llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
Chris Lattner 8ea13c6233 Two changes, both very significant:
* vreg <-> vreg joining now works, enable it unconditionally when joining
  is enabled (which is the default).
* Fix a serious pessimization of spill code where we were saying that a
  spilled DEF operand was live into the subsequent instruction.  This allows
  for substantially better code when spilling starts to happen.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14993 91177308-0d34-0410-b5e6-96231b3b80d8
2004-07-19 05:55:50 +00:00

775 lines
28 KiB
C++

//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "LiveIntervals.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include "VirtRegMap.h"
#include <cmath>
#include <iostream>
using namespace llvm;
namespace {
RegisterAnalysis<LiveIntervals> X("liveintervals",
"Live Interval Analysis");
Statistic<> numIntervals
("liveintervals", "Number of original intervals");
Statistic<> numIntervalsAfter
("liveintervals", "Number of intervals after coalescing");
Statistic<> numJoins
("liveintervals", "Number of interval joins performed");
Statistic<> numPeep
("liveintervals", "Number of identity moves eliminated after coalescing");
Statistic<> numFolded
("liveintervals", "Number of loads/stores folded into instructions");
cl::opt<bool>
EnableJoining("join-liveintervals",
cl::desc("Join compatible live intervals"),
cl::init(true));
};
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
AU.addPreserved<LiveVariables>();
AU.addRequired<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveIntervals::releaseMemory()
{
mi2iMap_.clear();
i2miMap_.clear();
r2iMap_.clear();
r2rMap_.clear();
intervals_.clear();
}
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
lv_ = &getAnalysis<LiveVariables>();
// number MachineInstrs
unsigned miIndex = 0;
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
mbb != mbbEnd; ++mbb)
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(mi);
miIndex += InstrSlots::NUM;
}
computeIntervals();
numIntervals += intervals_.size();
// join intervals if requested
if (EnableJoining) joinIntervals();
//DEBUG(mf_->viewCFG());
numIntervalsAfter += intervals_.size();
// perform a final pass over the instructions and compute spill
// weights, coalesce virtual registers and remove identity moves
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
const TargetInstrInfo& tii = *tm_->getInstrInfo();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
// if the move will be an identity move delete it
unsigned srcReg, dstReg;
if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
rep(srcReg) == rep(dstReg)) {
// remove from def list
LiveInterval& interval = getOrCreateInterval(rep(dstReg));
// remove index -> MachineInstr and
// MachineInstr -> index mappings
Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
if (mi2i != mi2iMap_.end()) {
i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
mi2iMap_.erase(mi2i);
}
mii = mbbi->erase(mii);
++numPeep;
}
else {
for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
const MachineOperand& mop = mii->getOperand(i);
if (mop.isRegister() && mop.getReg() &&
MRegisterInfo::isVirtualRegister(mop.getReg())) {
// replace register with representative register
unsigned reg = rep(mop.getReg());
mii->SetMachineOperandReg(i, reg);
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
assert(r2iit != r2iMap_.end());
r2iit->second->weight +=
(mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
}
}
++mii;
}
}
}
intervals_.sort();
DEBUG(std::cerr << "********** INTERVALS **********\n");
DEBUG(std::copy(intervals_.begin(), intervals_.end(),
std::ostream_iterator<LiveInterval>(std::cerr, "\n")));
DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
DEBUG(
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
std::cerr << getInstructionIndex(mii) << '\t';
mii->print(std::cerr, tm_);
}
});
return true;
}
namespace {
/// CompareIntervalStar - This is a simple comparison function for interval
/// pointers. It compares based on their starting point.
struct CompareIntervalStar {
bool operator()(LiveInterval *LHS, LiveInterval* RHS) const {
return LHS->start() < RHS->start();
}
};
}
std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
const LiveInterval& li,
VirtRegMap& vrm,
int slot)
{
std::vector<LiveInterval*> added;
assert(li.weight != HUGE_VAL &&
"attempt to spill already spilled interval!");
DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
<< li << '\n');
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
for (LiveInterval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
unsigned index = getBaseIndex(i->first);
unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM;
for (; index < end; index += InstrSlots::NUM) {
// skip deleted instructions
while (!getInstructionFromIndex(index)) index += InstrSlots::NUM;
MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
for_operand:
for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
MachineOperand& mop = mi->getOperand(i);
if (mop.isRegister() && mop.getReg() == li.reg) {
if (MachineInstr* fmi =
mri_->foldMemoryOperand(mi, i, slot)) {
lv_->instructionChanged(mi, fmi);
vrm.virtFolded(li.reg, mi, fmi);
mi2iMap_.erase(mi);
i2miMap_[index/InstrSlots::NUM] = fmi;
mi2iMap_[fmi] = index;
MachineBasicBlock& mbb = *mi->getParent();
mi = mbb.insert(mbb.erase(mi), fmi);
++numFolded;
goto for_operand;
}
else {
// This is tricky. We need to add information in
// the interval about the spill code so we have to
// use our extra load/store slots.
//
// If we have a use we are going to have a load so
// we start the interval from the load slot
// onwards. Otherwise we start from the def slot.
unsigned start = (mop.isUse() ?
getLoadIndex(index) :
getDefIndex(index));
// If we have a def we are going to have a store
// right after it so we end the interval after the
// use of the next instruction. Otherwise we end
// after the use of this instruction.
unsigned end = 1 + (mop.isDef() ?
getStoreIndex(index) :
getUseIndex(index));
// create a new register for this spill
unsigned nReg =
mf_->getSSARegMap()->createVirtualRegister(rc);
mi->SetMachineOperandReg(i, nReg);
vrm.grow();
vrm.assignVirt2StackSlot(nReg, slot);
LiveInterval& nI = getOrCreateInterval(nReg);
assert(nI.empty());
// the spill weight is now infinity as it
// cannot be spilled again
nI.weight = HUGE_VAL;
nI.addRange(start, end);
added.push_back(&nI);
// update live variables
lv_->addVirtualRegisterKilled(nReg, mi->getParent(),mi);
DEBUG(std::cerr << "\t\t\t\tadded new interval: "
<< nI << '\n');
}
}
}
}
}
// FIXME: This method MUST return intervals in sorted order. If a
// particular machine instruction both uses and defines the vreg being
// spilled (e.g., vr = vr + 1) and if the def is processed before the
// use, the list ends up not sorted.
//
// The proper way to fix this is to process all uses of the vreg before we
// process any defs. However, this would require refactoring the above
// blob of code, which I'm not feeling up to right now.
std::sort(added.begin(), added.end(), CompareIntervalStar());
return added;
}
void LiveIntervals::printRegName(unsigned reg) const
{
if (MRegisterInfo::isPhysicalRegister(reg))
std::cerr << mri_->getName(reg);
else
std::cerr << "%reg" << reg;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
LiveInterval& interval)
{
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
// Virtual registers may be defined multiple times (due to phi
// elimination). Much of what we do only has to be done once for the vreg.
// We use an empty interval to detect the first time we see a vreg.
if (interval.empty()) {
// Get the Idx of the defining instructions.
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0].first == mbb) {
// FIXME: what about dead vars?
unsigned killIdx;
if (vi.Kills[0].second != mi)
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0].second))+1;
else
killIdx = defIndex+1;
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
interval.addRange(defIndex, killIdx);
return;
}
}
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
interval.addRange(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
if (vi.AliveBlocks[i]) {
MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
if (!mbb->empty()) {
interval.addRange(
getInstructionIndex(&mbb->front()),
getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
}
}
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
std::pair<MachineBasicBlock*, MachineInstr*> &Kill = vi.Kills[i];
interval.addRange(getInstructionIndex(Kill.first->begin()),
getUseIndex(getInstructionIndex(Kill.second))+1);
}
} else {
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination. In this case, the defined value will
// be live until the end of the basic block it is defined in.
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
interval.addRange(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
}
DEBUG(std::cerr << '\n');
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
LiveInterval& interval)
{
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
typedef LiveVariables::killed_iterator KillIter;
MachineBasicBlock::iterator e = mbb->end();
unsigned baseIndex = getInstructionIndex(mi);
unsigned start = getDefIndex(baseIndex);
unsigned end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
ki != ke; ++ki) {
if (interval.reg == ki->second) {
DEBUG(std::cerr << " dead");
end = getDefIndex(start) + 1;
goto exit;
}
}
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
do {
++mi;
baseIndex += InstrSlots::NUM;
for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
ki != ke; ++ki) {
if (interval.reg == ki->second) {
DEBUG(std::cerr << " killed");
end = getUseIndex(baseIndex) + 1;
goto exit;
}
}
} while (mi != e);
exit:
assert(start < end && "did not find end of interval?");
interval.addRange(start, end);
DEBUG(std::cerr << '\n');
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
if (MRegisterInfo::isPhysicalRegister(reg)) {
if (lv_->getAllocatablePhysicalRegisters()[reg]) {
handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(reg));
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(*as));
}
}
else
handleVirtualRegisterDef(mbb, mi, getOrCreateInterval(reg));
}
unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
{
Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
return (it == mi2iMap_.end() ?
std::numeric_limits<unsigned>::max() :
it->second);
}
MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
{
index /= InstrSlots::NUM; // convert index to vector index
assert(index < i2miMap_.size() &&
"index does not correspond to an instruction");
return i2miMap_[index];
}
/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals()
{
DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
DEBUG(std::cerr << "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I) {
MachineBasicBlock* mbb = I;
DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
const TargetInstrDescriptor& tid =
tm_->getInstrInfo()->get(mi->getOpcode());
DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
mi->print(std::cerr, tm_));
// handle implicit defs
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
handleRegisterDef(mbb, mi, *id);
// handle explicit defs
for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
MachineOperand& mop = mi->getOperand(i);
// handle register defs - build intervals
if (mop.isRegister() && mop.getReg() && mop.isDef())
handleRegisterDef(mbb, mi, mop.getReg());
}
}
}
}
unsigned LiveIntervals::rep(unsigned reg)
{
Reg2RegMap::iterator it = r2rMap_.find(reg);
if (it != r2rMap_.end())
return it->second = rep(it->second);
return reg;
}
void LiveIntervals::joinIntervals()
{
DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
const TargetInstrInfo& tii = *tm_->getInstrInfo();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
for (MachineBasicBlock::iterator mi = mbb->begin(), mie = mbb->end();
mi != mie; ++mi) {
const TargetInstrDescriptor& tid = tii.get(mi->getOpcode());
DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
mi->print(std::cerr, tm_););
// we only join virtual registers with allocatable
// physical registers since we do not have liveness information
// on not allocatable physical registers
unsigned regA, regB;
if (tii.isMoveInstr(*mi, regA, regB) &&
(MRegisterInfo::isVirtualRegister(regA) ||
lv_->getAllocatablePhysicalRegisters()[regA]) &&
(MRegisterInfo::isVirtualRegister(regB) ||
lv_->getAllocatablePhysicalRegisters()[regB])) {
// get representative registers
regA = rep(regA);
regB = rep(regB);
// if they are already joined we continue
if (regA == regB)
continue;
Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
assert(r2iA != r2iMap_.end() &&
"Found unknown vreg in 'isMoveInstr' instruction");
Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
assert(r2iB != r2iMap_.end() &&
"Found unknown vreg in 'isMoveInstr' instruction");
Intervals::iterator intA = r2iA->second;
Intervals::iterator intB = r2iB->second;
// both A and B are virtual registers
if (MRegisterInfo::isVirtualRegister(intA->reg) &&
MRegisterInfo::isVirtualRegister(intB->reg)) {
const TargetRegisterClass *rcA, *rcB;
rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
// if they are not of the same register class we continue
if (rcA != rcB)
continue;
// if their intervals do not overlap we join them
if (!intB->overlaps(*intA)) {
intA->join(*intB);
r2iB->second = r2iA->second;
r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
intervals_.erase(intB);
}
} else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^
MRegisterInfo::isPhysicalRegister(intB->reg)) {
if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
std::swap(regA, regB);
std::swap(intA, intB);
std::swap(r2iA, r2iB);
}
assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
MRegisterInfo::isVirtualRegister(intB->reg) &&
"A must be physical and B must be virtual");
const TargetRegisterClass *rcA, *rcB;
rcA = mri_->getRegClass(intA->reg);
rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
// if they are not of the same register class we continue
if (rcA != rcB)
continue;
if (!intA->overlaps(*intB) &&
!overlapsAliases(*intA, *intB)) {
intA->join(*intB);
r2iB->second = r2iA->second;
r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
intervals_.erase(intB);
}
}
}
}
}
}
bool LiveIntervals::overlapsAliases(const LiveInterval& lhs,
const LiveInterval& rhs) const
{
assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
"first interval must describe a physical register");
for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
assert(r2i != r2iMap_.end() && "alias does not have interval?");
if (rhs.overlaps(*r2i->second))
return true;
}
return false;
}
LiveInterval& LiveIntervals::getOrCreateInterval(unsigned reg)
{
Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
if (r2iit == r2iMap_.end() || r2iit->first != reg) {
intervals_.push_back(LiveInterval(reg));
r2iit = r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
}
return *r2iit->second;
}
LiveInterval::LiveInterval(unsigned r)
: reg(r),
weight((MRegisterInfo::isPhysicalRegister(r) ? HUGE_VAL : 0.0F))
{
}
bool LiveInterval::spilled() const
{
return (weight == HUGE_VAL &&
MRegisterInfo::isVirtualRegister(reg));
}
// An example for liveAt():
//
// this = [1,4), liveAt(0) will return false. The instruction defining
// this spans slots [0,3]. The interval belongs to an spilled
// definition of the variable it represents. This is because slot 1 is
// used (def slot) and spans up to slot 3 (store slot).
//
bool LiveInterval::liveAt(unsigned index) const
{
Range dummy(index, index+1);
Ranges::const_iterator r = std::upper_bound(ranges.begin(),
ranges.end(),
dummy);
if (r == ranges.begin())
return false;
--r;
return index >= r->first && index < r->second;
}
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
bool LiveInterval::overlaps(const LiveInterval& other) const
{
Ranges::const_iterator i = ranges.begin();
Ranges::const_iterator ie = ranges.end();
Ranges::const_iterator j = other.ranges.begin();
Ranges::const_iterator je = other.ranges.end();
if (i->first < j->first) {
i = std::upper_bound(i, ie, *j);
if (i != ranges.begin()) --i;
}
else if (j->first < i->first) {
j = std::upper_bound(j, je, *i);
if (j != other.ranges.begin()) --j;
}
while (i != ie && j != je) {
if (i->first == j->first) {
return true;
}
else {
if (i->first > j->first) {
swap(i, j);
swap(ie, je);
}
assert(i->first < j->first);
if (i->second > j->first) {
return true;
}
else {
++i;
}
}
}
return false;
}
void LiveInterval::addRange(unsigned start, unsigned end)
{
assert(start < end && "Invalid range to add!");
DEBUG(std::cerr << " +[" << start << ',' << end << ")");
//assert(start < end && "invalid range?");
Range range = std::make_pair(start, end);
Ranges::iterator it =
ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
range);
it = mergeRangesForward(it);
it = mergeRangesBackward(it);
}
void LiveInterval::join(const LiveInterval& other)
{
DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other);
Ranges::iterator cur = ranges.begin();
for (Ranges::const_iterator i = other.ranges.begin(),
e = other.ranges.end(); i != e; ++i) {
cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
cur = mergeRangesForward(cur);
cur = mergeRangesBackward(cur);
}
weight += other.weight;
++numJoins;
DEBUG(std::cerr << ". Result = " << *this << "\n");
}
LiveInterval::Ranges::iterator LiveInterval::
mergeRangesForward(Ranges::iterator it)
{
Ranges::iterator n;
while ((n = next(it)) != ranges.end()) {
if (n->first > it->second)
break;
it->second = std::max(it->second, n->second);
n = ranges.erase(n);
}
return it;
}
LiveInterval::Ranges::iterator LiveInterval::
mergeRangesBackward(Ranges::iterator it)
{
while (it != ranges.begin()) {
Ranges::iterator p = prior(it);
if (it->first > p->second)
break;
it->first = std::min(it->first, p->first);
it->second = std::max(it->second, p->second);
it = ranges.erase(p);
}
return it;
}
std::ostream& llvm::operator<<(std::ostream& os, const LiveInterval& li)
{
os << "%reg" << li.reg << ',' << li.weight;
if (li.empty())
return os << "EMPTY";
os << " = ";
for (LiveInterval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
os << "[" << i->first << "," << i->second << ")";
}
return os;
}