llvm/lib/Target/SystemZ/SystemZInstrFormats.td
Richard Sandiford 9188443a2d [SystemZ] Add the MVC instruction
This is the first use of D(L,B) addressing, which required a fair bit
of surgery.  For that reason, the patch just adds the instruction
definition and the associated assembler and disassembler support.
A later patch will actually make use of it for codegen.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185433 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-02 14:56:45 +00:00

1029 lines
35 KiB
TableGen

//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Basic SystemZ instruction definition
//===----------------------------------------------------------------------===//
class InstSystemZ<int size, dag outs, dag ins, string asmstr,
list<dag> pattern> : Instruction {
let Namespace = "SystemZ";
dag OutOperandList = outs;
dag InOperandList = ins;
let Size = size;
let Pattern = pattern;
let AsmString = asmstr;
// Used to identify a group of related instructions, such as ST and STY.
string Function = "";
// "12" for an instruction that has a ...Y equivalent, "20" for that
// ...Y equivalent.
string PairType = "none";
// True if this instruction is a simple D(X,B) load of a register
// (with no sign or zero extension).
bit SimpleBDXLoad = 0;
// True if this instruction is a simple D(X,B) store of a register
// (with no truncation).
bit SimpleBDXStore = 0;
// True if this instruction has a 20-bit displacement field.
bit Has20BitOffset = 0;
// True if addresses in this instruction have an index register.
bit HasIndex = 0;
// True if this is a 128-bit pseudo instruction that combines two 64-bit
// operations.
bit Is128Bit = 0;
let TSFlags{0} = SimpleBDXLoad;
let TSFlags{1} = SimpleBDXStore;
let TSFlags{2} = Has20BitOffset;
let TSFlags{3} = HasIndex;
let TSFlags{4} = Is128Bit;
}
//===----------------------------------------------------------------------===//
// Mappings between instructions
//===----------------------------------------------------------------------===//
// Return the version of an instruction that has an unsigned 12-bit
// displacement.
def getDisp12Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["Function"];
let ColFields = ["PairType"];
let KeyCol = ["20"];
let ValueCols = [["12"]];
}
// Return the version of an instruction that has a signed 20-bit displacement.
def getDisp20Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["Function"];
let ColFields = ["PairType"];
let KeyCol = ["12"];
let ValueCols = [["20"]];
}
//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
//
// Formats are specified using operand field declarations of the form:
//
// bits<4> Rn : register input or output for operand n
// bits<m> In : immediate value of width m for operand n
// bits<4> BDn : address operand n, which has a base and a displacement
// bits<m> XBDn : address operand n, which has an index, a base and a
// displacement
// bits<4> Xn : index register for address operand n
// bits<4> Mn : mode value for operand n
//
// The operand numbers ("n" in the list above) follow the architecture manual.
// Assembly operands sometimes have a different order; in particular, R3 often
// is often written between operands 1 and 2.
//
//===----------------------------------------------------------------------===//
class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<16> I2;
let Inst{31-24} = op{11-4};
let Inst{23-20} = R1;
let Inst{19-16} = op{3-0};
let Inst{15-0} = I2;
}
class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M3;
bits<16> RI4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-16} = RI4;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<8> I2;
bits<4> M3;
bits<16> RI4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = M3;
let Inst{31-16} = RI4;
let Inst{15-8} = I2;
let Inst{7-0} = op{7-0};
}
class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<8> I3;
bits<8> I4;
bits<8> I5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-24} = I3;
let Inst{23-16} = I4;
let Inst{15-8} = I5;
let Inst{7-0} = op{7-0};
}
class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<32> I2;
let Inst{47-40} = op{11-4};
let Inst{39-36} = R1;
let Inst{35-32} = op{3-0};
let Inst{31-0} = I2;
}
class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<2, outs, ins, asmstr, pattern> {
field bits<16> Inst;
field bits<16> SoftFail = 0;
bits<4> R1;
bits<4> R2;
let Inst{15-8} = op;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-4} = R3;
let Inst{3-0} = R2;
}
class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> R3;
let Inst{31-16} = op;
let Inst{15-12} = R3;
let Inst{11-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<20> XBD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-0} = XBD2;
let HasIndex = 1;
}
class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<20> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-16} = XBD2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<20> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R3;
let Inst{35-16} = XBD2;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<28> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-8} = XBD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
let HasIndex = 1;
}
class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> BD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = R3;
let Inst{15-0} = BD2;
}
class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<24> BD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-8} = BD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<16> BD1;
bits<8> I2;
let Inst{31-24} = op;
let Inst{23-16} = I2;
let Inst{15-0} = BD1;
}
class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<16> BD1;
bits<16> I2;
let Inst{47-32} = op;
let Inst{31-16} = BD1;
let Inst{15-0} = I2;
}
class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<24> BD1;
bits<8> I2;
let Inst{47-40} = op{15-8};
let Inst{39-32} = I2;
let Inst{31-8} = BD1;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<24> BDL1;
bits<16> BD2;
let Inst{47-40} = op;
let Inst{39-16} = BDL1;
let Inst{15-0} = BD2;
}
//===----------------------------------------------------------------------===//
// Instruction definitions with semantics
//===----------------------------------------------------------------------===//
//
// These classes have the form <Category><Format>, where <Format> is one
// of the formats defined above and where <Category> describes the inputs
// and outputs. <Category> can be one of:
//
// Inherent:
// One register output operand and no input operands.
//
// Store:
// One register or immediate input operand and one address input operand.
// The instruction stores the first operand to the address.
//
// This category is used for both pure and truncating stores.
//
// LoadMultiple:
// One address input operand and two explicit output operands.
// The instruction loads a range of registers from the address,
// with the explicit operands giving the first and last register
// to load. Other loaded registers are added as implicit definitions.
//
// StoreMultiple:
// Two explicit input register operands and an address operand.
// The instruction stores a range of registers to the address,
// with the explicit operands giving the first and last register
// to store. Other stored registers are added as implicit uses.
//
// Unary:
// One register output operand and one input operand. The input
// operand may be a register, immediate or memory.
//
// Binary:
// One register output operand and two input operands. The first
// input operand is always a register and he second may be a register,
// immediate or memory.
//
// Shift:
// One register output operand and two input operands. The first
// input operand is a register and the second has the same form as
// an address (although it isn't actually used to address memory).
//
// Compare:
// Two input operands. The first operand is always a register,
// the second may be a register, immediate or memory.
//
// Ternary:
// One register output operand and three register input operands.
//
// CmpSwap:
// One output operand and three input operands. The first two
// operands are registers and the third is an address. The instruction
// both reads from and writes to the address.
//
// RotateSelect:
// One output operand and five input operands. The first two operands
// are registers and the other three are immediates.
//
// The format determines which input operands are tied to output operands,
// and also determines the shape of any address operand.
//
// Multiclasses of the form <Category><Format>Pair define two instructions,
// one with <Category><Format> and one with <Category><Format>Y. The name
// of the first instruction has no suffix, the name of the second has
// an extra "y".
//
//===----------------------------------------------------------------------===//
class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
dag src>
: InstRRE<opcode, (outs cls:$R1), (ins),
mnemonic#"\t$R1",
[(set cls:$R1, src)]> {
let R2 = 0;
}
class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayLoad = 1;
}
class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, pcrel32:$I2)]> {
let mayStore = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, mode:$XBD2)]> {
let mayStore = 1;
}
class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, mode:$XBD2)]> {
let mayStore = 1;
}
multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bdxaddr12pair>;
let PairType = "20" in
def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bdxaddr20pair>;
}
}
class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayStore = 1;
}
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Immediate imm, AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mode:$BD1)]> {
let mayStore = 1;
}
class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm, AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mode:$BD1)]> {
let mayStore = 1;
}
class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, bdaddr12only:$BD1)]> {
let mayStore = 1;
}
multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, Immediate imm> {
let Function = mnemonic in {
let PairType = "12" in
def "" : StoreSI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
let PairType = "20" in
def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
}
}
class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls2:$R2))]>;
class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls2:$R2))]>;
class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2),
mnemonic#"\t$R1, $R3, $R2", []>;
class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator imm:$I2))]>;
class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator imm:$I2))]>;
class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator pcrel32:$I2))]> {
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator mode:$XBD2))]> {
let mayLoad = 1;
}
class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
let mayLoad = 1;
}
class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator mode:$XBD2))]> {
let mayLoad = 1;
}
multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bdxaddr12pair>;
let PairType = "20" in
def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bdxaddr20pair>;
}
}
class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
mnemonic#"\t$R1, $R3, $R2",
[(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]>;
class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
}
class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src,
(load bdxaddr12only:$XBD2)))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
}
class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
}
multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bdxaddr12pair>;
let PairType = "20" in
def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load,
bdxaddr20pair>;
}
}
class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
let mayLoad = 1;
let mayStore = 1;
}
class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
let mayLoad = 1;
let mayStore = 1;
}
multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
bits<16> siyOpcode, SDPatternOperator operator,
Operand imm> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
let PairType = "20" in
def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
}
}
class ShiftRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode>
: InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
mnemonic#"\t$R1, $BD2",
[(set cls:$R1, (operator cls:$R1src, mode:$BD2))]> {
let R3 = 0;
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class ShiftRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator cls:$R3, mode:$BD2))]>;
class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(operator cls1:$R1, cls2:$R2)]>;
class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(operator cls1:$R1, cls2:$R2)]>;
class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, imm:$I2)]>;
class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, imm:$I2)]>;
class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, (load pcrel32:$I2))]> {
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load mode:$XBD2))]> {
let mayLoad = 1;
}
class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
let mayLoad = 1;
}
class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load mode:$XBD2))]> {
let mayLoad = 1;
}
multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
load, bdxaddr12pair>;
let PairType = "20" in
def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
load, bdxaddr20pair>;
}
}
class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load mode:$BD1), imm:$I2)]> {
let mayLoad = 1;
}
class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load bdaddr12only:$BD1), imm:$I2)]> {
let mayLoad = 1;
}
class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load mode:$BD1), imm:$I2)]> {
let mayLoad = 1;
}
multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, SDPatternOperator load,
Immediate imm> {
let Function = mnemonic in {
let PairType = "12" in
def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
let PairType = "20" in
def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
bdaddr20pair>;
}
}
class TernaryRRD<string mnemonic, bits<16> opcode,
SDPatternOperator operator, RegisterOperand cls>
: InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
mnemonic#"\t$R1, $R3, $R2",
[(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRXF<opcode, (outs cls:$R1),
(ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $R3, $XBD2",
[(set cls:$R1, (operator cls:$R1src, cls:$R3,
(load bdxaddr12only:$XBD2)))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
}
class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr12only>
: InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let Function = mnemonic ## #cls in {
let PairType = "12" in
def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
let PairType = "20" in
def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
}
}
class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRIEf<opcode, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2,
uimm8zx6:$I3, uimm8zx6:$I4, uimm8zx6:$I5),
mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
//
// Convenience instructions that get lowered to real instructions
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
// or SystemZInstrInfo::expandPostRAPseudo().
//
//===----------------------------------------------------------------------===//
class Pseudo<dag outs, dag ins, list<dag> pattern>
: InstSystemZ<0, outs, ins, "", pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
// the value of the PSW's 2-bit condition code field.
class SelectWrapper<RegisterOperand cls>
: Pseudo<(outs cls:$dst), (ins cls:$src1, cls:$src2, i8imm:$cc),
[(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2, imm:$cc))]> {
let usesCustomInserter = 1;
// Although the instructions used by these nodes do not in themselves
// change CC, the insertion requires new blocks, and CC cannot be live
// across them.
let Defs = [CC];
let Uses = [CC];
}
// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
SDPatternOperator load, AddressingMode mode> {
let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
def "" : Pseudo<(outs), (ins mode:$addr, cls:$new, i8imm:$cc),
[(store (z_select_ccmask cls:$new, (load mode:$addr),
imm:$cc), mode:$addr)]>;
def Inv : Pseudo<(outs), (ins mode:$addr, cls:$new, i8imm:$cc),
[(store (z_select_ccmask (load mode:$addr), cls:$new,
imm:$cc), mode:$addr)]>;
}
}
// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
dag pat, DAGOperand operand>
: Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
[(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
let Defs = [CC];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadBinaryReg32<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
class AtomicLoadBinaryReg64<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
DAGOperand operand>
: Pseudo<(outs GR32:$dst),
(ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize),
[(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize))]> {
let Defs = [CC];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadWBinaryReg<SDPatternOperator operator>
: AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
: AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;