(i32 %frame.size)
|
|
br label %coro.begin
|
|
|
|
coro.begin:
|
|
%phi = phi i8* [ null, %entry ], [ %alloc, %coro.alloc ]
|
|
%frame = call i8* @llvm.coro.begin(token %id, i8* %phi)
|
|
|
|
.. _coro.frame:
|
|
|
|
'llvm.coro.frame' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i8* @llvm.coro.frame()
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.frame``' intrinsic returns an address of the coroutine frame of
|
|
the enclosing coroutine.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
None
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
This intrinsic is lowered to refer to the `coro.begin`_ instruction. This is
|
|
a frontend convenience intrinsic that makes it easier to refer to the
|
|
coroutine frame.
|
|
|
|
.. _coro.id:
|
|
|
|
'llvm.coro.id' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare token @llvm.coro.id(i32 <align>, i8* <promise>, i8* <coroaddr>,
|
|
i8* <fnaddrs>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.id``' intrinsic returns a token identifying a coroutine.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument provides information on the alignment of the memory returned
|
|
by the allocation function and given to `coro.begin` by the first argument. If
|
|
this argument is 0, the memory is assumed to be aligned to 2 * sizeof(i8*).
|
|
This argument only accepts constants.
|
|
|
|
The second argument, if not `null`, designates a particular alloca instruction
|
|
to be a `coroutine promise`_.
|
|
|
|
The third argument is `null` coming out of the frontend. The CoroEarly pass sets
|
|
this argument to point to the function this coro.id belongs to.
|
|
|
|
The fourth argument is `null` before coroutine is split, and later is replaced
|
|
to point to a private global constant array containing function pointers to
|
|
outlined resume and destroy parts of the coroutine.
|
|
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
The purpose of this intrinsic is to tie together `coro.id`, `coro.alloc` and
|
|
`coro.begin` belonging to the same coroutine to prevent optimization passes from
|
|
duplicating any of these instructions unless entire body of the coroutine is
|
|
duplicated.
|
|
|
|
A frontend should emit exactly one `coro.id` intrinsic per coroutine.
|
|
|
|
.. _coro.end:
|
|
|
|
'llvm.coro.end' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare void @llvm.coro.end(i8* <handle>, i1 <unwind>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.end``' marks the point where execution of the resume part of
|
|
the coroutine should end and control returns back to the caller.
|
|
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument should refer to the coroutine handle of the enclosing coroutine.
|
|
|
|
The second argument should be `true` if this coro.end is in the block that is
|
|
part of the unwind sequence leaving the coroutine body due to exception prior to
|
|
the first reaching any suspend points, and `false` otherwise.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
The `coro.end`_ intrinsic is a no-op during an initial invocation of the
|
|
coroutine. When the coroutine resumes, the intrinsic marks the point when
|
|
coroutine need to return control back to the caller.
|
|
|
|
This intrinsic is removed by the CoroSplit pass when a coroutine is split into
|
|
the start, resume and destroy parts. In start part, the intrinsic is removed,
|
|
in resume and destroy parts, it is replaced with `ret void` instructions and
|
|
the rest of the block containing `coro.end` instruction is discarded.
|
|
|
|
In landing pads it is replaced with an appropriate instruction to unwind to
|
|
caller.
|
|
|
|
A frontend is allowed to supply null as the first parameter, in this case
|
|
`coro-early` pass will replace the null with an appropriate coroutine handle
|
|
value.
|
|
|
|
.. _coro.suspend:
|
|
.. _suspend points:
|
|
|
|
'llvm.coro.suspend' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i8 @llvm.coro.suspend(token <save>, i1 <final>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.suspend``' marks the point where execution of the coroutine
|
|
need to get suspended and control returned back to the caller.
|
|
Conditional branches consuming the result of this intrinsic lead to basic blocks
|
|
where coroutine should proceed when suspended (-1), resumed (0) or destroyed
|
|
(1).
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument refers to a token of `coro.save` intrinsic that marks the
|
|
point when coroutine state is prepared for suspension. If `none` token is passed,
|
|
the intrinsic behaves as if there were a `coro.save` immediately preceding
|
|
the `coro.suspend` intrinsic.
|
|
|
|
The second argument indicates whether this suspension point is `final`_.
|
|
The second argument only accepts constants. If more than one suspend point is
|
|
designated as final, the resume and destroy branches should lead to the same
|
|
basic blocks.
|
|
|
|
Example (normal suspend point):
|
|
"""""""""""""""""""""""""""""""
|
|
|
|
.. code-block:: text
|
|
|
|
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
|
|
switch i8 %0, label %suspend [i8 0, label %resume
|
|
i8 1, label %cleanup]
|
|
|
|
Example (final suspend point):
|
|
""""""""""""""""""""""""""""""
|
|
|
|
.. code-block:: text
|
|
|
|
while.end:
|
|
%s.final = call i8 @llvm.coro.suspend(token none, i1 true)
|
|
switch i8 %s.final, label %suspend [i8 0, label %trap
|
|
i8 1, label %cleanup]
|
|
trap:
|
|
call void @llvm.trap()
|
|
unreachable
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
If a coroutine that was suspended at the suspend point marked by this intrinsic
|
|
is resumed via `coro.resume`_ the control will transfer to the basic block
|
|
of the 0-case. If it is resumed via `coro.destroy`_, it will proceed to the
|
|
basic block indicated by the 1-case. To suspend, coroutine proceed to the
|
|
default label.
|
|
|
|
If suspend intrinsic is marked as final, it can consider the `true` branch
|
|
unreachable and can perform optimizations that can take advantage of that fact.
|
|
|
|
.. _coro.save:
|
|
|
|
'llvm.coro.save' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare token @llvm.coro.save(i8* <handle>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.save``' marks the point where a coroutine need to update its
|
|
state to prepare for resumption to be considered suspended (and thus eligible
|
|
for resumption).
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument points to a coroutine handle of the enclosing coroutine.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
Whatever coroutine state changes are required to enable resumption of
|
|
the coroutine from the corresponding suspend point should be done at the point
|
|
of `coro.save` intrinsic.
|
|
|
|
Example:
|
|
""""""""
|
|
|
|
Separate save and suspend points are necessary when a coroutine is used to
|
|
represent an asynchronous control flow driven by callbacks representing
|
|
completions of asynchronous operations.
|
|
|
|
In such a case, a coroutine should be ready for resumption prior to a call to
|
|
`async_op` function that may trigger resumption of a coroutine from the same or
|
|
a different thread possibly prior to `async_op` call returning control back
|
|
to the coroutine:
|
|
|
|
.. code-block:: text
|
|
|
|
%save1 = call token @llvm.coro.save(i8* %hdl)
|
|
call void async_op1(i8* %hdl)
|
|
%suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
|
|
switch i8 %suspend1, label %suspend [i8 0, label %resume1
|
|
i8 1, label %cleanup]
|
|
|
|
.. _coro.param:
|
|
|
|
'llvm.coro.param' Intrinsic
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
::
|
|
|
|
declare i1 @llvm.coro.param(i8* <original>, i8* <copy>)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.coro.param``' is used by a frontend to mark up the code used to
|
|
construct and destruct copies of the parameters. If the optimizer discovers that
|
|
a particular parameter copy is not used after any suspends, it can remove the
|
|
construction and destruction of the copy by replacing corresponding coro.param
|
|
with `i1 false` and replacing any use of the `copy` with the `original`.
|
|
|
|
Arguments:
|
|
""""""""""
|
|
|
|
The first argument points to an `alloca` storing the value of a parameter to a
|
|
coroutine.
|
|
|
|
The second argument points to an `alloca` storing the value of the copy of that
|
|
parameter.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
The optimizer is free to always replace this intrinsic with `i1 true`.
|
|
|
|
The optimizer is also allowed to replace it with `i1 false` provided that the
|
|
parameter copy is only used prior to control flow reaching any of the suspend
|
|
points. The code that would be DCE'd if the `coro.param` is replaced with
|
|
`i1 false` is not considered to be a use of the parameter copy.
|
|
|
|
The frontend can emit this intrinsic if its language rules allow for this
|
|
optimization.
|
|
|
|
Example:
|
|
""""""""
|
|
Consider the following example. A coroutine takes two parameters `a` and `b`
|
|
that has a destructor and a move constructor.
|
|
|
|
.. code-block:: c++
|
|
|
|
struct A { ~A(); A(A&&); bool foo(); void bar(); };
|
|
|
|
task<int> f(A a, A b) {
|
|
if (a.foo())
|
|
return 42;
|
|
|
|
a.bar();
|
|
co_await read_async(); // introduces suspend point
|
|
b.bar();
|
|
}
|
|
|
|
Note that, uses of `b` is used after a suspend point and thus must be copied
|
|
into a coroutine frame, whereas `a` does not have to, since it never used
|
|
after suspend.
|
|
|
|
A frontend can create parameter copies for `a` and `b` as follows:
|
|
|
|
.. code-block:: text
|
|
|
|
task<int> f(A a', A b') {
|
|
a = alloca A;
|
|
b = alloca A;
|
|
// move parameters to its copies
|
|
if (coro.param(a', a)) A::A(a, A&& a');
|
|
if (coro.param(b', b)) A::A(b, A&& b');
|
|
...
|
|
// destroy parameters copies
|
|
if (coro.param(a', a)) A::~A(a);
|
|
if (coro.param(b', b)) A::~A(b);
|
|
}
|
|
|
|
The optimizer can replace coro.param(a',a) with `i1 false` and replace all uses
|
|
of `a` with `a'`, since it is not used after suspend.
|
|
|
|
The optimizer must replace coro.param(b', b) with `i1 true`, since `b` is used
|
|
after suspend and therefore, it has to reside in the coroutine frame.
|
|
|
|
Coroutine Transformation Passes
|
|
===============================
|
|
CoroEarly
|
|
---------
|
|
The pass CoroEarly lowers coroutine intrinsics that hide the details of the
|
|
structure of the coroutine frame, but, otherwise not needed to be preserved to
|
|
help later coroutine passes. This pass lowers `coro.frame`_, `coro.done`_,
|
|
and `coro.promise`_ intrinsics.
|
|
|
|
.. _CoroSplit:
|
|
|
|
CoroSplit
|
|
---------
|
|
The pass CoroSplit buides coroutine frame and outlines resume and destroy parts
|
|
into separate functions.
|
|
|
|
CoroElide
|
|
---------
|
|
The pass CoroElide examines if the inlined coroutine is eligible for heap
|
|
allocation elision optimization. If so, it replaces
|
|
`coro.begin` intrinsic with an address of a coroutine frame placed on its caller
|
|
and replaces `coro.alloc` and `coro.free` intrinsics with `false` and `null`
|
|
respectively to remove the deallocation code.
|
|
This pass also replaces `coro.resume` and `coro.destroy` intrinsics with direct
|
|
calls to resume and destroy functions for a particular coroutine where possible.
|
|
|
|
CoroCleanup
|
|
-----------
|
|
This pass runs late to lower all coroutine related intrinsics not replaced by
|
|
earlier passes.
|
|
|
|
Areas Requiring Attention
|
|
=========================
|
|
#. A coroutine frame is bigger than it could be. Adding stack packing and stack
|
|
coloring like optimization on the coroutine frame will result in tighter
|
|
coroutine frames.
|
|
|
|
#. Take advantage of the lifetime intrinsics for the data that goes into the
|
|
coroutine frame. Leave lifetime intrinsics as is for the data that stays in
|
|
allocas.
|
|
|
|
#. The CoroElide optimization pass relies on coroutine ramp function to be
|
|
inlined. It would be beneficial to split the ramp function further to
|
|
increase the chance that it will get inlined into its caller.
|
|
|
|
#. Design a convention that would make it possible to apply coroutine heap
|
|
elision optimization across ABI boundaries.
|
|
|
|
#. Cannot handle coroutines with `inalloca` parameters (used in x86 on Windows).
|
|
|
|
#. Alignment is ignored by coro.begin and coro.free intrinsics.
|
|
|
|
#. Make required changes to make sure that coroutine optimizations work with
|
|
LTO.
|
|
|
|
#. More tests, more tests, more tests
|