llvm/test/CodeGen/X86/hipe-cc.ll
Andrew Trick 6a7770b7ae Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192750 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-15 23:33:07 +00:00

78 lines
2.3 KiB
LLVM

; RUN: llc < %s -tailcallopt -code-model=medium -stack-alignment=4 -mtriple=i686-linux-gnu -mcpu=pentium | FileCheck %s
; Check the HiPE calling convention works (x86-32)
define void @zap(i32 %a, i32 %b) nounwind {
entry:
; CHECK: movl 40(%esp), %eax
; CHECK-NEXT: movl 44(%esp), %edx
; CHECK-NEXT: movl $8, %ecx
; CHECK-NEXT: calll addfour
%0 = call cc 11 {i32, i32, i32} @addfour(i32 undef, i32 undef, i32 %a, i32 %b, i32 8)
%res = extractvalue {i32, i32, i32} %0, 2
; CHECK: movl %eax, 16(%esp)
; CHECK-NEXT: movl $2, 12(%esp)
; CHECK-NEXT: movl $1, 8(%esp)
; CHECK: calll foo
tail call void @foo(i32 undef, i32 undef, i32 1, i32 2, i32 %res) nounwind
ret void
}
define cc 11 {i32, i32, i32} @addfour(i32 %hp, i32 %p, i32 %x, i32 %y, i32 %z) nounwind {
entry:
; CHECK: addl %edx, %eax
; CHECK-NEXT: addl %ecx, %eax
%0 = add i32 %x, %y
%1 = add i32 %0, %z
; CHECK: ret
%res = insertvalue {i32, i32, i32} undef, i32 %1, 2
ret {i32, i32, i32} %res
}
define cc 11 void @foo(i32 %hp, i32 %p, i32 %arg0, i32 %arg1, i32 %arg2) nounwind {
entry:
; CHECK: movl %esi, 16(%esp)
; CHECK-NEXT: movl %ebp, 12(%esp)
; CHECK-NEXT: movl %eax, 8(%esp)
; CHECK-NEXT: movl %edx, 4(%esp)
; CHECK-NEXT: movl %ecx, (%esp)
%hp_var = alloca i32
%p_var = alloca i32
%arg0_var = alloca i32
%arg1_var = alloca i32
%arg2_var = alloca i32
store i32 %hp, i32* %hp_var
store i32 %p, i32* %p_var
store i32 %arg0, i32* %arg0_var
store i32 %arg1, i32* %arg1_var
store i32 %arg2, i32* %arg2_var
; CHECK: movl 16(%esp), %esi
; CHECK-NEXT: movl 12(%esp), %ebp
; CHECK-NEXT: movl 8(%esp), %eax
; CHECK-NEXT: movl 4(%esp), %edx
%0 = load i32* %hp_var
%1 = load i32* %p_var
%2 = load i32* %arg0_var
%3 = load i32* %arg1_var
%4 = load i32* %arg2_var
; CHECK: jmp bar
tail call cc 11 void @bar(i32 %0, i32 %1, i32 %2, i32 %3, i32 %4) nounwind
ret void
}
define cc 11 void @baz() nounwind {
%tmp_clos = load i32* @clos
%tmp_clos2 = inttoptr i32 %tmp_clos to i32*
%indirect_call = bitcast i32* %tmp_clos2 to void (i32, i32, i32)*
; CHECK: movl $42, %eax
; CHECK-NEXT: jmpl *clos
tail call cc 11 void %indirect_call(i32 undef, i32 undef, i32 42) nounwind
ret void
}
@clos = external constant i32
declare cc 11 void @bar(i32, i32, i32, i32, i32)