mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 01:14:12 +00:00
4360bdcf1f
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28462 91177308-0d34-0410-b5e6-96231b3b80d8
2551 lines
105 KiB
C++
2551 lines
105 KiB
C++
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the PPCISelLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCISelLowering.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "PPCPerfectShuffle.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
|
|
: TargetLowering(TM) {
|
|
|
|
// Fold away setcc operations if possible.
|
|
setSetCCIsExpensive();
|
|
setPow2DivIsCheap();
|
|
|
|
// Use _setjmp/_longjmp instead of setjmp/longjmp.
|
|
setUseUnderscoreSetJmpLongJmp(true);
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
|
|
addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
|
|
addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
|
|
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
|
|
|
|
// PowerPC has no intrinsics for these particular operations
|
|
setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMSET, MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
|
|
|
|
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
|
|
setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
|
|
setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
|
|
|
|
// PowerPC has no SREM/UREM instructions
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
|
|
// We don't support sin/cos/sqrt/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
|
|
|
// If we're enabling GP optimizations, use hardware square root
|
|
if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
// PowerPC does not have BSWAP, CTPOP or CTTZ
|
|
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
|
|
|
|
// PowerPC does not have ROTR
|
|
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
|
|
|
|
// PowerPC does not have Select
|
|
setOperationAction(ISD::SELECT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Expand);
|
|
|
|
// PowerPC wants to turn select_cc of FP into fsel when possible.
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
// PowerPC wants to optimize integer setcc a bit
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
|
|
// PowerPC does not have BRCOND which requires SetCC
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
|
|
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
|
|
// PowerPC does not have [U|S]INT_TO_FP
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
|
|
|
|
// PowerPC does not have truncstore for i1.
|
|
setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
|
|
|
|
// We cannot sextinreg(i1). Expand to shifts.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
|
|
// Support label based line numbers.
|
|
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
|
|
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
|
|
// FIXME - use subtarget debug flags
|
|
if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
|
|
setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
|
|
|
|
// We want to legalize GlobalAddress and ConstantPool nodes into the
|
|
// appropriate instructions to materialize the address.
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
|
|
// RET must be custom lowered, to meet ABI requirements
|
|
setOperationAction(ISD::RET , MVT::Other, Custom);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VAARG , MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
|
|
// They also have instructions for converting between i64 and fp.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
|
|
// FIXME: disable this lowered code. This generates 64-bit register values,
|
|
// and we don't model the fact that the top part is clobbered by calls. We
|
|
// need to flag these together so that the value isn't live across a call.
|
|
//setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
|
|
// To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
|
|
} else {
|
|
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
}
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
|
|
// 64 bit PowerPC implementations can support i64 types directly
|
|
addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
|
|
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
|
|
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
|
} else {
|
|
// 32 bit PowerPC wants to expand i64 shifts itself.
|
|
setOperationAction(ISD::SHL, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i64, Custom);
|
|
}
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
|
|
// First set operation action for all vector types to expand. Then we
|
|
// will selectively turn on ones that can be effectively codegen'd.
|
|
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
|
|
// add/sub are legal for all supported vector VT's.
|
|
setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
|
|
setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
|
|
|
|
// We promote all shuffles to v16i8.
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
|
|
|
|
// We promote all non-typed operations to v4i32.
|
|
setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
|
|
setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
|
|
setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
|
|
setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
|
|
setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
|
|
setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
|
|
AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
|
|
|
|
// No other operations are legal.
|
|
setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
|
|
}
|
|
|
|
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
|
|
// with merges, splats, etc.
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::AND , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::OR , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
|
|
|
|
addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
|
|
addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
|
|
addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
|
|
addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
|
}
|
|
|
|
setSetCCResultContents(ZeroOrOneSetCCResult);
|
|
setStackPointerRegisterToSaveRestore(PPC::R1);
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::BR_CC);
|
|
|
|
computeRegisterProperties();
|
|
}
|
|
|
|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return 0;
|
|
case PPCISD::FSEL: return "PPCISD::FSEL";
|
|
case PPCISD::FCFID: return "PPCISD::FCFID";
|
|
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
|
|
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
|
|
case PPCISD::STFIWX: return "PPCISD::STFIWX";
|
|
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
|
|
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
|
|
case PPCISD::VPERM: return "PPCISD::VPERM";
|
|
case PPCISD::Hi: return "PPCISD::Hi";
|
|
case PPCISD::Lo: return "PPCISD::Lo";
|
|
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
|
|
case PPCISD::SRL: return "PPCISD::SRL";
|
|
case PPCISD::SRA: return "PPCISD::SRA";
|
|
case PPCISD::SHL: return "PPCISD::SHL";
|
|
case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
|
|
case PPCISD::STD_32: return "PPCISD::STD_32";
|
|
case PPCISD::CALL: return "PPCISD::CALL";
|
|
case PPCISD::MTCTR: return "PPCISD::MTCTR";
|
|
case PPCISD::BCTRL: return "PPCISD::BCTRL";
|
|
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
|
|
case PPCISD::MFCR: return "PPCISD::MFCR";
|
|
case PPCISD::VCMP: return "PPCISD::VCMP";
|
|
case PPCISD::VCMPo: return "PPCISD::VCMPo";
|
|
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Node matching predicates, for use by the tblgen matching code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
|
|
static bool isFloatingPointZero(SDOperand Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
|
|
else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
|
|
return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
|
|
/// true if Op is undef or if it matches the specified value.
|
|
static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
|
|
return Op.getOpcode() == ISD::UNDEF ||
|
|
cast<ConstantSDNode>(Op)->getValue() == Val;
|
|
}
|
|
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
|
|
if (!isUnary) {
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
if (!isConstantOrUndef(N->getOperand(i), i*2+1))
|
|
return false;
|
|
} else {
|
|
for (unsigned i = 0; i != 8; ++i)
|
|
if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
|
|
!isConstantOrUndef(N->getOperand(i+8), i*2+1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
|
|
if (!isUnary) {
|
|
for (unsigned i = 0; i != 16; i += 2)
|
|
if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
|
|
!isConstantOrUndef(N->getOperand(i+1), i*2+3))
|
|
return false;
|
|
} else {
|
|
for (unsigned i = 0; i != 8; i += 2)
|
|
if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
|
|
!isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
|
|
!isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
|
|
!isConstantOrUndef(N->getOperand(i+9), i*2+3))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVMerge - Common function, used to match vmrg* shuffles.
|
|
///
|
|
static bool isVMerge(SDNode *N, unsigned UnitSize,
|
|
unsigned LHSStart, unsigned RHSStart) {
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
|
|
N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
|
|
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
|
|
"Unsupported merge size!");
|
|
|
|
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
|
|
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
|
|
if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
|
|
LHSStart+j+i*UnitSize) ||
|
|
!isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
|
|
RHSStart+j+i*UnitSize))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
|
|
if (!isUnary)
|
|
return isVMerge(N, UnitSize, 8, 24);
|
|
return isVMerge(N, UnitSize, 8, 8);
|
|
}
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
|
|
if (!isUnary)
|
|
return isVMerge(N, UnitSize, 0, 16);
|
|
return isVMerge(N, UnitSize, 0, 0);
|
|
}
|
|
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
|
|
N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
|
|
// Find the first non-undef value in the shuffle mask.
|
|
unsigned i;
|
|
for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
|
|
/*search*/;
|
|
|
|
if (i == 16) return -1; // all undef.
|
|
|
|
// Otherwise, check to see if the rest of the elements are consequtively
|
|
// numbered from this value.
|
|
unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
|
|
if (ShiftAmt < i) return -1;
|
|
ShiftAmt -= i;
|
|
|
|
if (!isUnary) {
|
|
// Check the rest of the elements to see if they are consequtive.
|
|
for (++i; i != 16; ++i)
|
|
if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
|
|
return -1;
|
|
} else {
|
|
// Check the rest of the elements to see if they are consequtive.
|
|
for (++i; i != 16; ++i)
|
|
if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
|
|
return -1;
|
|
}
|
|
|
|
return ShiftAmt;
|
|
}
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
|
|
N->getNumOperands() == 16 &&
|
|
(EltSize == 1 || EltSize == 2 || EltSize == 4));
|
|
|
|
// This is a splat operation if each element of the permute is the same, and
|
|
// if the value doesn't reference the second vector.
|
|
unsigned ElementBase = 0;
|
|
SDOperand Elt = N->getOperand(0);
|
|
if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
|
|
ElementBase = EltV->getValue();
|
|
else
|
|
return false; // FIXME: Handle UNDEF elements too!
|
|
|
|
if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
|
|
return false;
|
|
|
|
// Check that they are consequtive.
|
|
for (unsigned i = 1; i != EltSize; ++i) {
|
|
if (!isa<ConstantSDNode>(N->getOperand(i)) ||
|
|
cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
|
|
return false;
|
|
}
|
|
|
|
assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
|
|
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
assert(isa<ConstantSDNode>(N->getOperand(i)) &&
|
|
"Invalid VECTOR_SHUFFLE mask!");
|
|
for (unsigned j = 0; j != EltSize; ++j)
|
|
if (N->getOperand(i+j) != N->getOperand(j))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
|
|
assert(isSplatShuffleMask(N, EltSize));
|
|
return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
|
|
}
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
|
|
/// by using a vspltis[bhw] instruction of the specified element size, return
|
|
/// the constant being splatted. The ByteSize field indicates the number of
|
|
/// bytes of each element [124] -> [bhw].
|
|
SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
|
|
SDOperand OpVal(0, 0);
|
|
|
|
// If ByteSize of the splat is bigger than the element size of the
|
|
// build_vector, then we have a case where we are checking for a splat where
|
|
// multiple elements of the buildvector are folded together into a single
|
|
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
|
|
unsigned EltSize = 16/N->getNumOperands();
|
|
if (EltSize < ByteSize) {
|
|
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
|
|
SDOperand UniquedVals[4];
|
|
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
|
|
|
|
// See if all of the elements in the buildvector agree across.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
// If the element isn't a constant, bail fully out.
|
|
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
|
|
|
|
|
|
if (UniquedVals[i&(Multiple-1)].Val == 0)
|
|
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
|
|
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
|
|
return SDOperand(); // no match.
|
|
}
|
|
|
|
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
|
|
// either constant or undef values that are identical for each chunk. See
|
|
// if these chunks can form into a larger vspltis*.
|
|
|
|
// Check to see if all of the leading entries are either 0 or -1. If
|
|
// neither, then this won't fit into the immediate field.
|
|
bool LeadingZero = true;
|
|
bool LeadingOnes = true;
|
|
for (unsigned i = 0; i != Multiple-1; ++i) {
|
|
if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
|
|
|
|
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
|
|
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
|
|
}
|
|
// Finally, check the least significant entry.
|
|
if (LeadingZero) {
|
|
if (UniquedVals[Multiple-1].Val == 0)
|
|
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
|
|
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
|
|
if (Val < 16)
|
|
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
|
|
}
|
|
if (LeadingOnes) {
|
|
if (UniquedVals[Multiple-1].Val == 0)
|
|
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
|
|
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
|
|
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
|
|
return DAG.getTargetConstant(Val, MVT::i32);
|
|
}
|
|
|
|
return SDOperand();
|
|
}
|
|
|
|
// Check to see if this buildvec has a single non-undef value in its elements.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
if (OpVal.Val == 0)
|
|
OpVal = N->getOperand(i);
|
|
else if (OpVal != N->getOperand(i))
|
|
return SDOperand();
|
|
}
|
|
|
|
if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
|
|
|
|
unsigned ValSizeInBytes = 0;
|
|
uint64_t Value = 0;
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
|
Value = CN->getValue();
|
|
ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
|
|
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
|
|
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
|
|
Value = FloatToBits(CN->getValue());
|
|
ValSizeInBytes = 4;
|
|
}
|
|
|
|
// If the splat value is larger than the element value, then we can never do
|
|
// this splat. The only case that we could fit the replicated bits into our
|
|
// immediate field for would be zero, and we prefer to use vxor for it.
|
|
if (ValSizeInBytes < ByteSize) return SDOperand();
|
|
|
|
// If the element value is larger than the splat value, cut it in half and
|
|
// check to see if the two halves are equal. Continue doing this until we
|
|
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
|
|
while (ValSizeInBytes > ByteSize) {
|
|
ValSizeInBytes >>= 1;
|
|
|
|
// If the top half equals the bottom half, we're still ok.
|
|
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
|
|
(Value & ((1 << (8*ValSizeInBytes))-1)))
|
|
return SDOperand();
|
|
}
|
|
|
|
// Properly sign extend the value.
|
|
int ShAmt = (4-ByteSize)*8;
|
|
int MaskVal = ((int)Value << ShAmt) >> ShAmt;
|
|
|
|
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
|
|
if (MaskVal == 0) return SDOperand();
|
|
|
|
// Finally, if this value fits in a 5 bit sext field, return it
|
|
if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
|
|
return DAG.getTargetConstant(MaskVal, MVT::i32);
|
|
return SDOperand();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LowerOperation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
Constant *C = CP->get();
|
|
SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
|
|
SDOperand Zero = DAG.getConstant(0, MVT::i32);
|
|
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
// If this is a non-darwin platform, we don't support non-static relo models
|
|
// yet.
|
|
if (TM.getRelocationModel() == Reloc::Static ||
|
|
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
// Generate non-pic code that has direct accesses to the constant pool.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
|
|
SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
|
|
return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
|
|
}
|
|
|
|
SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
|
|
if (TM.getRelocationModel() == Reloc::PIC) {
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
Hi = DAG.getNode(ISD::ADD, MVT::i32,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
|
|
}
|
|
|
|
SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
|
|
Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
|
|
return Lo;
|
|
}
|
|
|
|
static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
|
|
SDOperand Zero = DAG.getConstant(0, MVT::i32);
|
|
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
// If this is a non-darwin platform, we don't support non-static relo models
|
|
// yet.
|
|
if (TM.getRelocationModel() == Reloc::Static ||
|
|
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
// Generate non-pic code that has direct accesses to the constant pool.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
|
|
SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
|
|
return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
|
|
}
|
|
|
|
SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
|
|
if (TM.getRelocationModel() == Reloc::PIC) {
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
Hi = DAG.getNode(ISD::ADD, MVT::i32,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
|
|
}
|
|
|
|
SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
|
|
Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
|
|
return Lo;
|
|
}
|
|
|
|
static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
|
|
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
|
|
GlobalValue *GV = GSDN->getGlobal();
|
|
SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
|
|
SDOperand Zero = DAG.getConstant(0, MVT::i32);
|
|
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
// If this is a non-darwin platform, we don't support non-static relo models
|
|
// yet.
|
|
if (TM.getRelocationModel() == Reloc::Static ||
|
|
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
// Generate non-pic code that has direct accesses to globals.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
|
|
SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
|
|
return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
|
|
}
|
|
|
|
SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
|
|
if (TM.getRelocationModel() == Reloc::PIC) {
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
Hi = DAG.getNode(ISD::ADD, MVT::i32,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
|
|
}
|
|
|
|
SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
|
|
Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
|
|
|
|
if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
|
|
(!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
|
|
return Lo;
|
|
|
|
// If the global is weak or external, we have to go through the lazy
|
|
// resolution stub.
|
|
return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
|
|
}
|
|
|
|
static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
// If we're comparing for equality to zero, expose the fact that this is
|
|
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
|
|
// fold the new nodes.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
if (C->isNullValue() && CC == ISD::SETEQ) {
|
|
MVT::ValueType VT = Op.getOperand(0).getValueType();
|
|
SDOperand Zext = Op.getOperand(0);
|
|
if (VT < MVT::i32) {
|
|
VT = MVT::i32;
|
|
Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
|
|
}
|
|
unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
|
|
SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
|
|
SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
|
|
DAG.getConstant(Log2b, MVT::i32));
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
|
|
}
|
|
// Leave comparisons against 0 and -1 alone for now, since they're usually
|
|
// optimized. FIXME: revisit this when we can custom lower all setcc
|
|
// optimizations.
|
|
if (C->isAllOnesValue() || C->isNullValue())
|
|
return SDOperand();
|
|
}
|
|
|
|
// If we have an integer seteq/setne, turn it into a compare against zero
|
|
// by subtracting the rhs from the lhs, which is faster than setting a
|
|
// condition register, reading it back out, and masking the correct bit.
|
|
MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
|
|
if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
|
|
Op.getOperand(1));
|
|
return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
|
|
}
|
|
return SDOperand();
|
|
}
|
|
|
|
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
|
|
unsigned VarArgsFrameIndex) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
|
|
return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
|
|
static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
|
|
int &VarArgsFrameIndex) {
|
|
// TODO: add description of PPC stack frame format, or at least some docs.
|
|
//
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
SSARegMap *RegMap = MF.getSSARegMap();
|
|
std::vector<SDOperand> ArgValues;
|
|
SDOperand Root = Op.getOperand(0);
|
|
|
|
unsigned ArgOffset = 24;
|
|
const unsigned Num_GPR_Regs = 8;
|
|
const unsigned Num_FPR_Regs = 13;
|
|
const unsigned Num_VR_Regs = 12;
|
|
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
static const unsigned VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
|
|
// Add DAG nodes to load the arguments or copy them out of registers. On
|
|
// entry to a function on PPC, the arguments start at offset 24, although the
|
|
// first ones are often in registers.
|
|
for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
|
|
SDOperand ArgVal;
|
|
bool needsLoad = false;
|
|
MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
|
|
unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
|
|
|
|
unsigned CurArgOffset = ArgOffset;
|
|
|
|
switch (ObjectVT) {
|
|
default: assert(0 && "Unhandled argument type!");
|
|
case MVT::i32:
|
|
// All int arguments reserve stack space.
|
|
ArgOffset += 4;
|
|
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
|
|
MF.addLiveIn(GPR[GPR_idx], VReg);
|
|
ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
|
|
++GPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// All FP arguments reserve stack space.
|
|
ArgOffset += ObjSize;
|
|
|
|
// Every 4 bytes of argument space consumes one of the GPRs available for
|
|
// argument passing.
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
++GPR_idx;
|
|
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
|
|
++GPR_idx;
|
|
}
|
|
if (FPR_idx != Num_FPR_Regs) {
|
|
unsigned VReg;
|
|
if (ObjectVT == MVT::f32)
|
|
VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
|
|
else
|
|
VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
|
|
MF.addLiveIn(FPR[FPR_idx], VReg);
|
|
ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
|
|
++FPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
// Note that vector arguments in registers don't reserve stack space.
|
|
if (VR_idx != Num_VR_Regs) {
|
|
unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
|
|
MF.addLiveIn(VR[VR_idx], VReg);
|
|
ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
|
|
++VR_idx;
|
|
} else {
|
|
// This should be simple, but requires getting 16-byte aligned stack
|
|
// values.
|
|
assert(0 && "Loading VR argument not implemented yet!");
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We need to load the argument to a virtual register if we determined above
|
|
// that we ran out of physical registers of the appropriate type
|
|
if (needsLoad) {
|
|
// If the argument is actually used, emit a load from the right stack
|
|
// slot.
|
|
if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
|
|
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
|
|
DAG.getSrcValue(NULL));
|
|
} else {
|
|
// Don't emit a dead load.
|
|
ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
|
|
}
|
|
}
|
|
|
|
ArgValues.push_back(ArgVal);
|
|
}
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
|
|
if (isVarArg) {
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
|
|
SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing the
|
|
// result of va_next.
|
|
std::vector<SDOperand> MemOps;
|
|
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
|
|
unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
|
|
MF.addLiveIn(GPR[GPR_idx], VReg);
|
|
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
|
|
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
|
|
Val, FIN, DAG.getSrcValue(NULL));
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDOperand PtrOff = DAG.getConstant(4, MVT::i32);
|
|
FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
|
|
}
|
|
if (!MemOps.empty())
|
|
Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
|
|
}
|
|
|
|
ArgValues.push_back(Root);
|
|
|
|
// Return the new list of results.
|
|
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
|
|
Op.Val->value_end());
|
|
return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
|
|
}
|
|
|
|
/// isCallCompatibleAddress - Return the immediate to use if the specified
|
|
/// 32-bit value is representable in the immediate field of a BxA instruction.
|
|
static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C) return 0;
|
|
|
|
int Addr = C->getValue();
|
|
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
|
|
(Addr << 6 >> 6) != Addr)
|
|
return 0; // Top 6 bits have to be sext of immediate.
|
|
|
|
return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
|
|
}
|
|
|
|
|
|
static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
|
|
SDOperand Chain = Op.getOperand(0);
|
|
unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
|
|
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
|
|
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
|
|
SDOperand Callee = Op.getOperand(4);
|
|
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
|
|
|
|
// args_to_use will accumulate outgoing args for the PPCISD::CALL case in
|
|
// SelectExpr to use to put the arguments in the appropriate registers.
|
|
std::vector<SDOperand> args_to_use;
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area. We start with 24 bytes, which is
|
|
// prereserved space for [SP][CR][LR][3 x unused].
|
|
unsigned NumBytes = 24;
|
|
|
|
// Add up all the space actually used.
|
|
for (unsigned i = 0; i != NumOps; ++i)
|
|
NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
|
|
|
|
// If we are calling what looks like a varargs function on the caller side,
|
|
// there are two cases:
|
|
// 1) The callee uses va_start.
|
|
// 2) The callee doesn't use va_start.
|
|
//
|
|
// In the case of #1, the prolog code will store up to 8 GPR argument
|
|
// registers to the stack, allowing va_start to index over them in memory.
|
|
// Because we cannot tell the difference (on the caller side) between #1/#2,
|
|
// we have to conservatively assume we have #1. As such, make sure we have
|
|
// at least enough stack space for the caller to store the 8 GPRs.
|
|
if (isVarArg && Op.getNumOperands() > 5 && NumBytes < 56)
|
|
NumBytes = 56;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain,
|
|
DAG.getConstant(NumBytes, MVT::i32));
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
|
|
// Figure out which arguments are going to go in registers, and which in
|
|
// memory. Also, if this is a vararg function, floating point operations
|
|
// must be stored to our stack, and loaded into integer regs as well, if
|
|
// any integer regs are available for argument passing.
|
|
unsigned ArgOffset = 24;
|
|
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
static const unsigned VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
const unsigned NumGPRs = sizeof(GPR)/sizeof(GPR[0]);
|
|
const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
|
|
const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]);
|
|
|
|
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
|
|
std::vector<SDOperand> MemOpChains;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDOperand Arg = Op.getOperand(5+2*i);
|
|
|
|
// PtrOff will be used to store the current argument to the stack if a
|
|
// register cannot be found for it.
|
|
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
switch (Arg.getValueType()) {
|
|
default: assert(0 && "Unexpected ValueType for argument!");
|
|
case MVT::i32:
|
|
if (GPR_idx != NumGPRs) {
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
|
|
} else {
|
|
MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Arg, PtrOff, DAG.getSrcValue(NULL)));
|
|
}
|
|
ArgOffset += 4;
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (FPR_idx != NumFPRs) {
|
|
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
|
|
|
|
if (isVarArg) {
|
|
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Arg, PtrOff,
|
|
DAG.getSrcValue(NULL));
|
|
MemOpChains.push_back(Store);
|
|
|
|
// Float varargs are always shadowed in available integer registers
|
|
if (GPR_idx != NumGPRs) {
|
|
SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
|
|
DAG.getSrcValue(NULL));
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
|
|
SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
|
|
SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
|
|
DAG.getSrcValue(NULL));
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
} else {
|
|
// If we have any FPRs remaining, we may also have GPRs remaining.
|
|
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
|
|
// GPRs.
|
|
if (GPR_idx != NumGPRs)
|
|
++GPR_idx;
|
|
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64)
|
|
++GPR_idx;
|
|
}
|
|
} else {
|
|
MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Arg, PtrOff, DAG.getSrcValue(NULL)));
|
|
}
|
|
ArgOffset += (Arg.getValueType() == MVT::f32) ? 4 : 8;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
assert(!isVarArg && "Don't support passing vectors to varargs yet!");
|
|
assert(VR_idx != NumVRs &&
|
|
"Don't support passing more than 12 vector args yet!");
|
|
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
|
|
break;
|
|
}
|
|
}
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOpChains);
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDOperand InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> NodeTys;
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
|
|
else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
|
|
// If this is an absolute destination address, use the munged value.
|
|
Callee = SDOperand(Dest, 0);
|
|
else {
|
|
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
|
|
// to do the call, we can't use PPCISD::CALL.
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
NodeTys.push_back(MVT::Other);
|
|
NodeTys.push_back(MVT::Flag);
|
|
|
|
if (InFlag.Val)
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Copy the callee address into R12 on darwin.
|
|
Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Other);
|
|
NodeTys.push_back(MVT::Flag);
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(PPCISD::BCTRL, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
Callee.Val = 0;
|
|
}
|
|
|
|
// Create the PPCISD::CALL node itself.
|
|
if (Callee.Val) {
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
if (InFlag.Val)
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(PPCISD::CALL, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
std::vector<SDOperand> ResultVals;
|
|
NodeTys.clear();
|
|
|
|
// If the call has results, copy the values out of the ret val registers.
|
|
switch (Op.Val->getValueType(0)) {
|
|
default: assert(0 && "Unexpected ret value!");
|
|
case MVT::Other: break;
|
|
case MVT::i32:
|
|
if (Op.Val->getValueType(1) == MVT::i32) {
|
|
Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
|
|
Chain.getValue(2)).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
NodeTys.push_back(MVT::i32);
|
|
} else {
|
|
Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
}
|
|
NodeTys.push_back(MVT::i32);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
|
|
InFlag).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
NodeTys.push_back(Op.Val->getValueType(0));
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
|
|
InFlag).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
NodeTys.push_back(Op.Val->getValueType(0));
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, MVT::i32));
|
|
NodeTys.push_back(MVT::Other);
|
|
|
|
// If the function returns void, just return the chain.
|
|
if (ResultVals.empty())
|
|
return Chain;
|
|
|
|
// Otherwise, merge everything together with a MERGE_VALUES node.
|
|
ResultVals.push_back(Chain);
|
|
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals);
|
|
return Res.getValue(Op.ResNo);
|
|
}
|
|
|
|
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
|
|
SDOperand Copy;
|
|
switch(Op.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Do not know how to return this many arguments!");
|
|
abort();
|
|
case 1:
|
|
return SDOperand(); // ret void is legal
|
|
case 2: {
|
|
MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
|
|
unsigned ArgReg;
|
|
if (MVT::isVector(ArgVT))
|
|
ArgReg = PPC::V2;
|
|
else if (MVT::isInteger(ArgVT))
|
|
ArgReg = PPC::R3;
|
|
else {
|
|
assert(MVT::isFloatingPoint(ArgVT));
|
|
ArgReg = PPC::F1;
|
|
}
|
|
|
|
Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
|
|
SDOperand());
|
|
|
|
// If we haven't noted the R3/F1 are live out, do so now.
|
|
if (DAG.getMachineFunction().liveout_empty())
|
|
DAG.getMachineFunction().addLiveOut(ArgReg);
|
|
break;
|
|
}
|
|
case 3:
|
|
Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
|
|
SDOperand());
|
|
Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
|
|
// If we haven't noted the R3+R4 are live out, do so now.
|
|
if (DAG.getMachineFunction().liveout_empty()) {
|
|
DAG.getMachineFunction().addLiveOut(PPC::R3);
|
|
DAG.getMachineFunction().addLiveOut(PPC::R4);
|
|
}
|
|
break;
|
|
}
|
|
return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
|
|
}
|
|
|
|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
|
|
/// possible.
|
|
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
|
|
// Not FP? Not a fsel.
|
|
if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
|
|
!MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
|
|
return SDOperand();
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
|
|
// Cannot handle SETEQ/SETNE.
|
|
if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
|
|
|
|
MVT::ValueType ResVT = Op.getValueType();
|
|
MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
|
|
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
|
|
|
|
// If the RHS of the comparison is a 0.0, we don't need to do the
|
|
// subtraction at all.
|
|
if (isFloatingPointZero(RHS))
|
|
switch (CC) {
|
|
default: break; // SETUO etc aren't handled by fsel.
|
|
case ISD::SETULT:
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
|
case ISD::SETUGE:
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
|
|
return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
|
|
case ISD::SETUGT:
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
|
case ISD::SETULE:
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
|
|
return DAG.getNode(PPCISD::FSEL, ResVT,
|
|
DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
|
|
}
|
|
|
|
SDOperand Cmp;
|
|
switch (CC) {
|
|
default: break; // SETUO etc aren't handled by fsel.
|
|
case ISD::SETULT:
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
|
|
case ISD::SETUGE:
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
|
|
case ISD::SETUGT:
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
|
|
case ISD::SETULE:
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
|
|
}
|
|
return SDOperand();
|
|
}
|
|
|
|
static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
|
|
assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
|
|
SDOperand Src = Op.getOperand(0);
|
|
if (Src.getValueType() == MVT::f32)
|
|
Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
|
|
|
|
SDOperand Tmp;
|
|
switch (Op.getValueType()) {
|
|
default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
|
|
case MVT::i32:
|
|
Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
|
|
break;
|
|
case MVT::i64:
|
|
Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
|
|
break;
|
|
}
|
|
|
|
// Convert the FP value to an int value through memory.
|
|
SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
|
|
if (Op.getValueType() == MVT::i32)
|
|
Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
|
|
return Bits;
|
|
}
|
|
|
|
static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
|
|
if (Op.getOperand(0).getValueType() == MVT::i64) {
|
|
SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
|
|
SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
|
|
if (Op.getValueType() == MVT::f32)
|
|
FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
|
|
return FP;
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
|
|
"Unhandled SINT_TO_FP type in custom expander!");
|
|
// Since we only generate this in 64-bit mode, we can take advantage of
|
|
// 64-bit registers. In particular, sign extend the input value into the
|
|
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
|
|
// then lfd it and fcfid it.
|
|
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
|
|
int FrameIdx = FrameInfo->CreateStackObject(8, 8);
|
|
SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
|
|
|
|
SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
|
|
Op.getOperand(0));
|
|
|
|
// STD the extended value into the stack slot.
|
|
SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
|
|
DAG.getEntryNode(), Ext64, FIdx,
|
|
DAG.getSrcValue(NULL));
|
|
// Load the value as a double.
|
|
SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
|
|
|
|
// FCFID it and return it.
|
|
SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
|
|
if (Op.getValueType() == MVT::f32)
|
|
FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
|
|
return FP;
|
|
}
|
|
|
|
static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
|
|
assert(Op.getValueType() == MVT::i64 &&
|
|
Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
|
|
// The generic code does a fine job expanding shift by a constant.
|
|
if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
|
|
|
|
// Otherwise, expand into a bunch of logical ops. Note that these ops
|
|
// depend on the PPC behavior for oversized shift amounts.
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDOperand Amt = Op.getOperand(1);
|
|
|
|
SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
|
|
DAG.getConstant(32, MVT::i32), Amt);
|
|
SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
|
|
SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
|
|
SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
|
|
SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
|
|
DAG.getConstant(-32U, MVT::i32));
|
|
SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
|
|
SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
|
|
SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
|
|
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
|
|
}
|
|
|
|
static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
|
|
assert(Op.getValueType() == MVT::i64 &&
|
|
Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
|
|
// The generic code does a fine job expanding shift by a constant.
|
|
if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
|
|
|
|
// Otherwise, expand into a bunch of logical ops. Note that these ops
|
|
// depend on the PPC behavior for oversized shift amounts.
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDOperand Amt = Op.getOperand(1);
|
|
|
|
SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
|
|
DAG.getConstant(32, MVT::i32), Amt);
|
|
SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
|
|
SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
|
|
SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
|
|
SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
|
|
DAG.getConstant(-32U, MVT::i32));
|
|
SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
|
|
SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
|
|
SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
|
|
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
|
|
}
|
|
|
|
static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
|
|
assert(Op.getValueType() == MVT::i64 &&
|
|
Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
|
|
// The generic code does a fine job expanding shift by a constant.
|
|
if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
|
|
|
|
// Otherwise, expand into a bunch of logical ops, followed by a select_cc.
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDOperand Amt = Op.getOperand(1);
|
|
|
|
SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
|
|
DAG.getConstant(32, MVT::i32), Amt);
|
|
SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
|
|
SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
|
|
SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
|
|
SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
|
|
DAG.getConstant(-32U, MVT::i32));
|
|
SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
|
|
SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
|
|
SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
|
|
Tmp4, Tmp6, ISD::SETLE);
|
|
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector related lowering.
|
|
//
|
|
|
|
// If this is a vector of constants or undefs, get the bits. A bit in
|
|
// UndefBits is set if the corresponding element of the vector is an
|
|
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
|
|
// zero. Return true if this is not an array of constants, false if it is.
|
|
//
|
|
static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
|
|
uint64_t UndefBits[2]) {
|
|
// Start with zero'd results.
|
|
VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
|
|
|
|
unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
|
|
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
|
|
SDOperand OpVal = BV->getOperand(i);
|
|
|
|
unsigned PartNo = i >= e/2; // In the upper 128 bits?
|
|
unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
|
|
|
|
uint64_t EltBits = 0;
|
|
if (OpVal.getOpcode() == ISD::UNDEF) {
|
|
uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
|
|
UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
|
|
continue;
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
|
EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
|
|
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
|
|
assert(CN->getValueType(0) == MVT::f32 &&
|
|
"Only one legal FP vector type!");
|
|
EltBits = FloatToBits(CN->getValue());
|
|
} else {
|
|
// Nonconstant element.
|
|
return true;
|
|
}
|
|
|
|
VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
|
|
}
|
|
|
|
//printf("%llx %llx %llx %llx\n",
|
|
// VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
|
|
return false;
|
|
}
|
|
|
|
// If this is a splat (repetition) of a value across the whole vector, return
|
|
// the smallest size that splats it. For example, "0x01010101010101..." is a
|
|
// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
|
|
// SplatSize = 1 byte.
|
|
static bool isConstantSplat(const uint64_t Bits128[2],
|
|
const uint64_t Undef128[2],
|
|
unsigned &SplatBits, unsigned &SplatUndef,
|
|
unsigned &SplatSize) {
|
|
|
|
// Don't let undefs prevent splats from matching. See if the top 64-bits are
|
|
// the same as the lower 64-bits, ignoring undefs.
|
|
if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
|
|
return false; // Can't be a splat if two pieces don't match.
|
|
|
|
uint64_t Bits64 = Bits128[0] | Bits128[1];
|
|
uint64_t Undef64 = Undef128[0] & Undef128[1];
|
|
|
|
// Check that the top 32-bits are the same as the lower 32-bits, ignoring
|
|
// undefs.
|
|
if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
|
|
return false; // Can't be a splat if two pieces don't match.
|
|
|
|
uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
|
|
uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
|
|
|
|
// If the top 16-bits are different than the lower 16-bits, ignoring
|
|
// undefs, we have an i32 splat.
|
|
if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
|
|
SplatBits = Bits32;
|
|
SplatUndef = Undef32;
|
|
SplatSize = 4;
|
|
return true;
|
|
}
|
|
|
|
uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
|
|
uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
|
|
|
|
// If the top 8-bits are different than the lower 8-bits, ignoring
|
|
// undefs, we have an i16 splat.
|
|
if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
|
|
SplatBits = Bits16;
|
|
SplatUndef = Undef16;
|
|
SplatSize = 2;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we have an 8-bit splat.
|
|
SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
|
|
SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
|
|
SplatSize = 1;
|
|
return true;
|
|
}
|
|
|
|
/// BuildSplatI - Build a canonical splati of Val with an element size of
|
|
/// SplatSize. Cast the result to VT.
|
|
static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
|
|
SelectionDAG &DAG) {
|
|
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
|
|
|
|
// Force vspltis[hw] -1 to vspltisb -1.
|
|
if (Val == -1) SplatSize = 1;
|
|
|
|
static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
|
|
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
|
|
};
|
|
MVT::ValueType CanonicalVT = VTys[SplatSize-1];
|
|
|
|
// Build a canonical splat for this value.
|
|
SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
|
|
std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
|
|
SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
|
|
return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
|
|
SelectionDAG &DAG,
|
|
MVT::ValueType DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), LHS, RHS);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
|
|
SDOperand Op2, SelectionDAG &DAG,
|
|
MVT::ValueType DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
|
|
}
|
|
|
|
|
|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
|
|
/// amount. The result has the specified value type.
|
|
static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
|
|
MVT::ValueType VT, SelectionDAG &DAG) {
|
|
// Force LHS/RHS to be the right type.
|
|
LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
|
|
RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
|
|
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
|
|
SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
|
|
return DAG.getNode(ISD::BIT_CONVERT, VT, T);
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it. If we CAN select this case, and if it
|
|
// selects to a single instruction, return Op. Otherwise, if we can codegen
|
|
// this case more efficiently than a constant pool load, lower it to the
|
|
// sequence of ops that should be used.
|
|
static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
|
// If this is a vector of constants or undefs, get the bits. A bit in
|
|
// UndefBits is set if the corresponding element of the vector is an
|
|
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
|
|
// zero.
|
|
uint64_t VectorBits[2];
|
|
uint64_t UndefBits[2];
|
|
if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
|
|
return SDOperand(); // Not a constant vector.
|
|
|
|
// If this is a splat (repetition) of a value across the whole vector, return
|
|
// the smallest size that splats it. For example, "0x01010101010101..." is a
|
|
// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
|
|
// SplatSize = 1 byte.
|
|
unsigned SplatBits, SplatUndef, SplatSize;
|
|
if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
|
|
bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
|
|
|
|
// First, handle single instruction cases.
|
|
|
|
// All zeros?
|
|
if (SplatBits == 0) {
|
|
// Canonicalize all zero vectors to be v4i32.
|
|
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
|
|
SDOperand Z = DAG.getConstant(0, MVT::i32);
|
|
Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
|
|
Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
|
|
int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
|
|
if (SextVal >= -16 && SextVal <= 15)
|
|
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
|
|
|
|
|
|
// Two instruction sequences.
|
|
|
|
// If this value is in the range [-32,30] and is even, use:
|
|
// tmp = VSPLTI[bhw], result = add tmp, tmp
|
|
if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
|
|
Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
|
|
return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
|
|
}
|
|
|
|
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
|
|
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
|
|
// for fneg/fabs.
|
|
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
|
|
// Make -1 and vspltisw -1:
|
|
SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
|
|
|
|
// Make the VSLW intrinsic, computing 0x8000_0000.
|
|
SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
|
|
OnesV, DAG);
|
|
|
|
// xor by OnesV to invert it.
|
|
Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
|
|
return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
|
|
}
|
|
|
|
// Check to see if this is a wide variety of vsplti*, binop self cases.
|
|
unsigned SplatBitSize = SplatSize*8;
|
|
static const char SplatCsts[] = {
|
|
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
|
|
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
|
|
};
|
|
for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
|
|
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
|
|
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
|
|
int i = SplatCsts[idx];
|
|
|
|
// Figure out what shift amount will be used by altivec if shifted by i in
|
|
// this splat size.
|
|
unsigned TypeShiftAmt = i & (SplatBitSize-1);
|
|
|
|
// vsplti + shl self.
|
|
if (SextVal == (i << (int)TypeShiftAmt)) {
|
|
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
|
|
Intrinsic::ppc_altivec_vslw
|
|
};
|
|
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
|
|
}
|
|
|
|
// vsplti + srl self.
|
|
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
|
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
|
|
Intrinsic::ppc_altivec_vsrw
|
|
};
|
|
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
|
|
}
|
|
|
|
// vsplti + sra self.
|
|
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
|
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
|
|
Intrinsic::ppc_altivec_vsraw
|
|
};
|
|
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
|
|
}
|
|
|
|
// vsplti + rol self.
|
|
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
|
|
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
|
|
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
|
|
Intrinsic::ppc_altivec_vrlw
|
|
};
|
|
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
|
|
}
|
|
|
|
// t = vsplti c, result = vsldoi t, t, 1
|
|
if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
|
|
SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
|
|
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
|
|
}
|
|
// t = vsplti c, result = vsldoi t, t, 2
|
|
if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
|
|
SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
|
|
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
|
|
}
|
|
// t = vsplti c, result = vsldoi t, t, 3
|
|
if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
|
|
SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
|
|
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
|
|
}
|
|
}
|
|
|
|
// Three instruction sequences.
|
|
|
|
// Odd, in range [17,31]: (vsplti C)-(vsplti -16).
|
|
if (SextVal >= 0 && SextVal <= 31) {
|
|
SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
|
|
SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
|
|
return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
|
|
}
|
|
// Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
|
|
if (SextVal >= -31 && SextVal <= 0) {
|
|
SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
|
|
SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
|
|
return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
|
|
}
|
|
}
|
|
|
|
return SDOperand();
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
|
|
SDOperand RHS, SelectionDAG &DAG) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VMRGHW,
|
|
OP_VMRGLW,
|
|
OP_VSPLTISW0,
|
|
OP_VSPLTISW1,
|
|
OP_VSPLTISW2,
|
|
OP_VSPLTISW3,
|
|
OP_VSLDOI4,
|
|
OP_VSLDOI8,
|
|
OP_VSLDOI12
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1*9+2)*9+3) return LHS;
|
|
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDOperand OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
|
|
|
|
unsigned ShufIdxs[16];
|
|
switch (OpNum) {
|
|
default: assert(0 && "Unknown i32 permute!");
|
|
case OP_VMRGHW:
|
|
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
|
|
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
|
|
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
|
|
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
|
|
break;
|
|
case OP_VMRGLW:
|
|
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
|
|
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
|
|
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
|
|
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
|
|
break;
|
|
case OP_VSPLTISW0:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+0;
|
|
break;
|
|
case OP_VSPLTISW1:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+4;
|
|
break;
|
|
case OP_VSPLTISW2:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+8;
|
|
break;
|
|
case OP_VSPLTISW3:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+12;
|
|
break;
|
|
case OP_VSLDOI4:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
|
|
case OP_VSLDOI8:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
|
|
case OP_VSLDOI12:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
|
|
}
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
|
|
|
|
return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
|
|
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
|
|
/// return the code it can be lowered into. Worst case, it can always be
|
|
/// lowered into a vperm.
|
|
static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
|
|
SDOperand V1 = Op.getOperand(0);
|
|
SDOperand V2 = Op.getOperand(1);
|
|
SDOperand PermMask = Op.getOperand(2);
|
|
|
|
// Cases that are handled by instructions that take permute immediates
|
|
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
|
|
// selected by the instruction selector.
|
|
if (V2.getOpcode() == ISD::UNDEF) {
|
|
if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
|
|
PPC::isSplatShuffleMask(PermMask.Val, 2) ||
|
|
PPC::isSplatShuffleMask(PermMask.Val, 4) ||
|
|
PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
|
|
PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
|
|
PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
|
|
PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
|
|
PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
|
|
PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
|
|
PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
|
|
PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
|
|
PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Altivec has a variety of "shuffle immediates" that take two vector inputs
|
|
// and produce a fixed permutation. If any of these match, do not lower to
|
|
// VPERM.
|
|
if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
|
|
PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
|
|
PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
|
|
PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
|
|
PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
|
|
PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
|
|
PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
|
|
PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
|
|
PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
|
|
return Op;
|
|
|
|
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
|
|
// perfect shuffle table to emit an optimal matching sequence.
|
|
unsigned PFIndexes[4];
|
|
bool isFourElementShuffle = true;
|
|
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
|
|
unsigned EltNo = 8; // Start out undef.
|
|
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
|
|
if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
|
|
continue; // Undef, ignore it.
|
|
|
|
unsigned ByteSource =
|
|
cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
|
|
if ((ByteSource & 3) != j) {
|
|
isFourElementShuffle = false;
|
|
break;
|
|
}
|
|
|
|
if (EltNo == 8) {
|
|
EltNo = ByteSource/4;
|
|
} else if (EltNo != ByteSource/4) {
|
|
isFourElementShuffle = false;
|
|
break;
|
|
}
|
|
}
|
|
PFIndexes[i] = EltNo;
|
|
}
|
|
|
|
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
|
|
// perfect shuffle vector to determine if it is cost effective to do this as
|
|
// discrete instructions, or whether we should use a vperm.
|
|
if (isFourElementShuffle) {
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
// Determining when to avoid vperm is tricky. Many things affect the cost
|
|
// of vperm, particularly how many times the perm mask needs to be computed.
|
|
// For example, if the perm mask can be hoisted out of a loop or is already
|
|
// used (perhaps because there are multiple permutes with the same shuffle
|
|
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
|
|
// the loop requires an extra register.
|
|
//
|
|
// As a compromise, we only emit discrete instructions if the shuffle can be
|
|
// generated in 3 or fewer operations. When we have loop information
|
|
// available, if this block is within a loop, we should avoid using vperm
|
|
// for 3-operation perms and use a constant pool load instead.
|
|
if (Cost < 3)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
|
|
}
|
|
|
|
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
|
|
// vector that will get spilled to the constant pool.
|
|
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
|
|
|
|
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
|
|
// that it is in input element units, not in bytes. Convert now.
|
|
MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
|
|
unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
|
|
|
|
std::vector<SDOperand> ResultMask;
|
|
for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
|
|
unsigned SrcElt;
|
|
if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
|
|
SrcElt = 0;
|
|
else
|
|
SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
|
|
|
|
for (unsigned j = 0; j != BytesPerElement; ++j)
|
|
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
|
|
MVT::i8));
|
|
}
|
|
|
|
SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
|
|
return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
|
|
}
|
|
|
|
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
|
|
/// altivec comparison. If it is, return true and fill in Opc/isDot with
|
|
/// information about the intrinsic.
|
|
static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
|
|
bool &isDot) {
|
|
unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
|
|
CompareOpc = -1;
|
|
isDot = false;
|
|
switch (IntrinsicID) {
|
|
default: return false;
|
|
// Comparison predicates.
|
|
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
|
|
|
|
// Normal Comparisons.
|
|
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
|
|
/// lower, do it, otherwise return null.
|
|
static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
|
|
// If this is a lowered altivec predicate compare, CompareOpc is set to the
|
|
// opcode number of the comparison.
|
|
int CompareOpc;
|
|
bool isDot;
|
|
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
|
|
return SDOperand(); // Don't custom lower most intrinsics.
|
|
|
|
// If this is a non-dot comparison, make the VCMP node and we are done.
|
|
if (!isDot) {
|
|
SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2),
|
|
DAG.getConstant(CompareOpc, MVT::i32));
|
|
return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
|
|
}
|
|
|
|
// Create the PPCISD altivec 'dot' comparison node.
|
|
std::vector<SDOperand> Ops;
|
|
std::vector<MVT::ValueType> VTs;
|
|
Ops.push_back(Op.getOperand(2)); // LHS
|
|
Ops.push_back(Op.getOperand(3)); // RHS
|
|
Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
|
|
VTs.push_back(Op.getOperand(2).getValueType());
|
|
VTs.push_back(MVT::Flag);
|
|
SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
|
|
|
|
// Now that we have the comparison, emit a copy from the CR to a GPR.
|
|
// This is flagged to the above dot comparison.
|
|
SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
|
|
DAG.getRegister(PPC::CR6, MVT::i32),
|
|
CompNode.getValue(1));
|
|
|
|
// Unpack the result based on how the target uses it.
|
|
unsigned BitNo; // Bit # of CR6.
|
|
bool InvertBit; // Invert result?
|
|
switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
|
|
default: // Can't happen, don't crash on invalid number though.
|
|
case 0: // Return the value of the EQ bit of CR6.
|
|
BitNo = 0; InvertBit = false;
|
|
break;
|
|
case 1: // Return the inverted value of the EQ bit of CR6.
|
|
BitNo = 0; InvertBit = true;
|
|
break;
|
|
case 2: // Return the value of the LT bit of CR6.
|
|
BitNo = 2; InvertBit = false;
|
|
break;
|
|
case 3: // Return the inverted value of the LT bit of CR6.
|
|
BitNo = 2; InvertBit = true;
|
|
break;
|
|
}
|
|
|
|
// Shift the bit into the low position.
|
|
Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
|
|
DAG.getConstant(8-(3-BitNo), MVT::i32));
|
|
// Isolate the bit.
|
|
Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// If we are supposed to, toggle the bit.
|
|
if (InvertBit)
|
|
Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return Flags;
|
|
}
|
|
|
|
static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
|
// Create a stack slot that is 16-byte aligned.
|
|
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
|
|
int FrameIdx = FrameInfo->CreateStackObject(16, 16);
|
|
SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
|
|
|
|
// Store the input value into Value#0 of the stack slot.
|
|
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
|
|
Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
|
|
// Load it out.
|
|
return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
|
|
}
|
|
|
|
static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
|
|
if (Op.getValueType() == MVT::v4i32) {
|
|
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
|
|
SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
|
|
|
|
SDOperand RHSSwap = // = vrlw RHS, 16
|
|
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
|
|
|
|
// Shrinkify inputs to v8i16.
|
|
LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
|
|
RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
|
|
RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
|
|
|
|
// Low parts multiplied together, generating 32-bit results (we ignore the
|
|
// top parts).
|
|
SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
|
|
LHS, RHS, DAG, MVT::v4i32);
|
|
|
|
SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
|
|
LHS, RHSSwap, Zero, DAG, MVT::v4i32);
|
|
// Shift the high parts up 16 bits.
|
|
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
|
|
return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
|
|
} else if (Op.getValueType() == MVT::v8i16) {
|
|
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
|
|
|
|
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
|
|
LHS, RHS, Zero, DAG);
|
|
} else if (Op.getValueType() == MVT::v16i8) {
|
|
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
// Multiply the even 8-bit parts, producing 16-bit sums.
|
|
SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
|
|
LHS, RHS, DAG, MVT::v8i16);
|
|
EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
|
|
|
|
// Multiply the odd 8-bit parts, producing 16-bit sums.
|
|
SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
|
|
LHS, RHS, DAG, MVT::v8i16);
|
|
OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
|
|
|
|
// Merge the results together.
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
|
|
Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
|
|
}
|
|
|
|
return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
|
|
} else {
|
|
assert(0 && "Unknown mul to lower!");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
|
|
switch (Op.getOpcode()) {
|
|
default: assert(0 && "Wasn't expecting to be able to lower this!");
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
|
|
case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG,
|
|
VarArgsFrameIndex);
|
|
case ISD::CALL: return LowerCALL(Op, DAG);
|
|
case ISD::RET: return LowerRET(Op, DAG);
|
|
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
|
|
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
|
|
|
|
// Lower 64-bit shifts.
|
|
case ISD::SHL: return LowerSHL(Op, DAG);
|
|
case ISD::SRL: return LowerSRL(Op, DAG);
|
|
case ISD::SRA: return LowerSRA(Op, DAG);
|
|
|
|
// Vector-related lowering.
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, DAG);
|
|
}
|
|
return SDOperand();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
|
|
MachineBasicBlock *BB) {
|
|
assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
|
|
MI->getOpcode() == PPC::SELECT_CC_F4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_F8 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
|
|
"Unexpected instr type to insert");
|
|
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
|
|
// control-flow pattern. The incoming instruction knows the destination vreg
|
|
// to set, the condition code register to branch on, the true/false values to
|
|
// select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
|
|
MachineFunction *F = BB->getParent();
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges by first adding all successors of the current
|
|
// block to the new block which will contain the Phi node for the select.
|
|
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
|
|
e = BB->succ_end(); i != e; ++i)
|
|
sinkMBB->addSuccessor(*i);
|
|
// Next, remove all successors of the current block, and add the true
|
|
// and fallthrough blocks as its successors.
|
|
while(!BB->succ_empty())
|
|
BB->removeSuccessor(BB->succ_begin());
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
delete MI; // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
TargetMachine &TM = getTargetMachine();
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::SINT_TO_FP:
|
|
if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
|
|
if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
|
|
// Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
|
|
// We allow the src/dst to be either f32/f64, but the intermediate
|
|
// type must be i64.
|
|
if (N->getOperand(0).getValueType() == MVT::i64) {
|
|
SDOperand Val = N->getOperand(0).getOperand(0);
|
|
if (Val.getValueType() == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.Val);
|
|
}
|
|
|
|
Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.Val);
|
|
Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.Val);
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
|
|
DCI.AddToWorklist(Val.Val);
|
|
}
|
|
return Val;
|
|
} else if (N->getOperand(0).getValueType() == MVT::i32) {
|
|
// If the intermediate type is i32, we can avoid the load/store here
|
|
// too.
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ISD::STORE:
|
|
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
|
|
if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
|
|
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
|
|
N->getOperand(1).getValueType() == MVT::i32) {
|
|
SDOperand Val = N->getOperand(1).getOperand(0);
|
|
if (Val.getValueType() == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.Val);
|
|
}
|
|
Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.Val);
|
|
|
|
Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
|
|
N->getOperand(2), N->getOperand(3));
|
|
DCI.AddToWorklist(Val.Val);
|
|
return Val;
|
|
}
|
|
break;
|
|
case PPCISD::VCMP: {
|
|
// If a VCMPo node already exists with exactly the same operands as this
|
|
// node, use its result instead of this node (VCMPo computes both a CR6 and
|
|
// a normal output).
|
|
//
|
|
if (!N->getOperand(0).hasOneUse() &&
|
|
!N->getOperand(1).hasOneUse() &&
|
|
!N->getOperand(2).hasOneUse()) {
|
|
|
|
// Scan all of the users of the LHS, looking for VCMPo's that match.
|
|
SDNode *VCMPoNode = 0;
|
|
|
|
SDNode *LHSN = N->getOperand(0).Val;
|
|
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
|
|
UI != E; ++UI)
|
|
if ((*UI)->getOpcode() == PPCISD::VCMPo &&
|
|
(*UI)->getOperand(1) == N->getOperand(1) &&
|
|
(*UI)->getOperand(2) == N->getOperand(2) &&
|
|
(*UI)->getOperand(0) == N->getOperand(0)) {
|
|
VCMPoNode = *UI;
|
|
break;
|
|
}
|
|
|
|
// If there is no VCMPo node, or if the flag value has a single use, don't
|
|
// transform this.
|
|
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
|
|
break;
|
|
|
|
// Look at the (necessarily single) use of the flag value. If it has a
|
|
// chain, this transformation is more complex. Note that multiple things
|
|
// could use the value result, which we should ignore.
|
|
SDNode *FlagUser = 0;
|
|
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
|
|
FlagUser == 0; ++UI) {
|
|
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
|
|
SDNode *User = *UI;
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
|
|
if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
|
|
FlagUser = User;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the user is a MFCR instruction, we know this is safe. Otherwise we
|
|
// give up for right now.
|
|
if (FlagUser->getOpcode() == PPCISD::MFCR)
|
|
return SDOperand(VCMPoNode, 0);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BR_CC: {
|
|
// If this is a branch on an altivec predicate comparison, lower this so
|
|
// that we don't have to do a MFCR: instead, branch directly on CR6. This
|
|
// lowering is done pre-legalize, because the legalizer lowers the predicate
|
|
// compare down to code that is difficult to reassemble.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
|
SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
|
|
int CompareOpc;
|
|
bool isDot;
|
|
|
|
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
|
|
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
|
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
|
|
assert(isDot && "Can't compare against a vector result!");
|
|
|
|
// If this is a comparison against something other than 0/1, then we know
|
|
// that the condition is never/always true.
|
|
unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
|
|
if (Val != 0 && Val != 1) {
|
|
if (CC == ISD::SETEQ) // Cond never true, remove branch.
|
|
return N->getOperand(0);
|
|
// Always !=, turn it into an unconditional branch.
|
|
return DAG.getNode(ISD::BR, MVT::Other,
|
|
N->getOperand(0), N->getOperand(4));
|
|
}
|
|
|
|
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
|
|
|
|
// Create the PPCISD altivec 'dot' comparison node.
|
|
std::vector<SDOperand> Ops;
|
|
std::vector<MVT::ValueType> VTs;
|
|
Ops.push_back(LHS.getOperand(2)); // LHS of compare
|
|
Ops.push_back(LHS.getOperand(3)); // RHS of compare
|
|
Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
|
|
VTs.push_back(LHS.getOperand(2).getValueType());
|
|
VTs.push_back(MVT::Flag);
|
|
SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
|
|
|
|
// Unpack the result based on how the target uses it.
|
|
unsigned CompOpc;
|
|
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
|
|
default: // Can't happen, don't crash on invalid number though.
|
|
case 0: // Branch on the value of the EQ bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
|
|
break;
|
|
case 1: // Branch on the inverted value of the EQ bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
|
|
break;
|
|
case 2: // Branch on the value of the LT bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
|
|
break;
|
|
case 3: // Branch on the inverted value of the LT bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
|
|
break;
|
|
}
|
|
|
|
return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
|
|
DAG.getRegister(PPC::CR6, MVT::i32),
|
|
DAG.getConstant(CompOpc, MVT::i32),
|
|
N->getOperand(4), CompNode.getValue(1));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SDOperand();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
|
uint64_t Mask,
|
|
uint64_t &KnownZero,
|
|
uint64_t &KnownOne,
|
|
unsigned Depth) const {
|
|
KnownZero = 0;
|
|
KnownOne = 0;
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
|
|
default: break;
|
|
case Intrinsic::ppc_altivec_vcmpbfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpeqfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpequb_p:
|
|
case Intrinsic::ppc_altivec_vcmpequh_p:
|
|
case Intrinsic::ppc_altivec_vcmpequw_p:
|
|
case Intrinsic::ppc_altivec_vcmpgefp_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsb_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsh_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsw_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtub_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtuh_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtuw_p:
|
|
KnownZero = ~1U; // All bits but the low one are known to be zero.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
PPCTargetLowering::ConstraintType
|
|
PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
|
|
switch (ConstraintLetter) {
|
|
default: break;
|
|
case 'b':
|
|
case 'r':
|
|
case 'f':
|
|
case 'v':
|
|
case 'y':
|
|
return C_RegisterClass;
|
|
}
|
|
return TargetLowering::getConstraintType(ConstraintLetter);
|
|
}
|
|
|
|
|
|
std::vector<unsigned> PPCTargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT::ValueType VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) { // GCC RS6000 Constraint Letters
|
|
default: break; // Unknown constriant letter
|
|
case 'b':
|
|
return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
|
|
PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
|
|
PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
|
|
PPC::R12, PPC::R13, PPC::R14, PPC::R15,
|
|
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
|
|
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
|
|
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
|
|
PPC::R28, PPC::R29, PPC::R30, PPC::R31,
|
|
0);
|
|
case 'r':
|
|
return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
|
|
PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
|
|
PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
|
|
PPC::R12, PPC::R13, PPC::R14, PPC::R15,
|
|
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
|
|
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
|
|
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
|
|
PPC::R28, PPC::R29, PPC::R30, PPC::R31,
|
|
0);
|
|
case 'f':
|
|
return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
|
|
PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
|
|
PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
|
|
PPC::F12, PPC::F13, PPC::F14, PPC::F15,
|
|
PPC::F16, PPC::F17, PPC::F18, PPC::F19,
|
|
PPC::F20, PPC::F21, PPC::F22, PPC::F23,
|
|
PPC::F24, PPC::F25, PPC::F26, PPC::F27,
|
|
PPC::F28, PPC::F29, PPC::F30, PPC::F31,
|
|
0);
|
|
case 'v':
|
|
return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
|
|
PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
|
|
PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
|
|
PPC::V12, PPC::V13, PPC::V14, PPC::V15,
|
|
PPC::V16, PPC::V17, PPC::V18, PPC::V19,
|
|
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
|
|
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
|
|
PPC::V28, PPC::V29, PPC::V30, PPC::V31,
|
|
0);
|
|
case 'y':
|
|
return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
|
|
PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
|
|
0);
|
|
}
|
|
}
|
|
|
|
return std::vector<unsigned>();
|
|
}
|
|
|
|
// isOperandValidForConstraint
|
|
bool PPCTargetLowering::
|
|
isOperandValidForConstraint(SDOperand Op, char Letter) {
|
|
switch (Letter) {
|
|
default: break;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P': {
|
|
if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
|
|
unsigned Value = cast<ConstantSDNode>(Op)->getValue();
|
|
switch (Letter) {
|
|
default: assert(0 && "Unknown constraint letter!");
|
|
case 'I': // "I" is a signed 16-bit constant.
|
|
return (short)Value == (int)Value;
|
|
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
|
|
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
|
|
return (short)Value == 0;
|
|
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
|
|
return (Value >> 16) == 0;
|
|
case 'M': // "M" is a constant that is greater than 31.
|
|
return Value > 31;
|
|
case 'N': // "N" is a positive constant that is an exact power of two.
|
|
return (int)Value > 0 && isPowerOf2_32(Value);
|
|
case 'O': // "O" is the constant zero.
|
|
return Value == 0;
|
|
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
|
|
return (short)-Value == (int)-Value;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle standard constraint letters.
|
|
return TargetLowering::isOperandValidForConstraint(Op, Letter);
|
|
}
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode.
|
|
bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
|
|
// PPC allows a sign-extended 16-bit immediate field.
|
|
return (V > -(1 << 16) && V < (1 << 16)-1);
|
|
}
|