mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-10 06:03:52 +00:00
cb83374bd9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25129 91177308-0d34-0410-b5e6-96231b3b80d8
3663 lines
129 KiB
C++
3663 lines
129 KiB
C++
//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for X86.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Matcher Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
|
|
/// SDOperand's instead of register numbers for the leaves of the matched
|
|
/// tree.
|
|
struct X86ISelAddressMode {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase,
|
|
} BaseType;
|
|
|
|
struct { // This is really a union, discriminated by BaseType!
|
|
SDOperand Reg;
|
|
int FrameIndex;
|
|
} Base;
|
|
|
|
unsigned Scale;
|
|
SDOperand IndexReg;
|
|
unsigned Disp;
|
|
GlobalValue *GV;
|
|
|
|
X86ISelAddressMode()
|
|
: BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) {
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
namespace {
|
|
Statistic<>
|
|
NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - X86 specific code to select X86 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class ISel : public SelectionDAGISel {
|
|
/// ContainsFPCode - Every instruction we select that uses or defines a FP
|
|
/// register should set this to true.
|
|
bool ContainsFPCode;
|
|
|
|
/// X86Lowering - This object fully describes how to lower LLVM code to an
|
|
/// X86-specific SelectionDAG.
|
|
X86TargetLowering X86Lowering;
|
|
|
|
/// RegPressureMap - This keeps an approximate count of the number of
|
|
/// registers required to evaluate each node in the graph.
|
|
std::map<SDNode*, unsigned> RegPressureMap;
|
|
|
|
/// ExprMap - As shared expressions are codegen'd, we keep track of which
|
|
/// vreg the value is produced in, so we only emit one copy of each compiled
|
|
/// tree.
|
|
std::map<SDOperand, unsigned> ExprMap;
|
|
|
|
/// TheDAG - The DAG being selected during Select* operations.
|
|
SelectionDAG *TheDAG;
|
|
|
|
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
public:
|
|
ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) {
|
|
Subtarget = &TM.getSubtarget<X86Subtarget>();
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Pattern Instruction Selection";
|
|
}
|
|
|
|
unsigned getRegPressure(SDOperand O) {
|
|
return RegPressureMap[O.Val];
|
|
}
|
|
unsigned ComputeRegPressure(SDOperand O);
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
|
|
|
|
bool isFoldableLoad(SDOperand Op, SDOperand OtherOp,
|
|
bool FloatPromoteOk = false);
|
|
void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM);
|
|
bool TryToFoldLoadOpStore(SDNode *Node);
|
|
bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg);
|
|
void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse);
|
|
bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond);
|
|
void EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False,
|
|
MVT::ValueType SVT, unsigned RDest);
|
|
unsigned SelectExpr(SDOperand N);
|
|
|
|
X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM);
|
|
bool MatchAddress(SDOperand N, X86ISelAddressMode &AM);
|
|
void SelectAddress(SDOperand N, X86AddressMode &AM);
|
|
bool EmitPotentialTailCall(SDNode *Node);
|
|
void EmitFastCCToFastCCTailCall(SDNode *TailCallNode);
|
|
void Select(SDOperand N);
|
|
};
|
|
}
|
|
|
|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
|
|
/// the main function.
|
|
static void EmitSpecialCodeForMain(MachineBasicBlock *BB,
|
|
MachineFrameInfo *MFI) {
|
|
// Switch the FPU to 64-bit precision mode for better compatibility and speed.
|
|
int CWFrameIdx = MFI->CreateStackObject(2, 2);
|
|
addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
|
|
|
|
// Set the high part to be 64-bit precision.
|
|
addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
|
|
CWFrameIdx, 1).addImm(2);
|
|
|
|
// Reload the modified control word now.
|
|
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
|
|
}
|
|
|
|
void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
|
|
// If this is main, emit special code for main.
|
|
MachineBasicBlock *BB = MF.begin();
|
|
if (Fn.hasExternalLinkage() && Fn.getName() == "main")
|
|
EmitSpecialCodeForMain(BB, MF.getFrameInfo());
|
|
}
|
|
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
|
|
/// when it has created a SelectionDAG for us to codegen.
|
|
void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
// While we're doing this, keep track of whether we see any FP code for
|
|
// FP_REG_KILL insertion.
|
|
ContainsFPCode = false;
|
|
MachineFunction *MF = BB->getParent();
|
|
|
|
// Scan the PHI nodes that already are inserted into this basic block. If any
|
|
// of them is a PHI of a floating point value, we need to insert an
|
|
// FP_REG_KILL.
|
|
SSARegMap *RegMap = MF->getSSARegMap();
|
|
if (BB != MF->begin())
|
|
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
assert(I->getOpcode() == X86::PHI &&
|
|
"Isn't just PHI nodes?");
|
|
if (RegMap->getRegClass(I->getOperand(0).getReg()) ==
|
|
X86::RFPRegisterClass) {
|
|
ContainsFPCode = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Compute the RegPressureMap, which is an approximation for the number of
|
|
// registers required to compute each node.
|
|
ComputeRegPressure(DAG.getRoot());
|
|
|
|
TheDAG = &DAG;
|
|
|
|
// Codegen the basic block.
|
|
Select(DAG.getRoot());
|
|
|
|
TheDAG = 0;
|
|
|
|
// Finally, look at all of the successors of this block. If any contain a PHI
|
|
// node of FP type, we need to insert an FP_REG_KILL in this block.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI)
|
|
for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end();
|
|
I != E && I->getOpcode() == X86::PHI; ++I) {
|
|
if (RegMap->getRegClass(I->getOperand(0).getReg()) ==
|
|
X86::RFPRegisterClass) {
|
|
ContainsFPCode = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Final check, check LLVM BB's that are successors to the LLVM BB
|
|
// corresponding to BB for FP PHI nodes.
|
|
const BasicBlock *LLVMBB = BB->getBasicBlock();
|
|
const PHINode *PN;
|
|
if (!ContainsFPCode)
|
|
for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
|
|
SI != E && !ContainsFPCode; ++SI)
|
|
for (BasicBlock::const_iterator II = SI->begin();
|
|
(PN = dyn_cast<PHINode>(II)); ++II)
|
|
if (PN->getType()->isFloatingPoint()) {
|
|
ContainsFPCode = true;
|
|
break;
|
|
}
|
|
|
|
|
|
// Insert FP_REG_KILL instructions into basic blocks that need them. This
|
|
// only occurs due to the floating point stackifier not being aggressive
|
|
// enough to handle arbitrary global stackification.
|
|
//
|
|
// Currently we insert an FP_REG_KILL instruction into each block that uses or
|
|
// defines a floating point virtual register.
|
|
//
|
|
// When the global register allocators (like linear scan) finally update live
|
|
// variable analysis, we can keep floating point values in registers across
|
|
// basic blocks. This will be a huge win, but we are waiting on the global
|
|
// allocators before we can do this.
|
|
//
|
|
if (ContainsFPCode) {
|
|
BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
|
|
++NumFPKill;
|
|
}
|
|
|
|
// Clear state used for selection.
|
|
ExprMap.clear();
|
|
RegPressureMap.clear();
|
|
}
|
|
|
|
|
|
// ComputeRegPressure - Compute the RegPressureMap, which is an approximation
|
|
// for the number of registers required to compute each node. This is basically
|
|
// computing a generalized form of the Sethi-Ullman number for each node.
|
|
unsigned ISel::ComputeRegPressure(SDOperand O) {
|
|
SDNode *N = O.Val;
|
|
unsigned &Result = RegPressureMap[N];
|
|
if (Result) return Result;
|
|
|
|
// FIXME: Should operations like CALL (which clobber lots o regs) have a
|
|
// higher fixed cost??
|
|
|
|
if (N->getNumOperands() == 0) {
|
|
Result = 1;
|
|
} else {
|
|
unsigned MaxRegUse = 0;
|
|
unsigned NumExtraMaxRegUsers = 0;
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
unsigned Regs;
|
|
if (N->getOperand(i).getOpcode() == ISD::Constant)
|
|
Regs = 0;
|
|
else
|
|
Regs = ComputeRegPressure(N->getOperand(i));
|
|
if (Regs > MaxRegUse) {
|
|
MaxRegUse = Regs;
|
|
NumExtraMaxRegUsers = 0;
|
|
} else if (Regs == MaxRegUse &&
|
|
N->getOperand(i).getValueType() != MVT::Other) {
|
|
++NumExtraMaxRegUsers;
|
|
}
|
|
}
|
|
|
|
if (O.getOpcode() != ISD::TokenFactor)
|
|
Result = MaxRegUse+NumExtraMaxRegUsers;
|
|
else
|
|
Result = MaxRegUse == 1 ? 0 : MaxRegUse-1;
|
|
}
|
|
|
|
//std::cerr << " WEIGHT: " << Result << " "; N->dump(); std::cerr << "\n";
|
|
return Result;
|
|
}
|
|
|
|
/// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op.
|
|
/// The DAG cannot have cycles in it, by definition, so the visited set is not
|
|
/// needed to prevent infinite loops. The DAG CAN, however, have unbounded
|
|
/// reuse, so it prevents exponential cases.
|
|
///
|
|
static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op,
|
|
std::set<SDNode*> &Visited) {
|
|
if (N == Op) return true; // Found it.
|
|
SDNode *Node = N.Val;
|
|
if (Node->getNumOperands() == 0 || // Leaf?
|
|
Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it?
|
|
if (!Visited.insert(Node).second) return false; // Already visited?
|
|
|
|
// Recurse for the first N-1 operands.
|
|
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
|
|
if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited))
|
|
return true;
|
|
|
|
// Tail recurse for the last operand.
|
|
return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited);
|
|
}
|
|
|
|
X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) {
|
|
X86AddressMode Result;
|
|
|
|
// If we need to emit two register operands, emit the one with the highest
|
|
// register pressure first.
|
|
if (IAM.BaseType == X86ISelAddressMode::RegBase &&
|
|
IAM.Base.Reg.Val && IAM.IndexReg.Val) {
|
|
bool EmitBaseThenIndex;
|
|
if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) {
|
|
std::set<SDNode*> Visited;
|
|
EmitBaseThenIndex = true;
|
|
// If Base ends up pointing to Index, we must emit index first. This is
|
|
// because of the way we fold loads, we may end up doing bad things with
|
|
// the folded add.
|
|
if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited))
|
|
EmitBaseThenIndex = false;
|
|
} else {
|
|
std::set<SDNode*> Visited;
|
|
EmitBaseThenIndex = false;
|
|
// If Base ends up pointing to Index, we must emit index first. This is
|
|
// because of the way we fold loads, we may end up doing bad things with
|
|
// the folded add.
|
|
if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited))
|
|
EmitBaseThenIndex = true;
|
|
}
|
|
|
|
if (EmitBaseThenIndex) {
|
|
Result.Base.Reg = SelectExpr(IAM.Base.Reg);
|
|
Result.IndexReg = SelectExpr(IAM.IndexReg);
|
|
} else {
|
|
Result.IndexReg = SelectExpr(IAM.IndexReg);
|
|
Result.Base.Reg = SelectExpr(IAM.Base.Reg);
|
|
}
|
|
|
|
} else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) {
|
|
Result.Base.Reg = SelectExpr(IAM.Base.Reg);
|
|
} else if (IAM.IndexReg.Val) {
|
|
Result.IndexReg = SelectExpr(IAM.IndexReg);
|
|
}
|
|
|
|
switch (IAM.BaseType) {
|
|
case X86ISelAddressMode::RegBase:
|
|
Result.BaseType = X86AddressMode::RegBase;
|
|
break;
|
|
case X86ISelAddressMode::FrameIndexBase:
|
|
Result.BaseType = X86AddressMode::FrameIndexBase;
|
|
Result.Base.FrameIndex = IAM.Base.FrameIndex;
|
|
break;
|
|
default:
|
|
assert(0 && "Unknown base type!");
|
|
break;
|
|
}
|
|
Result.Scale = IAM.Scale;
|
|
Result.Disp = IAM.Disp;
|
|
Result.GV = IAM.GV;
|
|
return Result;
|
|
}
|
|
|
|
/// SelectAddress - Pattern match the maximal addressing mode for this node and
|
|
/// emit all of the leaf registers.
|
|
void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) {
|
|
X86ISelAddressMode IAM;
|
|
MatchAddress(N, IAM);
|
|
AM = SelectAddrExprs(IAM);
|
|
}
|
|
|
|
/// MatchAddress - Add the specified node to the specified addressing mode,
|
|
/// returning true if it cannot be done. This just pattern matches for the
|
|
/// addressing mode, it does not cause any code to be emitted. For that, use
|
|
/// SelectAddress.
|
|
bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) {
|
|
switch (N.getOpcode()) {
|
|
default: break;
|
|
case ISD::FrameIndex:
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
|
|
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
|
|
return false;
|
|
}
|
|
break;
|
|
case ISD::GlobalAddress:
|
|
if (AM.GV == 0) {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
// For Darwin, external and weak symbols are indirect, so we want to load
|
|
// the value at address GV, not the value of GV itself. This means that
|
|
// the GlobalAddress must be in the base or index register of the address,
|
|
// not the GV offset field.
|
|
if (Subtarget->getIndirectExternAndWeakGlobals() &&
|
|
(GV->hasWeakLinkage() || GV->isExternal())) {
|
|
break;
|
|
} else {
|
|
AM.GV = GV;
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
case ISD::Constant:
|
|
AM.Disp += cast<ConstantSDNode>(N)->getValue();
|
|
return false;
|
|
case ISD::SHL:
|
|
// We might have folded the load into this shift, so don't regen the value
|
|
// if so.
|
|
if (ExprMap.count(N)) break;
|
|
|
|
if (AM.IndexReg.Val == 0 && AM.Scale == 1)
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
|
|
unsigned Val = CN->getValue();
|
|
if (Val == 1 || Val == 2 || Val == 3) {
|
|
AM.Scale = 1 << Val;
|
|
SDOperand ShVal = N.Val->getOperand(0);
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
|
|
AM.IndexReg = ShVal.Val->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(ShVal.Val->getOperand(1));
|
|
AM.Disp += AddVal->getValue() << Val;
|
|
} else {
|
|
AM.IndexReg = ShVal;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
case ISD::MUL:
|
|
// We might have folded the load into this mul, so don't regen the value if
|
|
// so.
|
|
if (ExprMap.count(N)) break;
|
|
|
|
// X*[3,5,9] -> X+X*[2,4,8]
|
|
if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base.Reg.Val == 0)
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
|
|
if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
|
|
AM.Scale = unsigned(CN->getValue())-1;
|
|
|
|
SDOperand MulVal = N.Val->getOperand(0);
|
|
SDOperand Reg;
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
|
|
Reg = MulVal.Val->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(MulVal.Val->getOperand(1));
|
|
AM.Disp += AddVal->getValue() * CN->getValue();
|
|
} else {
|
|
Reg = N.Val->getOperand(0);
|
|
}
|
|
|
|
AM.IndexReg = AM.Base.Reg = Reg;
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::ADD: {
|
|
// We might have folded the load into this mul, so don't regen the value if
|
|
// so.
|
|
if (ExprMap.count(N)) break;
|
|
|
|
X86ISelAddressMode Backup = AM;
|
|
if (!MatchAddress(N.Val->getOperand(0), AM) &&
|
|
!MatchAddress(N.Val->getOperand(1), AM))
|
|
return false;
|
|
AM = Backup;
|
|
if (!MatchAddress(N.Val->getOperand(1), AM) &&
|
|
!MatchAddress(N.Val->getOperand(0), AM))
|
|
return false;
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Is the base register already occupied?
|
|
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
|
|
// If so, check to see if the scale index register is set.
|
|
if (AM.IndexReg.Val == 0) {
|
|
AM.IndexReg = N;
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot select it.
|
|
return true;
|
|
}
|
|
|
|
// Default, generate it as a register.
|
|
AM.BaseType = X86ISelAddressMode::RegBase;
|
|
AM.Base.Reg = N;
|
|
return false;
|
|
}
|
|
|
|
/// Emit2SetCCsAndLogical - Emit the following sequence of instructions,
|
|
/// assuming that the temporary registers are in the 8-bit register class.
|
|
///
|
|
/// Tmp1 = setcc1
|
|
/// Tmp2 = setcc2
|
|
/// DestReg = logicalop Tmp1, Tmp2
|
|
///
|
|
static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1,
|
|
unsigned SetCC2, unsigned LogicalOp,
|
|
unsigned DestReg) {
|
|
SSARegMap *RegMap = BB->getParent()->getSSARegMap();
|
|
unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass);
|
|
unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass);
|
|
BuildMI(BB, SetCC1, 0, Tmp1);
|
|
BuildMI(BB, SetCC2, 0, Tmp2);
|
|
BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
|
|
/// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the
|
|
/// condition codes match the specified SetCCOpcode. Note that some conditions
|
|
/// require multiple instructions to generate the correct value.
|
|
static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg,
|
|
ISD::CondCode SetCCOpcode, bool isFP) {
|
|
unsigned Opc;
|
|
if (!isFP) {
|
|
switch (SetCCOpcode) {
|
|
default: assert(0 && "Illegal integer SetCC!");
|
|
case ISD::SETEQ: Opc = X86::SETEr; break;
|
|
case ISD::SETGT: Opc = X86::SETGr; break;
|
|
case ISD::SETGE: Opc = X86::SETGEr; break;
|
|
case ISD::SETLT: Opc = X86::SETLr; break;
|
|
case ISD::SETLE: Opc = X86::SETLEr; break;
|
|
case ISD::SETNE: Opc = X86::SETNEr; break;
|
|
case ISD::SETULT: Opc = X86::SETBr; break;
|
|
case ISD::SETUGT: Opc = X86::SETAr; break;
|
|
case ISD::SETULE: Opc = X86::SETBEr; break;
|
|
case ISD::SETUGE: Opc = X86::SETAEr; break;
|
|
}
|
|
} else {
|
|
// On a floating point condition, the flags are set as follows:
|
|
// ZF PF CF op
|
|
// 0 | 0 | 0 | X > Y
|
|
// 0 | 0 | 1 | X < Y
|
|
// 1 | 0 | 0 | X == Y
|
|
// 1 | 1 | 1 | unordered
|
|
//
|
|
switch (SetCCOpcode) {
|
|
default: assert(0 && "Invalid FP setcc!");
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ:
|
|
Opc = X86::SETEr; // True if ZF = 1
|
|
break;
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
Opc = X86::SETAr; // True if CF = 0 and ZF = 0
|
|
break;
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
Opc = X86::SETAEr; // True if CF = 0
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETLT:
|
|
Opc = X86::SETBr; // True if CF = 1
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETLE:
|
|
Opc = X86::SETBEr; // True if CF = 1 or ZF = 1
|
|
break;
|
|
case ISD::SETONE:
|
|
case ISD::SETNE:
|
|
Opc = X86::SETNEr; // True if ZF = 0
|
|
break;
|
|
case ISD::SETUO:
|
|
Opc = X86::SETPr; // True if PF = 1
|
|
break;
|
|
case ISD::SETO:
|
|
Opc = X86::SETNPr; // True if PF = 0
|
|
break;
|
|
case ISD::SETOEQ: // !PF & ZF
|
|
Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg);
|
|
return;
|
|
case ISD::SETOLT: // !PF & CF
|
|
Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg);
|
|
return;
|
|
case ISD::SETOLE: // !PF & (CF || ZF)
|
|
Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg);
|
|
return;
|
|
case ISD::SETUGT: // PF | (!ZF & !CF)
|
|
Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg);
|
|
return;
|
|
case ISD::SETUGE: // PF | !CF
|
|
Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg);
|
|
return;
|
|
case ISD::SETUNE: // PF | !ZF
|
|
Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg);
|
|
return;
|
|
}
|
|
}
|
|
BuildMI(BB, Opc, 0, DestReg);
|
|
}
|
|
|
|
|
|
/// EmitBranchCC - Emit code into BB that arranges for control to transfer to
|
|
/// the Dest block if the Cond condition is true. If we cannot fold this
|
|
/// condition into the branch, return true.
|
|
///
|
|
bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain,
|
|
SDOperand Cond) {
|
|
// FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A >
|
|
// B) using two conditional branches instead of one condbr, two setcc's, and
|
|
// an or.
|
|
if ((Cond.getOpcode() == ISD::OR ||
|
|
Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) {
|
|
// And and or set the flags for us, so there is no need to emit a TST of the
|
|
// result. It is only safe to do this if there is only a single use of the
|
|
// AND/OR though, otherwise we don't know it will be emitted here.
|
|
Select(Chain);
|
|
SelectExpr(Cond);
|
|
BuildMI(BB, X86::JNE, 1).addMBB(Dest);
|
|
return false;
|
|
}
|
|
|
|
// Codegen br not C -> JE.
|
|
if (Cond.getOpcode() == ISD::XOR)
|
|
if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1)))
|
|
if (NC->isAllOnesValue()) {
|
|
unsigned CondR;
|
|
if (getRegPressure(Chain) > getRegPressure(Cond)) {
|
|
Select(Chain);
|
|
CondR = SelectExpr(Cond.Val->getOperand(0));
|
|
} else {
|
|
CondR = SelectExpr(Cond.Val->getOperand(0));
|
|
Select(Chain);
|
|
}
|
|
BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR);
|
|
BuildMI(BB, X86::JE, 1).addMBB(Dest);
|
|
return false;
|
|
}
|
|
|
|
if (Cond.getOpcode() != ISD::SETCC)
|
|
return true; // Can only handle simple setcc's so far.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
|
|
unsigned Opc;
|
|
|
|
// Handle integer conditions first.
|
|
if (MVT::isInteger(Cond.getOperand(0).getValueType())) {
|
|
switch (CC) {
|
|
default: assert(0 && "Illegal integer SetCC!");
|
|
case ISD::SETEQ: Opc = X86::JE; break;
|
|
case ISD::SETGT: Opc = X86::JG; break;
|
|
case ISD::SETGE: Opc = X86::JGE; break;
|
|
case ISD::SETLT: Opc = X86::JL; break;
|
|
case ISD::SETLE: Opc = X86::JLE; break;
|
|
case ISD::SETNE: Opc = X86::JNE; break;
|
|
case ISD::SETULT: Opc = X86::JB; break;
|
|
case ISD::SETUGT: Opc = X86::JA; break;
|
|
case ISD::SETULE: Opc = X86::JBE; break;
|
|
case ISD::SETUGE: Opc = X86::JAE; break;
|
|
}
|
|
Select(Chain);
|
|
EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse());
|
|
BuildMI(BB, Opc, 1).addMBB(Dest);
|
|
return false;
|
|
}
|
|
|
|
unsigned Opc2 = 0; // Second branch if needed.
|
|
|
|
// On a floating point condition, the flags are set as follows:
|
|
// ZF PF CF op
|
|
// 0 | 0 | 0 | X > Y
|
|
// 0 | 0 | 1 | X < Y
|
|
// 1 | 0 | 0 | X == Y
|
|
// 1 | 1 | 1 | unordered
|
|
//
|
|
switch (CC) {
|
|
default: assert(0 && "Invalid FP setcc!");
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1
|
|
case ISD::SETONE:
|
|
case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0
|
|
case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1
|
|
case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0
|
|
case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0)
|
|
Opc = X86::JA; // ZF = 0 & CF = 0
|
|
Opc2 = X86::JP; // PF = 1
|
|
break;
|
|
case ISD::SETUGE: // PF = 1 | CF = 0
|
|
Opc = X86::JAE; // CF = 0
|
|
Opc2 = X86::JP; // PF = 1
|
|
break;
|
|
case ISD::SETUNE: // PF = 1 | ZF = 0
|
|
Opc = X86::JNE; // ZF = 0
|
|
Opc2 = X86::JP; // PF = 1
|
|
break;
|
|
case ISD::SETOEQ: // PF = 0 & ZF = 1
|
|
//X86::JNP, X86::JE
|
|
//X86::AND8rr
|
|
return true; // FIXME: Emit more efficient code for this branch.
|
|
case ISD::SETOLT: // PF = 0 & CF = 1
|
|
//X86::JNP, X86::JB
|
|
//X86::AND8rr
|
|
return true; // FIXME: Emit more efficient code for this branch.
|
|
case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1)
|
|
//X86::JNP, X86::JBE
|
|
//X86::AND8rr
|
|
return true; // FIXME: Emit more efficient code for this branch.
|
|
}
|
|
|
|
Select(Chain);
|
|
EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse());
|
|
BuildMI(BB, Opc, 1).addMBB(Dest);
|
|
if (Opc2)
|
|
BuildMI(BB, Opc2, 1).addMBB(Dest);
|
|
return false;
|
|
}
|
|
|
|
/// EmitSelectCC - Emit code into BB that performs a select operation between
|
|
/// the two registers RTrue and RFalse, generating a result into RDest.
|
|
///
|
|
void ISel::EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False,
|
|
MVT::ValueType SVT, unsigned RDest) {
|
|
unsigned RTrue, RFalse;
|
|
enum Condition {
|
|
EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP,
|
|
NOT_SET
|
|
} CondCode = NOT_SET;
|
|
|
|
static const unsigned CMOVTAB16[] = {
|
|
X86::CMOVE16rr, X86::CMOVNE16rr, X86::CMOVL16rr, X86::CMOVLE16rr,
|
|
X86::CMOVG16rr, X86::CMOVGE16rr, X86::CMOVB16rr, X86::CMOVBE16rr,
|
|
X86::CMOVA16rr, X86::CMOVAE16rr, X86::CMOVP16rr, X86::CMOVNP16rr,
|
|
};
|
|
static const unsigned CMOVTAB32[] = {
|
|
X86::CMOVE32rr, X86::CMOVNE32rr, X86::CMOVL32rr, X86::CMOVLE32rr,
|
|
X86::CMOVG32rr, X86::CMOVGE32rr, X86::CMOVB32rr, X86::CMOVBE32rr,
|
|
X86::CMOVA32rr, X86::CMOVAE32rr, X86::CMOVP32rr, X86::CMOVNP32rr,
|
|
};
|
|
static const unsigned CMOVTABFP[] = {
|
|
X86::FpCMOVE, X86::FpCMOVNE, /*missing*/0, /*missing*/0,
|
|
/*missing*/0, /*missing*/ 0, X86::FpCMOVB, X86::FpCMOVBE,
|
|
X86::FpCMOVA, X86::FpCMOVAE, X86::FpCMOVP, X86::FpCMOVNP
|
|
};
|
|
static const int SSE_CMOVTAB[] = {
|
|
/*CMPEQ*/ 0, /*CMPNEQ*/ 4, /*missing*/ 0, /*missing*/ 0,
|
|
/*missing*/ 0, /*missing*/ 0, /*CMPLT*/ 1, /*CMPLE*/ 2,
|
|
/*CMPNLE*/ 6, /*CMPNLT*/ 5, /*CMPUNORD*/ 3, /*CMPORD*/ 7
|
|
};
|
|
|
|
if (Cond.getOpcode() == ISD::SETCC) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
if (MVT::isInteger(Cond.getOperand(0).getValueType())) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown integer comparison!");
|
|
case ISD::SETEQ: CondCode = EQ; break;
|
|
case ISD::SETGT: CondCode = GT; break;
|
|
case ISD::SETGE: CondCode = GE; break;
|
|
case ISD::SETLT: CondCode = LT; break;
|
|
case ISD::SETLE: CondCode = LE; break;
|
|
case ISD::SETNE: CondCode = NE; break;
|
|
case ISD::SETULT: CondCode = B; break;
|
|
case ISD::SETUGT: CondCode = A; break;
|
|
case ISD::SETULE: CondCode = BE; break;
|
|
case ISD::SETUGE: CondCode = AE; break;
|
|
}
|
|
} else {
|
|
// On a floating point condition, the flags are set as follows:
|
|
// ZF PF CF op
|
|
// 0 | 0 | 0 | X > Y
|
|
// 0 | 0 | 1 | X < Y
|
|
// 1 | 0 | 0 | X == Y
|
|
// 1 | 1 | 1 | unordered
|
|
//
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown FP comparison!");
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ: CondCode = EQ; break; // True if ZF = 1
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: CondCode = A; break; // True if CF = 0 and ZF = 0
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: CondCode = AE; break; // True if CF = 0
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: CondCode = B; break; // True if CF = 1
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: CondCode = BE; break; // True if CF = 1 or ZF = 1
|
|
case ISD::SETONE:
|
|
case ISD::SETNE: CondCode = NE; break; // True if ZF = 0
|
|
case ISD::SETUO: CondCode = P; break; // True if PF = 1
|
|
case ISD::SETO: CondCode = NP; break; // True if PF = 0
|
|
case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0)
|
|
case ISD::SETUGE: // PF = 1 | CF = 0
|
|
case ISD::SETUNE: // PF = 1 | ZF = 0
|
|
case ISD::SETOEQ: // PF = 0 & ZF = 1
|
|
case ISD::SETOLT: // PF = 0 & CF = 1
|
|
case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1)
|
|
// We cannot emit this comparison as a single cmov.
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// There's no SSE equivalent of FCMOVE. For cases where we set a condition
|
|
// code above and one of the results of the select is +0.0, then we can fake
|
|
// it up through a clever AND with mask. Otherwise, we will fall through to
|
|
// the code below that will use a PHI node to select the right value.
|
|
if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) {
|
|
if (Cond.getOperand(0).getValueType() == SVT &&
|
|
NOT_SET != CondCode) {
|
|
ConstantFPSDNode *CT = dyn_cast<ConstantFPSDNode>(True);
|
|
ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(False);
|
|
bool TrueZero = CT && CT->isExactlyValue(0.0);
|
|
bool FalseZero = CF && CF->isExactlyValue(0.0);
|
|
if (TrueZero || FalseZero) {
|
|
SDOperand LHS = Cond.getOperand(0);
|
|
SDOperand RHS = Cond.getOperand(1);
|
|
|
|
// Select the two halves of the condition
|
|
unsigned RLHS, RRHS;
|
|
if (getRegPressure(LHS) > getRegPressure(RHS)) {
|
|
RLHS = SelectExpr(LHS);
|
|
RRHS = SelectExpr(RHS);
|
|
} else {
|
|
RRHS = SelectExpr(RHS);
|
|
RLHS = SelectExpr(LHS);
|
|
}
|
|
|
|
// Emit the comparison and generate a mask from it
|
|
unsigned MaskReg = MakeReg(SVT);
|
|
unsigned Opc = (SVT == MVT::f32) ? X86::CMPSSrr : X86::CMPSDrr;
|
|
BuildMI(BB, Opc, 3, MaskReg).addReg(RLHS).addReg(RRHS)
|
|
.addImm(SSE_CMOVTAB[CondCode]);
|
|
|
|
if (TrueZero) {
|
|
RFalse = SelectExpr(False);
|
|
Opc = (SVT == MVT::f32) ? X86::ANDNPSrr : X86::ANDNPDrr;
|
|
BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RFalse);
|
|
} else {
|
|
RTrue = SelectExpr(True);
|
|
Opc = (SVT == MVT::f32) ? X86::ANDPSrr : X86::ANDPDrr;
|
|
BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RTrue);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Select the true and false values for use in both the SSE PHI case, and the
|
|
// integer or x87 cmov cases below.
|
|
if (getRegPressure(True) > getRegPressure(False)) {
|
|
RTrue = SelectExpr(True);
|
|
RFalse = SelectExpr(False);
|
|
} else {
|
|
RFalse = SelectExpr(False);
|
|
RTrue = SelectExpr(True);
|
|
}
|
|
|
|
// Since there's no SSE equivalent of FCMOVE, and we couldn't generate an
|
|
// AND with mask, we'll have to do the normal RISC thing and generate a PHI
|
|
// node to select between the true and false values.
|
|
if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) {
|
|
// FIXME: emit a direct compare and branch rather than setting a cond reg
|
|
// and testing it.
|
|
unsigned CondReg = SelectExpr(Cond);
|
|
BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
|
|
|
|
// Create an iterator with which to insert the MBB for copying the false
|
|
// value and the MBB to hold the PHI instruction for this SetCC.
|
|
MachineBasicBlock *thisMBB = BB;
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC sinkMBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
BuildMI(BB, X86::JNE, 1).addMBB(sinkMBB);
|
|
MachineFunction *F = BB->getParent();
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, X86::PHI, 4, RDest).addReg(RFalse)
|
|
.addMBB(copy0MBB).addReg(RTrue).addMBB(thisMBB);
|
|
return;
|
|
}
|
|
|
|
unsigned Opc = 0;
|
|
if (CondCode != NOT_SET) {
|
|
switch (SVT) {
|
|
default: assert(0 && "Cannot select this type!");
|
|
case MVT::i16: Opc = CMOVTAB16[CondCode]; break;
|
|
case MVT::i32: Opc = CMOVTAB32[CondCode]; break;
|
|
case MVT::f64: Opc = CMOVTABFP[CondCode]; break;
|
|
}
|
|
}
|
|
|
|
// Finally, if we weren't able to fold this, just emit the condition and test
|
|
// it.
|
|
if (CondCode == NOT_SET || Opc == 0) {
|
|
// Get the condition into the zero flag.
|
|
unsigned CondReg = SelectExpr(Cond);
|
|
BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
|
|
|
|
switch (SVT) {
|
|
default: assert(0 && "Cannot select this type!");
|
|
case MVT::i16: Opc = X86::CMOVE16rr; break;
|
|
case MVT::i32: Opc = X86::CMOVE32rr; break;
|
|
case MVT::f64: Opc = X86::FpCMOVE; break;
|
|
}
|
|
} else {
|
|
// FIXME: CMP R, 0 -> TEST R, R
|
|
EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse());
|
|
std::swap(RTrue, RFalse);
|
|
}
|
|
BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse);
|
|
}
|
|
|
|
void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) {
|
|
unsigned Opc;
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
|
|
Opc = 0;
|
|
if (HasOneUse && isFoldableLoad(LHS, RHS)) {
|
|
switch (RHS.getValueType()) {
|
|
default: break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::CMP8mi; break;
|
|
case MVT::i16: Opc = X86::CMP16mi; break;
|
|
case MVT::i32: Opc = X86::CMP32mi; break;
|
|
}
|
|
if (Opc) {
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(LHS, AM);
|
|
addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue());
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (RHS.getValueType()) {
|
|
default: break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::CMP8ri; break;
|
|
case MVT::i16: Opc = X86::CMP16ri; break;
|
|
case MVT::i32: Opc = X86::CMP32ri; break;
|
|
}
|
|
if (Opc) {
|
|
unsigned Tmp1 = SelectExpr(LHS);
|
|
BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue());
|
|
return;
|
|
}
|
|
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(RHS)) {
|
|
if (!X86ScalarSSE && (CN->isExactlyValue(+0.0) ||
|
|
CN->isExactlyValue(-0.0))) {
|
|
unsigned Reg = SelectExpr(LHS);
|
|
BuildMI(BB, X86::FpTST, 1).addReg(Reg);
|
|
BuildMI(BB, X86::FNSTSW8r, 0);
|
|
BuildMI(BB, X86::SAHF, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Opc = 0;
|
|
if (HasOneUse && isFoldableLoad(LHS, RHS)) {
|
|
switch (RHS.getValueType()) {
|
|
default: break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::CMP8mr; break;
|
|
case MVT::i16: Opc = X86::CMP16mr; break;
|
|
case MVT::i32: Opc = X86::CMP32mr; break;
|
|
}
|
|
if (Opc) {
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(LHS, AM);
|
|
unsigned Reg = SelectExpr(RHS);
|
|
addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (LHS.getValueType()) {
|
|
default: assert(0 && "Cannot compare this value!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::CMP8rr; break;
|
|
case MVT::i16: Opc = X86::CMP16rr; break;
|
|
case MVT::i32: Opc = X86::CMP32rr; break;
|
|
case MVT::f32: Opc = X86::UCOMISSrr; break;
|
|
case MVT::f64: Opc = X86ScalarSSE ? X86::UCOMISDrr : X86::FpUCOMIr; break;
|
|
}
|
|
unsigned Tmp1, Tmp2;
|
|
if (getRegPressure(LHS) > getRegPressure(RHS)) {
|
|
Tmp1 = SelectExpr(LHS);
|
|
Tmp2 = SelectExpr(RHS);
|
|
} else {
|
|
Tmp2 = SelectExpr(RHS);
|
|
Tmp1 = SelectExpr(LHS);
|
|
}
|
|
BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
|
|
/// isFoldableLoad - Return true if this is a load instruction that can safely
|
|
/// be folded into an operation that uses it.
|
|
bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){
|
|
if (Op.getOpcode() == ISD::LOAD) {
|
|
// FIXME: currently can't fold constant pool indexes.
|
|
if (isa<ConstantPoolSDNode>(Op.getOperand(1)))
|
|
return false;
|
|
} else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD &&
|
|
cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::f32) {
|
|
// FIXME: currently can't fold constant pool indexes.
|
|
if (isa<ConstantPoolSDNode>(Op.getOperand(1)))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// If this load has already been emitted, we clearly can't fold it.
|
|
assert(Op.ResNo == 0 && "Not a use of the value of the load?");
|
|
if (ExprMap.count(Op.getValue(1))) return false;
|
|
assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?");
|
|
assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?");
|
|
|
|
// If there is not just one use of its value, we cannot fold.
|
|
if (!Op.Val->hasNUsesOfValue(1, 0)) return false;
|
|
|
|
// Finally, we cannot fold the load into the operation if this would induce a
|
|
// cycle into the resultant dag. To check for this, see if OtherOp (the other
|
|
// operand of the operation we are folding the load into) can possible use the
|
|
// chain node defined by the load.
|
|
if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain?
|
|
std::set<SDNode*> Visited;
|
|
if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// EmitFoldedLoad - Ensure that the arguments of the load are code generated,
|
|
/// and compute the address being loaded into AM.
|
|
void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) {
|
|
SDOperand Chain = Op.getOperand(0);
|
|
SDOperand Address = Op.getOperand(1);
|
|
|
|
if (getRegPressure(Chain) > getRegPressure(Address)) {
|
|
Select(Chain);
|
|
SelectAddress(Address, AM);
|
|
} else {
|
|
SelectAddress(Address, AM);
|
|
Select(Chain);
|
|
}
|
|
|
|
// The chain for this load is now lowered.
|
|
assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 &&
|
|
"Load emitted more than once?");
|
|
if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second)
|
|
assert(0 && "Load emitted more than once!");
|
|
}
|
|
|
|
// EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1
|
|
// and op2 are i8/i16/i32 values with one use each (the or). If we can form a
|
|
// SHLD or SHRD, emit the instruction (generating the value into DestReg) and
|
|
// return true.
|
|
bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) {
|
|
if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) {
|
|
// good!
|
|
} else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) {
|
|
std::swap(Op1, Op2); // Op1 is the SHL now.
|
|
} else {
|
|
return false; // No match
|
|
}
|
|
|
|
SDOperand ShlVal = Op1.getOperand(0);
|
|
SDOperand ShlAmt = Op1.getOperand(1);
|
|
SDOperand ShrVal = Op2.getOperand(0);
|
|
SDOperand ShrAmt = Op2.getOperand(1);
|
|
|
|
unsigned RegSize = MVT::getSizeInBits(Op1.getValueType());
|
|
|
|
// Find out if ShrAmt = 32-ShlAmt or ShlAmt = 32-ShrAmt.
|
|
if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt)
|
|
if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShlAmt.getOperand(0)))
|
|
if (SubCST->getValue() == RegSize) {
|
|
// (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt
|
|
// (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt
|
|
if (ShrVal == ShlVal) {
|
|
unsigned Reg, ShAmt;
|
|
if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) {
|
|
Reg = SelectExpr(ShrVal);
|
|
ShAmt = SelectExpr(ShrAmt);
|
|
} else {
|
|
ShAmt = SelectExpr(ShrAmt);
|
|
Reg = SelectExpr(ShrVal);
|
|
}
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
|
|
unsigned Opc = RegSize == 8 ? X86::ROR8rCL :
|
|
(RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL);
|
|
BuildMI(BB, Opc, 1, DestReg).addReg(Reg);
|
|
return true;
|
|
} else if (RegSize != 8) {
|
|
unsigned AReg, BReg;
|
|
if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
|
|
BReg = SelectExpr(ShlVal);
|
|
AReg = SelectExpr(ShrVal);
|
|
} else {
|
|
AReg = SelectExpr(ShrVal);
|
|
BReg = SelectExpr(ShlVal);
|
|
}
|
|
unsigned ShAmt = SelectExpr(ShrAmt);
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
|
|
unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL;
|
|
BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt)
|
|
if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShrAmt.getOperand(0)))
|
|
if (SubCST->getValue() == RegSize) {
|
|
// (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt
|
|
// (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt
|
|
if (ShrVal == ShlVal) {
|
|
unsigned Reg, ShAmt;
|
|
if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) {
|
|
Reg = SelectExpr(ShrVal);
|
|
ShAmt = SelectExpr(ShlAmt);
|
|
} else {
|
|
ShAmt = SelectExpr(ShlAmt);
|
|
Reg = SelectExpr(ShrVal);
|
|
}
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
|
|
unsigned Opc = RegSize == 8 ? X86::ROL8rCL :
|
|
(RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL);
|
|
BuildMI(BB, Opc, 1, DestReg).addReg(Reg);
|
|
return true;
|
|
} else if (RegSize != 8) {
|
|
unsigned AReg, BReg;
|
|
if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
|
|
AReg = SelectExpr(ShlVal);
|
|
BReg = SelectExpr(ShrVal);
|
|
} else {
|
|
BReg = SelectExpr(ShrVal);
|
|
AReg = SelectExpr(ShlVal);
|
|
}
|
|
unsigned ShAmt = SelectExpr(ShlAmt);
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
|
|
unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL;
|
|
BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ConstantSDNode *ShrCst = dyn_cast<ConstantSDNode>(ShrAmt))
|
|
if (ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(ShlAmt))
|
|
if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize)
|
|
if (ShrCst->getValue() == RegSize-ShlCst->getValue()) {
|
|
// (A >> 5) | (A << 27) --> ROR A, 5
|
|
// (A >> 5) | (B << 27) --> SHRD A, B, 5
|
|
if (ShrVal == ShlVal) {
|
|
unsigned Reg = SelectExpr(ShrVal);
|
|
unsigned Opc = RegSize == 8 ? X86::ROR8ri :
|
|
(RegSize == 16 ? X86::ROR16ri : X86::ROR32ri);
|
|
BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue());
|
|
return true;
|
|
} else if (RegSize != 8) {
|
|
unsigned AReg, BReg;
|
|
if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
|
|
BReg = SelectExpr(ShlVal);
|
|
AReg = SelectExpr(ShrVal);
|
|
} else {
|
|
AReg = SelectExpr(ShrVal);
|
|
BReg = SelectExpr(ShlVal);
|
|
}
|
|
unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8;
|
|
BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg)
|
|
.addImm(ShrCst->getValue());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned ISel::SelectExpr(SDOperand N) {
|
|
unsigned Result;
|
|
unsigned Tmp1 = 0, Tmp2 = 0, Tmp3 = 0, Opc = 0;
|
|
SDNode *Node = N.Val;
|
|
SDOperand Op0, Op1;
|
|
|
|
if (Node->getOpcode() == ISD::CopyFromReg) {
|
|
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
// Just use the specified register as our input if we can.
|
|
if (MRegisterInfo::isVirtualRegister(Reg) || Reg == X86::ESP)
|
|
return Reg;
|
|
}
|
|
|
|
unsigned &Reg = ExprMap[N];
|
|
if (Reg) return Reg;
|
|
|
|
switch (N.getOpcode()) {
|
|
default:
|
|
Reg = Result = (N.getValueType() != MVT::Other) ?
|
|
MakeReg(N.getValueType()) : 1;
|
|
break;
|
|
case X86ISD::TAILCALL:
|
|
case X86ISD::CALL:
|
|
// If this is a call instruction, make sure to prepare ALL of the result
|
|
// values as well as the chain.
|
|
ExprMap[N.getValue(0)] = 1;
|
|
if (Node->getNumValues() > 1) {
|
|
Result = MakeReg(Node->getValueType(1));
|
|
ExprMap[N.getValue(1)] = Result;
|
|
for (unsigned i = 2, e = Node->getNumValues(); i != e; ++i)
|
|
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
|
|
} else {
|
|
Result = 1;
|
|
}
|
|
break;
|
|
case ISD::ADD_PARTS:
|
|
case ISD::SUB_PARTS:
|
|
case ISD::SHL_PARTS:
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
Result = MakeReg(Node->getValueType(0));
|
|
ExprMap[N.getValue(0)] = Result;
|
|
for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
|
|
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
|
|
break;
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "Node not handled!\n");
|
|
case ISD::FP_EXTEND:
|
|
assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, X86::CVTSS2SDrr, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case ISD::FP_ROUND:
|
|
assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, X86::CVTSD2SSrr, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case ISD::CopyFromReg:
|
|
Select(N.getOperand(0));
|
|
if (Result == 1) {
|
|
Reg = Result = ExprMap[N.getValue(0)] =
|
|
MakeReg(N.getValue(0).getValueType());
|
|
}
|
|
Tmp1 = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Cannot CopyFromReg this!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::MOV16rr, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FrameIndex:
|
|
Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
|
|
addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1);
|
|
return Result;
|
|
case ISD::ConstantPool:
|
|
Tmp1 = BB->getParent()->getConstantPool()->
|
|
getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get());
|
|
addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1);
|
|
return Result;
|
|
case ISD::ConstantFP:
|
|
if (X86ScalarSSE) {
|
|
assert(cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) &&
|
|
"SSE only supports +0.0");
|
|
Opc = (N.getValueType() == MVT::f32) ? X86::FLD0SS : X86::FLD0SD;
|
|
BuildMI(BB, Opc, 0, Result);
|
|
return Result;
|
|
}
|
|
ContainsFPCode = true;
|
|
Tmp1 = Result; // Intermediate Register
|
|
if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
|
|
Tmp1 = MakeReg(MVT::f64);
|
|
|
|
if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
|
|
BuildMI(BB, X86::FpLD0, 0, Tmp1);
|
|
else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
|
|
BuildMI(BB, X86::FpLD1, 0, Tmp1);
|
|
else
|
|
assert(0 && "Unexpected constant!");
|
|
if (Tmp1 != Result)
|
|
BuildMI(BB, X86::FpCHS, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case ISD::Constant:
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot use constants of this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::MOV8ri; break;
|
|
case MVT::i16: Opc = X86::MOV16ri; break;
|
|
case MVT::i32: Opc = X86::MOV32ri; break;
|
|
}
|
|
BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue());
|
|
return Result;
|
|
case ISD::UNDEF:
|
|
if (Node->getValueType(0) == MVT::f64) {
|
|
// FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
|
|
BuildMI(BB, X86::FpLD0, 0, Result);
|
|
} else {
|
|
BuildMI(BB, X86::IMPLICIT_DEF, 0, Result);
|
|
}
|
|
return Result;
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
// For Darwin, external and weak symbols are indirect, so we want to load
|
|
// the value at address GV, not the value of GV itself.
|
|
if (Subtarget->getIndirectExternAndWeakGlobals() &&
|
|
(GV->hasWeakLinkage() || GV->isExternal())) {
|
|
BuildMI(BB, X86::MOV32rm, 4, Result).addReg(0).addZImm(1).addReg(0)
|
|
.addGlobalAddress(GV, false, 0);
|
|
} else {
|
|
BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV);
|
|
}
|
|
return Result;
|
|
}
|
|
case ISD::ExternalSymbol: {
|
|
const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
|
|
BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym);
|
|
return Result;
|
|
}
|
|
case ISD::ANY_EXTEND: // treat any extend like zext
|
|
case ISD::ZERO_EXTEND: {
|
|
int DestIs16 = N.getValueType() == MVT::i16;
|
|
int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16;
|
|
|
|
// FIXME: This hack is here for zero extension casts from bool to i8. This
|
|
// would not be needed if bools were promoted by Legalize.
|
|
if (N.getValueType() == MVT::i8) {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
if (isFoldableLoad(N.getOperand(0), SDOperand())) {
|
|
static const unsigned Opc[3] = {
|
|
X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8
|
|
};
|
|
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(N.getOperand(0), AM);
|
|
addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static const unsigned Opc[3] = {
|
|
X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8
|
|
};
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
case ISD::SIGN_EXTEND: {
|
|
int DestIs16 = N.getValueType() == MVT::i16;
|
|
int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16;
|
|
|
|
// FIXME: Legalize should promote bools to i8!
|
|
assert(N.getOperand(0).getValueType() != MVT::i1 &&
|
|
"Sign extend from bool not implemented!");
|
|
|
|
if (isFoldableLoad(N.getOperand(0), SDOperand())) {
|
|
static const unsigned Opc[3] = {
|
|
X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8
|
|
};
|
|
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(N.getOperand(0), AM);
|
|
addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM);
|
|
return Result;
|
|
}
|
|
|
|
static const unsigned Opc[3] = {
|
|
X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8
|
|
};
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
case ISD::TRUNCATE:
|
|
// Handle cast of LARGER int to SMALLER int using a move to EAX followed by
|
|
// a move out of AX or AL.
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break;
|
|
case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break;
|
|
case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i1:
|
|
case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break;
|
|
case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break;
|
|
}
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
|
|
return Result;
|
|
|
|
case ISD::SINT_TO_FP: {
|
|
Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
|
|
unsigned PromoteOpcode = 0;
|
|
|
|
// We can handle any sint to fp with the direct sse conversion instructions.
|
|
if (X86ScalarSSE) {
|
|
Opc = (N.getValueType() == MVT::f64) ? X86::CVTSI2SDrr : X86::CVTSI2SSrr;
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
ContainsFPCode = true;
|
|
|
|
// Spill the integer to memory and reload it from there.
|
|
MVT::ValueType SrcTy = N.getOperand(0).getValueType();
|
|
unsigned Size = MVT::getSizeInBits(SrcTy)/8;
|
|
MachineFunction *F = BB->getParent();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
|
|
|
|
switch (SrcTy) {
|
|
case MVT::i32:
|
|
addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1);
|
|
addFrameReference(BuildMI(BB, X86::FpILD32m, 5, Result), FrameIdx);
|
|
break;
|
|
case MVT::i16:
|
|
addFrameReference(BuildMI(BB, X86::MOV16mr, 5), FrameIdx).addReg(Tmp1);
|
|
addFrameReference(BuildMI(BB, X86::FpILD16m, 5, Result), FrameIdx);
|
|
break;
|
|
default: break; // No promotion required.
|
|
}
|
|
return Result;
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
|
|
|
|
// If the target supports SSE2 and is performing FP operations in SSE regs
|
|
// instead of the FP stack, then we can use the efficient CVTSS2SI and
|
|
// CVTSD2SI instructions.
|
|
assert(X86ScalarSSE);
|
|
if (MVT::f32 == N.getOperand(0).getValueType()) {
|
|
BuildMI(BB, X86::CVTTSS2SIrr, 1, Result).addReg(Tmp1);
|
|
} else if (MVT::f64 == N.getOperand(0).getValueType()) {
|
|
BuildMI(BB, X86::CVTTSD2SIrr, 1, Result).addReg(Tmp1);
|
|
} else {
|
|
assert(0 && "Not an f32 or f64?");
|
|
abort();
|
|
}
|
|
return Result;
|
|
|
|
case ISD::FADD:
|
|
case ISD::ADD:
|
|
Op0 = N.getOperand(0);
|
|
Op1 = N.getOperand(1);
|
|
|
|
if (isFoldableLoad(Op0, Op1, true)) {
|
|
std::swap(Op0, Op1);
|
|
goto FoldAdd;
|
|
}
|
|
|
|
if (isFoldableLoad(Op1, Op0, true)) {
|
|
FoldAdd:
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot add this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::ADD8rm; break;
|
|
case MVT::i16: Opc = X86::ADD16rm; break;
|
|
case MVT::i32: Opc = X86::ADD32rm; break;
|
|
case MVT::f32: Opc = X86::ADDSSrm; break;
|
|
case MVT::f64:
|
|
// For F64, handle promoted load operations (from F32) as well!
|
|
if (X86ScalarSSE) {
|
|
assert(Op1.getOpcode() == ISD::LOAD && "SSE load not promoted");
|
|
Opc = X86::ADDSDrm;
|
|
} else {
|
|
Opc = Op1.getOpcode() == ISD::LOAD ? X86::FpADD64m : X86::FpADD32m;
|
|
}
|
|
break;
|
|
}
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(Op1, AM);
|
|
Tmp1 = SelectExpr(Op0);
|
|
addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
|
|
return Result;
|
|
}
|
|
|
|
// See if we can codegen this as an LEA to fold operations together.
|
|
if (N.getValueType() == MVT::i32) {
|
|
ExprMap.erase(N);
|
|
X86ISelAddressMode AM;
|
|
MatchAddress(N, AM);
|
|
ExprMap[N] = Result;
|
|
|
|
// If this is not just an add, emit the LEA. For a simple add (like
|
|
// reg+reg or reg+imm), we just emit an add. It might be a good idea to
|
|
// leave this as LEA, then peephole it to 'ADD' after two address elim
|
|
// happens.
|
|
if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase||
|
|
AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) {
|
|
X86AddressMode XAM = SelectAddrExprs(AM);
|
|
addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
|
|
Opc = 0;
|
|
if (CN->getValue() == 1) { // add X, 1 -> inc X
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot integer add this type!");
|
|
case MVT::i8: Opc = X86::INC8r; break;
|
|
case MVT::i16: Opc = X86::INC16r; break;
|
|
case MVT::i32: Opc = X86::INC32r; break;
|
|
}
|
|
} else if (CN->isAllOnesValue()) { // add X, -1 -> dec X
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot integer add this type!");
|
|
case MVT::i8: Opc = X86::DEC8r; break;
|
|
case MVT::i16: Opc = X86::DEC16r; break;
|
|
case MVT::i32: Opc = X86::DEC32r; break;
|
|
}
|
|
}
|
|
|
|
if (Opc) {
|
|
Tmp1 = SelectExpr(Op0);
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot add this type!");
|
|
case MVT::i8: Opc = X86::ADD8ri; break;
|
|
case MVT::i16: Opc = X86::ADD16ri; break;
|
|
case MVT::i32: Opc = X86::ADD32ri; break;
|
|
}
|
|
if (Opc) {
|
|
Tmp1 = SelectExpr(Op0);
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot add this type!");
|
|
case MVT::i8: Opc = X86::ADD8rr; break;
|
|
case MVT::i16: Opc = X86::ADD16rr; break;
|
|
case MVT::i32: Opc = X86::ADD32rr; break;
|
|
case MVT::f32: Opc = X86::ADDSSrr; break;
|
|
case MVT::f64: Opc = X86ScalarSSE ? X86::ADDSDrr : X86::FpADD; break;
|
|
}
|
|
|
|
if (getRegPressure(Op0) > getRegPressure(Op1)) {
|
|
Tmp1 = SelectExpr(Op0);
|
|
Tmp2 = SelectExpr(Op1);
|
|
} else {
|
|
Tmp2 = SelectExpr(Op1);
|
|
Tmp1 = SelectExpr(Op0);
|
|
}
|
|
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
|
|
case ISD::FSQRT:
|
|
Tmp1 = SelectExpr(Node->getOperand(0));
|
|
if (X86ScalarSSE) {
|
|
Opc = (N.getValueType() == MVT::f32) ? X86::SQRTSSrr : X86::SQRTSDrr;
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
} else {
|
|
BuildMI(BB, X86::FpSQRT, 1, Result).addReg(Tmp1);
|
|
}
|
|
return Result;
|
|
|
|
// FIXME:
|
|
// Once we can spill 16 byte constants into the constant pool, we can
|
|
// implement SSE equivalents of FABS and FCHS.
|
|
case ISD::FABS:
|
|
case ISD::FNEG:
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
assert(N.getValueType()==MVT::f64 && "Illegal type for this operation");
|
|
Tmp1 = SelectExpr(Node->getOperand(0));
|
|
switch (N.getOpcode()) {
|
|
default: assert(0 && "Unreachable!");
|
|
case ISD::FABS: BuildMI(BB, X86::FpABS, 1, Result).addReg(Tmp1); break;
|
|
case ISD::FNEG: BuildMI(BB, X86::FpCHS, 1, Result).addReg(Tmp1); break;
|
|
case ISD::FSIN: BuildMI(BB, X86::FpSIN, 1, Result).addReg(Tmp1); break;
|
|
case ISD::FCOS: BuildMI(BB, X86::FpCOS, 1, Result).addReg(Tmp1); break;
|
|
}
|
|
return Result;
|
|
|
|
case ISD::MULHU:
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Tmp2 = X86::MUL8r; break;
|
|
case MVT::i16: Tmp2 = X86::MUL16r; break;
|
|
case MVT::i32: Tmp2 = X86::MUL32r; break;
|
|
}
|
|
// FALL THROUGH
|
|
case ISD::MULHS: {
|
|
unsigned MovOpc, LowReg, HiReg;
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8:
|
|
MovOpc = X86::MOV8rr;
|
|
LowReg = X86::AL;
|
|
HiReg = X86::AH;
|
|
Opc = X86::IMUL8r;
|
|
break;
|
|
case MVT::i16:
|
|
MovOpc = X86::MOV16rr;
|
|
LowReg = X86::AX;
|
|
HiReg = X86::DX;
|
|
Opc = X86::IMUL16r;
|
|
break;
|
|
case MVT::i32:
|
|
MovOpc = X86::MOV32rr;
|
|
LowReg = X86::EAX;
|
|
HiReg = X86::EDX;
|
|
Opc = X86::IMUL32r;
|
|
break;
|
|
}
|
|
if (Node->getOpcode() != ISD::MULHS)
|
|
Opc = Tmp2; // Get the MULHU opcode.
|
|
|
|
Op0 = Node->getOperand(0);
|
|
Op1 = Node->getOperand(1);
|
|
if (getRegPressure(Op0) > getRegPressure(Op1)) {
|
|
Tmp1 = SelectExpr(Op0);
|
|
Tmp2 = SelectExpr(Op1);
|
|
} else {
|
|
Tmp2 = SelectExpr(Op1);
|
|
Tmp1 = SelectExpr(Op0);
|
|
}
|
|
|
|
// FIXME: Implement folding of loads into the memory operands here!
|
|
BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1);
|
|
BuildMI(BB, Opc, 1).addReg(Tmp2);
|
|
BuildMI(BB, MovOpc, 1, Result).addReg(HiReg);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
static const unsigned SUBTab[] = {
|
|
X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0,
|
|
X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FpSUB32m, X86::FpSUB64m,
|
|
X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB , X86::FpSUB,
|
|
};
|
|
static const unsigned SSE_SUBTab[] = {
|
|
X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0,
|
|
X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::SUBSSrm, X86::SUBSDrm,
|
|
X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::SUBSSrr, X86::SUBSDrr,
|
|
};
|
|
static const unsigned MULTab[] = {
|
|
0, X86::IMUL16rri, X86::IMUL32rri, 0, 0,
|
|
0, X86::IMUL16rm , X86::IMUL32rm, X86::FpMUL32m, X86::FpMUL64m,
|
|
0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL , X86::FpMUL,
|
|
};
|
|
static const unsigned SSE_MULTab[] = {
|
|
0, X86::IMUL16rri, X86::IMUL32rri, 0, 0,
|
|
0, X86::IMUL16rm , X86::IMUL32rm, X86::MULSSrm, X86::MULSDrm,
|
|
0, X86::IMUL16rr , X86::IMUL32rr, X86::MULSSrr, X86::MULSDrr,
|
|
};
|
|
static const unsigned ANDTab[] = {
|
|
X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0,
|
|
X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0,
|
|
X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0,
|
|
};
|
|
static const unsigned ORTab[] = {
|
|
X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0,
|
|
X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0,
|
|
X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0,
|
|
};
|
|
static const unsigned XORTab[] = {
|
|
X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0,
|
|
X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0,
|
|
X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0,
|
|
};
|
|
|
|
Op0 = Node->getOperand(0);
|
|
Op1 = Node->getOperand(1);
|
|
|
|
if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse())
|
|
if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates.
|
|
return Result;
|
|
|
|
if (Node->getOpcode() == ISD::SUB)
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0)))
|
|
if (CN->isNullValue()) { // 0 - N -> neg N
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot sub this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::NEG8r; break;
|
|
case MVT::i16: Opc = X86::NEG16r; break;
|
|
case MVT::i32: Opc = X86::NEG32r; break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
|
|
if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) {
|
|
Opc = 0;
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot add this type!");
|
|
case MVT::i1: break; // Not supported, don't invert upper bits!
|
|
case MVT::i8: Opc = X86::NOT8r; break;
|
|
case MVT::i16: Opc = X86::NOT16r; break;
|
|
case MVT::i32: Opc = X86::NOT32r; break;
|
|
}
|
|
if (Opc) {
|
|
Tmp1 = SelectExpr(Op0);
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Fold common multiplies into LEA instructions.
|
|
if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) {
|
|
switch ((int)CN->getValue()) {
|
|
default: break;
|
|
case 3:
|
|
case 5:
|
|
case 9:
|
|
// Remove N from exprmap so SelectAddress doesn't get confused.
|
|
ExprMap.erase(N);
|
|
X86AddressMode AM;
|
|
SelectAddress(N, AM);
|
|
// Restore it to the map.
|
|
ExprMap[N] = Result;
|
|
addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot xor this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = 0; break;
|
|
case MVT::i16: Opc = 1; break;
|
|
case MVT::i32: Opc = 2; break;
|
|
}
|
|
switch (Node->getOpcode()) {
|
|
default: assert(0 && "Unreachable!");
|
|
case ISD::FSUB:
|
|
case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break;
|
|
case ISD::FMUL:
|
|
case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break;
|
|
case ISD::AND: Opc = ANDTab[Opc]; break;
|
|
case ISD::OR: Opc = ORTab[Opc]; break;
|
|
case ISD::XOR: Opc = XORTab[Opc]; break;
|
|
}
|
|
if (Opc) { // Can't fold MUL:i8 R, imm
|
|
Tmp1 = SelectExpr(Op0);
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
if (isFoldableLoad(Op0, Op1, true))
|
|
if (Node->getOpcode() != ISD::SUB && Node->getOpcode() != ISD::FSUB) {
|
|
std::swap(Op0, Op1);
|
|
goto FoldOps;
|
|
} else {
|
|
// For FP, emit 'reverse' subract, with a memory operand.
|
|
if (N.getValueType() == MVT::f64 && !X86ScalarSSE) {
|
|
if (Op0.getOpcode() == ISD::EXTLOAD)
|
|
Opc = X86::FpSUBR32m;
|
|
else
|
|
Opc = X86::FpSUBR64m;
|
|
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(Op0, AM);
|
|
Tmp1 = SelectExpr(Op1);
|
|
addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
if (isFoldableLoad(Op1, Op0, true)) {
|
|
FoldOps:
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot operate on this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = 5; break;
|
|
case MVT::i16: Opc = 6; break;
|
|
case MVT::i32: Opc = 7; break;
|
|
case MVT::f32: Opc = 8; break;
|
|
// For F64, handle promoted load operations (from F32) as well!
|
|
case MVT::f64:
|
|
assert((!X86ScalarSSE || Op1.getOpcode() == ISD::LOAD) &&
|
|
"SSE load should have been promoted");
|
|
Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break;
|
|
}
|
|
switch (Node->getOpcode()) {
|
|
default: assert(0 && "Unreachable!");
|
|
case ISD::FSUB:
|
|
case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break;
|
|
case ISD::FMUL:
|
|
case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break;
|
|
case ISD::AND: Opc = ANDTab[Opc]; break;
|
|
case ISD::OR: Opc = ORTab[Opc]; break;
|
|
case ISD::XOR: Opc = XORTab[Opc]; break;
|
|
}
|
|
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(Op1, AM);
|
|
Tmp1 = SelectExpr(Op0);
|
|
if (Opc) {
|
|
addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
|
|
} else {
|
|
assert(Node->getOpcode() == ISD::MUL &&
|
|
N.getValueType() == MVT::i8 && "Unexpected situation!");
|
|
// Must use the MUL instruction, which forces use of AL.
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
|
|
addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM);
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
if (getRegPressure(Op0) > getRegPressure(Op1)) {
|
|
Tmp1 = SelectExpr(Op0);
|
|
Tmp2 = SelectExpr(Op1);
|
|
} else {
|
|
Tmp2 = SelectExpr(Op1);
|
|
Tmp1 = SelectExpr(Op0);
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot add this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = 10; break;
|
|
case MVT::i16: Opc = 11; break;
|
|
case MVT::i32: Opc = 12; break;
|
|
case MVT::f32: Opc = 13; break;
|
|
case MVT::f64: Opc = 14; break;
|
|
}
|
|
switch (Node->getOpcode()) {
|
|
default: assert(0 && "Unreachable!");
|
|
case ISD::FSUB:
|
|
case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break;
|
|
case ISD::FMUL:
|
|
case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break;
|
|
case ISD::AND: Opc = ANDTab[Opc]; break;
|
|
case ISD::OR: Opc = ORTab[Opc]; break;
|
|
case ISD::XOR: Opc = XORTab[Opc]; break;
|
|
}
|
|
if (Opc) {
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
} else {
|
|
assert(Node->getOpcode() == ISD::MUL &&
|
|
N.getValueType() == MVT::i8 && "Unexpected situation!");
|
|
// Must use the MUL instruction, which forces use of AL.
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
|
|
BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2);
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
|
|
}
|
|
return Result;
|
|
}
|
|
case ISD::ADD_PARTS:
|
|
case ISD::SUB_PARTS: {
|
|
assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 &&
|
|
"Not an i64 add/sub!");
|
|
// Emit all of the operands.
|
|
std::vector<unsigned> InVals;
|
|
for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)
|
|
InVals.push_back(SelectExpr(N.getOperand(i)));
|
|
if (N.getOpcode() == ISD::ADD_PARTS) {
|
|
BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
|
|
BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]);
|
|
} else {
|
|
BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
|
|
BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]);
|
|
}
|
|
return Result+N.ResNo;
|
|
}
|
|
|
|
case ISD::SHL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS: {
|
|
assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 &&
|
|
"Not an i64 shift!");
|
|
unsigned ShiftOpLo = SelectExpr(N.getOperand(0));
|
|
unsigned ShiftOpHi = SelectExpr(N.getOperand(1));
|
|
unsigned TmpReg = MakeReg(MVT::i32);
|
|
if (N.getOpcode() == ISD::SRA_PARTS) {
|
|
// If this is a SHR of a Long, then we need to do funny sign extension
|
|
// stuff. TmpReg gets the value to use as the high-part if we are
|
|
// shifting more than 32 bits.
|
|
BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31);
|
|
} else {
|
|
// Other shifts use a fixed zero value if the shift is more than 32 bits.
|
|
BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0);
|
|
}
|
|
|
|
// Initialize CL with the shift amount.
|
|
unsigned ShiftAmountReg = SelectExpr(N.getOperand(2));
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
|
|
|
|
unsigned TmpReg2 = MakeReg(MVT::i32);
|
|
unsigned TmpReg3 = MakeReg(MVT::i32);
|
|
if (N.getOpcode() == ISD::SHL_PARTS) {
|
|
// TmpReg2 = shld inHi, inLo
|
|
BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi)
|
|
.addReg(ShiftOpLo);
|
|
// TmpReg3 = shl inLo, CL
|
|
BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
|
|
|
|
// DestHi = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(BB, X86::CMOVNE32rr, 2,
|
|
Result+1).addReg(TmpReg2).addReg(TmpReg3);
|
|
// DestLo = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(BB, X86::CMOVNE32rr, 2,
|
|
Result).addReg(TmpReg3).addReg(TmpReg);
|
|
} else {
|
|
// TmpReg2 = shrd inLo, inHi
|
|
BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo)
|
|
.addReg(ShiftOpHi);
|
|
// TmpReg3 = s[ah]r inHi, CL
|
|
BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL
|
|
: X86::SHR32rCL, 1, TmpReg3)
|
|
.addReg(ShiftOpHi);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
|
|
|
|
// DestLo = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(BB, X86::CMOVNE32rr, 2,
|
|
Result).addReg(TmpReg2).addReg(TmpReg3);
|
|
|
|
// DestHi = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(BB, X86::CMOVNE32rr, 2,
|
|
Result+1).addReg(TmpReg3).addReg(TmpReg);
|
|
}
|
|
return Result+N.ResNo;
|
|
}
|
|
|
|
case ISD::SELECT:
|
|
EmitSelectCC(N.getOperand(0), N.getOperand(1), N.getOperand(2),
|
|
N.getValueType(), Result);
|
|
return Result;
|
|
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM: {
|
|
assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) &&
|
|
"We don't support this operator!");
|
|
|
|
if (N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::FDIV) {
|
|
// We can fold loads into FpDIVs, but not really into any others.
|
|
if (N.getValueType() == MVT::f64 && !X86ScalarSSE) {
|
|
// Check for reversed and unreversed DIV.
|
|
if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) {
|
|
if (N.getOperand(0).getOpcode() == ISD::EXTLOAD)
|
|
Opc = X86::FpDIVR32m;
|
|
else
|
|
Opc = X86::FpDIVR64m;
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(N.getOperand(0), AM);
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
|
|
return Result;
|
|
} else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) &&
|
|
N.getOperand(1).getOpcode() == ISD::LOAD) {
|
|
if (N.getOperand(1).getOpcode() == ISD::EXTLOAD)
|
|
Opc = X86::FpDIV32m;
|
|
else
|
|
Opc = X86::FpDIV64m;
|
|
X86AddressMode AM;
|
|
EmitFoldedLoad(N.getOperand(1), AM);
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
}
|
|
|
|
bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM;
|
|
bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV;
|
|
unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode;
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot sdiv this type!");
|
|
case MVT::i8:
|
|
DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r;
|
|
LoReg = X86::AL;
|
|
HiReg = X86::AH;
|
|
MovOpcode = X86::MOV8rr;
|
|
ClrOpcode = X86::MOV8ri;
|
|
SExtOpcode = X86::CBW;
|
|
break;
|
|
case MVT::i16:
|
|
DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r;
|
|
LoReg = X86::AX;
|
|
HiReg = X86::DX;
|
|
MovOpcode = X86::MOV16rr;
|
|
ClrOpcode = X86::MOV16ri;
|
|
SExtOpcode = X86::CWD;
|
|
break;
|
|
case MVT::i32:
|
|
DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r;
|
|
LoReg = X86::EAX;
|
|
HiReg = X86::EDX;
|
|
MovOpcode = X86::MOV32rr;
|
|
ClrOpcode = X86::MOV32ri;
|
|
SExtOpcode = X86::CDQ;
|
|
break;
|
|
case MVT::f32:
|
|
BuildMI(BB, X86::DIVSSrr, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
case MVT::f64:
|
|
Opc = X86ScalarSSE ? X86::DIVSDrr : X86::FpDIV;
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
// Set up the low part.
|
|
BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1);
|
|
|
|
if (isSigned) {
|
|
// Sign extend the low part into the high part.
|
|
BuildMI(BB, SExtOpcode, 0);
|
|
} else {
|
|
// Zero out the high part, effectively zero extending the input.
|
|
BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0);
|
|
}
|
|
|
|
// Emit the DIV/IDIV instruction.
|
|
BuildMI(BB, DivOpcode, 1).addReg(Tmp2);
|
|
|
|
// Get the result of the divide or rem.
|
|
BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SHL:
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8: Opc = X86::ADD8rr; break;
|
|
case MVT::i16: Opc = X86::ADD16rr; break;
|
|
case MVT::i32: Opc = X86::ADD32rr; break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8: Opc = X86::SHL8ri; break;
|
|
case MVT::i16: Opc = X86::SHL16ri; break;
|
|
case MVT::i32: Opc = X86::SHL32ri; break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
|
|
return Result;
|
|
}
|
|
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8 : Opc = X86::SHL8rCL; break;
|
|
case MVT::i16: Opc = X86::SHL16rCL; break;
|
|
case MVT::i32: Opc = X86::SHL32rCL; break;
|
|
}
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case ISD::SRL:
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8: Opc = X86::SHR8ri; break;
|
|
case MVT::i16: Opc = X86::SHR16ri; break;
|
|
case MVT::i32: Opc = X86::SHR32ri; break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
|
|
return Result;
|
|
}
|
|
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8 : Opc = X86::SHR8rCL; break;
|
|
case MVT::i16: Opc = X86::SHR16rCL; break;
|
|
case MVT::i32: Opc = X86::SHR32rCL; break;
|
|
}
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
case ISD::SRA:
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8: Opc = X86::SAR8ri; break;
|
|
case MVT::i16: Opc = X86::SAR16ri; break;
|
|
case MVT::i32: Opc = X86::SAR32ri; break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
|
|
return Result;
|
|
}
|
|
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
}
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot shift this type!");
|
|
case MVT::i8 : Opc = X86::SAR8rCL; break;
|
|
case MVT::i16: Opc = X86::SAR16rCL; break;
|
|
case MVT::i32: Opc = X86::SAR32rCL; break;
|
|
}
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
|
|
case ISD::SETCC:
|
|
EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse());
|
|
EmitSetCC(BB, Result, cast<CondCodeSDNode>(N.getOperand(2))->get(),
|
|
MVT::isFloatingPoint(N.getOperand(1).getValueType()));
|
|
return Result;
|
|
case ISD::LOAD:
|
|
// Make sure we generate both values.
|
|
if (Result != 1) { // Generate the token
|
|
if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
|
|
assert(0 && "Load already emitted!?");
|
|
} else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Cannot load this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::MOV8rm; break;
|
|
case MVT::i16: Opc = X86::MOV16rm; break;
|
|
case MVT::i32: Opc = X86::MOV32rm; break;
|
|
case MVT::f32: Opc = X86::MOVSSrm; break;
|
|
case MVT::f64:
|
|
if (X86ScalarSSE) {
|
|
Opc = X86::MOVSDrm;
|
|
} else {
|
|
Opc = X86::FpLD64m;
|
|
ContainsFPCode = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){
|
|
unsigned CPIdx = BB->getParent()->getConstantPool()->
|
|
getConstantPoolIndex(CP->get());
|
|
Select(N.getOperand(0));
|
|
addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CPIdx);
|
|
} else {
|
|
X86AddressMode AM;
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
SDOperand Address = N.getOperand(1);
|
|
if (getRegPressure(Chain) > getRegPressure(Address)) {
|
|
Select(Chain);
|
|
SelectAddress(Address, AM);
|
|
} else {
|
|
SelectAddress(Address, AM);
|
|
Select(Chain);
|
|
}
|
|
|
|
addFullAddress(BuildMI(BB, Opc, 4, Result), AM);
|
|
}
|
|
return Result;
|
|
case X86ISD::FILD64m:
|
|
// Make sure we generate both values.
|
|
assert(Result != 1 && N.getValueType() == MVT::f64);
|
|
if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
|
|
assert(0 && "Load already emitted!?");
|
|
|
|
{
|
|
X86AddressMode AM;
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
SDOperand Address = N.getOperand(1);
|
|
if (getRegPressure(Chain) > getRegPressure(Address)) {
|
|
Select(Chain);
|
|
SelectAddress(Address, AM);
|
|
} else {
|
|
SelectAddress(Address, AM);
|
|
Select(Chain);
|
|
}
|
|
|
|
addFullAddress(BuildMI(BB, X86::FpILD64m, 4, Result), AM);
|
|
}
|
|
return Result;
|
|
|
|
case ISD::EXTLOAD: // Arbitrarily codegen extloads as MOVZX*
|
|
case ISD::ZEXTLOAD: {
|
|
// Make sure we generate both values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1)))
|
|
if (Node->getValueType(0) == MVT::f64) {
|
|
assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 &&
|
|
"Bad EXTLOAD!");
|
|
unsigned CPIdx = BB->getParent()->getConstantPool()->
|
|
getConstantPoolIndex(CP->get());
|
|
|
|
addConstantPoolReference(BuildMI(BB, X86::FpLD32m, 4, Result), CPIdx);
|
|
return Result;
|
|
}
|
|
|
|
X86AddressMode AM;
|
|
if (getRegPressure(Node->getOperand(0)) >
|
|
getRegPressure(Node->getOperand(1))) {
|
|
Select(Node->getOperand(0)); // chain
|
|
SelectAddress(Node->getOperand(1), AM);
|
|
} else {
|
|
SelectAddress(Node->getOperand(1), AM);
|
|
Select(Node->getOperand(0)); // chain
|
|
}
|
|
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Unknown type to sign extend to.");
|
|
case MVT::f64:
|
|
assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 &&
|
|
"Bad EXTLOAD!");
|
|
addFullAddress(BuildMI(BB, X86::FpLD32m, 5, Result), AM);
|
|
break;
|
|
case MVT::i32:
|
|
switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) {
|
|
default:
|
|
assert(0 && "Bad zero extend!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM);
|
|
break;
|
|
case MVT::i16:
|
|
addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM);
|
|
break;
|
|
}
|
|
break;
|
|
case MVT::i16:
|
|
assert(cast<VTSDNode>(Node->getOperand(3))->getVT() <= MVT::i8 &&
|
|
"Bad zero extend!");
|
|
addFullAddress(BuildMI(BB, X86::MOVZX16rm8, 5, Result), AM);
|
|
break;
|
|
case MVT::i8:
|
|
assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i1 &&
|
|
"Bad zero extend!");
|
|
addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM);
|
|
break;
|
|
}
|
|
return Result;
|
|
}
|
|
case ISD::SEXTLOAD: {
|
|
// Make sure we generate both values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
X86AddressMode AM;
|
|
if (getRegPressure(Node->getOperand(0)) >
|
|
getRegPressure(Node->getOperand(1))) {
|
|
Select(Node->getOperand(0)); // chain
|
|
SelectAddress(Node->getOperand(1), AM);
|
|
} else {
|
|
SelectAddress(Node->getOperand(1), AM);
|
|
Select(Node->getOperand(0)); // chain
|
|
}
|
|
|
|
switch (Node->getValueType(0)) {
|
|
case MVT::i8: assert(0 && "Cannot sign extend from bool!");
|
|
default: assert(0 && "Unknown type to sign extend to.");
|
|
case MVT::i32:
|
|
switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) {
|
|
default:
|
|
case MVT::i1: assert(0 && "Cannot sign extend from bool!");
|
|
case MVT::i8:
|
|
addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM);
|
|
break;
|
|
case MVT::i16:
|
|
addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM);
|
|
break;
|
|
}
|
|
break;
|
|
case MVT::i16:
|
|
assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i8 &&
|
|
"Cannot sign extend from bool!");
|
|
addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM);
|
|
break;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
// Generate both result values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
// FIXME: We are currently ignoring the requested alignment for handling
|
|
// greater than the stack alignment. This will need to be revisited at some
|
|
// point. Align = N.getOperand(2);
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
|
|
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
|
|
std::cerr << "Cannot allocate stack object with greater alignment than"
|
|
<< " the stack alignment yet!";
|
|
abort();
|
|
}
|
|
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Select(N.getOperand(0));
|
|
BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP)
|
|
.addImm(CN->getValue());
|
|
} else {
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Select(N.getOperand(0));
|
|
}
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1);
|
|
}
|
|
|
|
// Put a pointer to the space into the result register, by copying the stack
|
|
// pointer.
|
|
BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP);
|
|
return Result;
|
|
|
|
case X86ISD::TAILCALL:
|
|
case X86ISD::CALL: {
|
|
// The chain for this call is now lowered.
|
|
ExprMap.insert(std::make_pair(N.getValue(0), 1));
|
|
|
|
bool isDirect = isa<GlobalAddressSDNode>(N.getOperand(1)) ||
|
|
isa<ExternalSymbolSDNode>(N.getOperand(1));
|
|
unsigned Callee = 0;
|
|
if (isDirect) {
|
|
Select(N.getOperand(0));
|
|
} else {
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Select(N.getOperand(0));
|
|
Callee = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Callee = SelectExpr(N.getOperand(1));
|
|
Select(N.getOperand(0));
|
|
}
|
|
}
|
|
|
|
// If this call has values to pass in registers, do so now.
|
|
if (Node->getNumOperands() > 4) {
|
|
// The first value is passed in (a part of) EAX, the second in EDX.
|
|
unsigned RegOp1 = SelectExpr(N.getOperand(4));
|
|
unsigned RegOp2 =
|
|
Node->getNumOperands() > 5 ? SelectExpr(N.getOperand(5)) : 0;
|
|
|
|
switch (N.getOperand(4).getValueType()) {
|
|
default: assert(0 && "Bad thing to pass in regs");
|
|
case MVT::i1:
|
|
case MVT::i8: BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break;
|
|
case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break;
|
|
case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break;
|
|
}
|
|
if (RegOp2)
|
|
switch (N.getOperand(5).getValueType()) {
|
|
default: assert(0 && "Bad thing to pass in regs");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2);
|
|
break;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2);
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
|
|
BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true);
|
|
} else if (ExternalSymbolSDNode *ESSDN =
|
|
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
|
|
BuildMI(BB, X86::CALLpcrel32,
|
|
1).addExternalSymbol(ESSDN->getSymbol(), true);
|
|
} else {
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Select(N.getOperand(0));
|
|
}
|
|
|
|
BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1);
|
|
}
|
|
|
|
// Get caller stack amount and amount the callee added to the stack pointer.
|
|
Tmp1 = cast<ConstantSDNode>(N.getOperand(2))->getValue();
|
|
Tmp2 = cast<ConstantSDNode>(N.getOperand(3))->getValue();
|
|
BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(Tmp1).addImm(Tmp2);
|
|
|
|
if (Node->getNumValues() != 1)
|
|
switch (Node->getValueType(1)) {
|
|
default: assert(0 && "Unknown value type for call result!");
|
|
case MVT::Other: return 1;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
|
|
break;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
|
|
if (Node->getNumValues() == 3 && Node->getValueType(2) == MVT::i32)
|
|
BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX);
|
|
break;
|
|
case MVT::f64: // Floating-point return values live in %ST(0)
|
|
if (X86ScalarSSE) {
|
|
ContainsFPCode = true;
|
|
BuildMI(BB, X86::FpGETRESULT, 1, X86::FP0);
|
|
|
|
unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
|
|
MachineFunction *F = BB->getParent();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
|
|
addFrameReference(BuildMI(BB, X86::FpST64m, 5), FrameIdx).addReg(X86::FP0);
|
|
addFrameReference(BuildMI(BB, X86::MOVSDrm, 4, Result), FrameIdx);
|
|
break;
|
|
} else {
|
|
ContainsFPCode = true;
|
|
BuildMI(BB, X86::FpGETRESULT, 1, Result);
|
|
break;
|
|
}
|
|
}
|
|
return Result+N.ResNo-1;
|
|
}
|
|
case ISD::READPORT:
|
|
// First, determine that the size of the operand falls within the acceptable
|
|
// range for this architecture.
|
|
//
|
|
if (Node->getOperand(1).getValueType() != MVT::i16) {
|
|
std::cerr << "llvm.readport: Address size is not 16 bits\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Make sure we generate both values.
|
|
if (Result != 1) { // Generate the token
|
|
if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
|
|
assert(0 && "readport already emitted!?");
|
|
} else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
Select(Node->getOperand(0)); // Select the chain.
|
|
|
|
// If the port is a single-byte constant, use the immediate form.
|
|
if (ConstantSDNode *Port = dyn_cast<ConstantSDNode>(Node->getOperand(1)))
|
|
if ((Port->getValue() & 255) == Port->getValue()) {
|
|
switch (Node->getValueType(0)) {
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue());
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
|
|
return Result;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue());
|
|
BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
|
|
return Result;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue());
|
|
BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
|
|
return Result;
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
// Now, move the I/O port address into the DX register and use the IN
|
|
// instruction to get the input data.
|
|
//
|
|
Tmp1 = SelectExpr(Node->getOperand(1));
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1);
|
|
switch (Node->getValueType(0)) {
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::IN8rr, 0);
|
|
BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
|
|
return Result;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::IN16rr, 0);
|
|
BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
|
|
return Result;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::IN32rr, 0);
|
|
BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
|
|
return Result;
|
|
default:
|
|
std::cerr << "Cannot do input on this data type";
|
|
exit(1);
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// TryToFoldLoadOpStore - Given a store node, try to fold together a
|
|
/// load/op/store instruction. If successful return true.
|
|
bool ISel::TryToFoldLoadOpStore(SDNode *Node) {
|
|
assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!");
|
|
SDOperand Chain = Node->getOperand(0);
|
|
SDOperand StVal = Node->getOperand(1);
|
|
SDOperand StPtr = Node->getOperand(2);
|
|
|
|
// The chain has to be a load, the stored value must be an integer binary
|
|
// operation with one use.
|
|
if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 ||
|
|
MVT::isFloatingPoint(StVal.getValueType()))
|
|
return false;
|
|
|
|
// Token chain must either be a factor node or the load to fold.
|
|
if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor)
|
|
return false;
|
|
|
|
SDOperand TheLoad;
|
|
|
|
// Check to see if there is a load from the same pointer that we're storing
|
|
// to in either operand of the binop.
|
|
if (StVal.getOperand(0).getOpcode() == ISD::LOAD &&
|
|
StVal.getOperand(0).getOperand(1) == StPtr)
|
|
TheLoad = StVal.getOperand(0);
|
|
else if (StVal.getOperand(1).getOpcode() == ISD::LOAD &&
|
|
StVal.getOperand(1).getOperand(1) == StPtr)
|
|
TheLoad = StVal.getOperand(1);
|
|
else
|
|
return false; // No matching load operand.
|
|
|
|
// We can only fold the load if there are no intervening side-effecting
|
|
// operations. This means that the store uses the load as its token chain, or
|
|
// there are only token factor nodes in between the store and load.
|
|
if (Chain != TheLoad.getValue(1)) {
|
|
// Okay, the other option is that we have a store referring to (possibly
|
|
// nested) token factor nodes. For now, just try peeking through one level
|
|
// of token factors to see if this is the case.
|
|
bool ChainOk = false;
|
|
if (Chain.getOpcode() == ISD::TokenFactor) {
|
|
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
|
|
if (Chain.getOperand(i) == TheLoad.getValue(1)) {
|
|
ChainOk = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ChainOk) return false;
|
|
}
|
|
|
|
if (TheLoad.getOperand(1) != StPtr)
|
|
return false;
|
|
|
|
// Make sure that one of the operands of the binop is the load, and that the
|
|
// load folds into the binop.
|
|
if (((StVal.getOperand(0) != TheLoad ||
|
|
!isFoldableLoad(TheLoad, StVal.getOperand(1))) &&
|
|
(StVal.getOperand(1) != TheLoad ||
|
|
!isFoldableLoad(TheLoad, StVal.getOperand(0)))))
|
|
return false;
|
|
|
|
// Finally, check to see if this is one of the ops we can handle!
|
|
static const unsigned ADDTAB[] = {
|
|
X86::ADD8mi, X86::ADD16mi, X86::ADD32mi,
|
|
X86::ADD8mr, X86::ADD16mr, X86::ADD32mr,
|
|
};
|
|
static const unsigned SUBTAB[] = {
|
|
X86::SUB8mi, X86::SUB16mi, X86::SUB32mi,
|
|
X86::SUB8mr, X86::SUB16mr, X86::SUB32mr,
|
|
};
|
|
static const unsigned ANDTAB[] = {
|
|
X86::AND8mi, X86::AND16mi, X86::AND32mi,
|
|
X86::AND8mr, X86::AND16mr, X86::AND32mr,
|
|
};
|
|
static const unsigned ORTAB[] = {
|
|
X86::OR8mi, X86::OR16mi, X86::OR32mi,
|
|
X86::OR8mr, X86::OR16mr, X86::OR32mr,
|
|
};
|
|
static const unsigned XORTAB[] = {
|
|
X86::XOR8mi, X86::XOR16mi, X86::XOR32mi,
|
|
X86::XOR8mr, X86::XOR16mr, X86::XOR32mr,
|
|
};
|
|
static const unsigned SHLTAB[] = {
|
|
X86::SHL8mi, X86::SHL16mi, X86::SHL32mi,
|
|
/*Have to put the reg in CL*/0, 0, 0,
|
|
};
|
|
static const unsigned SARTAB[] = {
|
|
X86::SAR8mi, X86::SAR16mi, X86::SAR32mi,
|
|
/*Have to put the reg in CL*/0, 0, 0,
|
|
};
|
|
static const unsigned SHRTAB[] = {
|
|
X86::SHR8mi, X86::SHR16mi, X86::SHR32mi,
|
|
/*Have to put the reg in CL*/0, 0, 0,
|
|
};
|
|
|
|
const unsigned *TabPtr = 0;
|
|
switch (StVal.getOpcode()) {
|
|
default:
|
|
std::cerr << "CANNOT [mem] op= val: ";
|
|
StVal.Val->dump(); std::cerr << "\n";
|
|
case ISD::FMUL:
|
|
case ISD::MUL:
|
|
case ISD::FDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::FREM:
|
|
case ISD::SREM:
|
|
case ISD::UREM: return false;
|
|
|
|
case ISD::ADD: TabPtr = ADDTAB; break;
|
|
case ISD::SUB: TabPtr = SUBTAB; break;
|
|
case ISD::AND: TabPtr = ANDTAB; break;
|
|
case ISD:: OR: TabPtr = ORTAB; break;
|
|
case ISD::XOR: TabPtr = XORTAB; break;
|
|
case ISD::SHL: TabPtr = SHLTAB; break;
|
|
case ISD::SRA: TabPtr = SARTAB; break;
|
|
case ISD::SRL: TabPtr = SHRTAB; break;
|
|
}
|
|
|
|
// Handle: [mem] op= CST
|
|
SDOperand Op0 = StVal.getOperand(0);
|
|
SDOperand Op1 = StVal.getOperand(1);
|
|
unsigned Opc = 0;
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
|
|
switch (Op0.getValueType()) { // Use Op0's type because of shifts.
|
|
default: break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = TabPtr[0]; break;
|
|
case MVT::i16: Opc = TabPtr[1]; break;
|
|
case MVT::i32: Opc = TabPtr[2]; break;
|
|
}
|
|
|
|
if (Opc) {
|
|
if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second)
|
|
assert(0 && "Already emitted?");
|
|
Select(Chain);
|
|
|
|
X86AddressMode AM;
|
|
if (getRegPressure(TheLoad.getOperand(0)) >
|
|
getRegPressure(TheLoad.getOperand(1))) {
|
|
Select(TheLoad.getOperand(0));
|
|
SelectAddress(TheLoad.getOperand(1), AM);
|
|
} else {
|
|
SelectAddress(TheLoad.getOperand(1), AM);
|
|
Select(TheLoad.getOperand(0));
|
|
}
|
|
|
|
if (StVal.getOpcode() == ISD::ADD) {
|
|
if (CN->getValue() == 1) {
|
|
switch (Op0.getValueType()) {
|
|
default: break;
|
|
case MVT::i8:
|
|
addFullAddress(BuildMI(BB, X86::INC8m, 4), AM);
|
|
return true;
|
|
case MVT::i16: Opc = TabPtr[1];
|
|
addFullAddress(BuildMI(BB, X86::INC16m, 4), AM);
|
|
return true;
|
|
case MVT::i32: Opc = TabPtr[2];
|
|
addFullAddress(BuildMI(BB, X86::INC32m, 4), AM);
|
|
return true;
|
|
}
|
|
} else if (CN->getValue()+1 == 0) { // [X] += -1 -> DEC [X]
|
|
switch (Op0.getValueType()) {
|
|
default: break;
|
|
case MVT::i8:
|
|
addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM);
|
|
return true;
|
|
case MVT::i16: Opc = TabPtr[1];
|
|
addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM);
|
|
return true;
|
|
case MVT::i32: Opc = TabPtr[2];
|
|
addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If we have [mem] = V op [mem], try to turn it into:
|
|
// [mem] = [mem] op V.
|
|
if (Op1 == TheLoad &&
|
|
StVal.getOpcode() != ISD::SUB && StVal.getOpcode() != ISD::FSUB &&
|
|
StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA &&
|
|
StVal.getOpcode() != ISD::SRL)
|
|
std::swap(Op0, Op1);
|
|
|
|
if (Op0 != TheLoad) return false;
|
|
|
|
switch (Op0.getValueType()) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = TabPtr[3]; break;
|
|
case MVT::i16: Opc = TabPtr[4]; break;
|
|
case MVT::i32: Opc = TabPtr[5]; break;
|
|
}
|
|
|
|
// Table entry doesn't exist?
|
|
if (Opc == 0) return false;
|
|
|
|
if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second)
|
|
assert(0 && "Already emitted?");
|
|
Select(Chain);
|
|
Select(TheLoad.getOperand(0));
|
|
|
|
X86AddressMode AM;
|
|
SelectAddress(TheLoad.getOperand(1), AM);
|
|
unsigned Reg = SelectExpr(Op1);
|
|
addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg);
|
|
return true;
|
|
}
|
|
|
|
/// If node is a ret(tailcall) node, emit the specified tail call and return
|
|
/// true, otherwise return false.
|
|
///
|
|
/// FIXME: This whole thing should be a post-legalize optimization pass which
|
|
/// recognizes and transforms the dag. We don't want the selection phase doing
|
|
/// this stuff!!
|
|
///
|
|
bool ISel::EmitPotentialTailCall(SDNode *RetNode) {
|
|
assert(RetNode->getOpcode() == ISD::RET && "Not a return");
|
|
|
|
SDOperand Chain = RetNode->getOperand(0);
|
|
|
|
// If this is a token factor node where one operand is a call, dig into it.
|
|
SDOperand TokFactor;
|
|
unsigned TokFactorOperand = 0;
|
|
if (Chain.getOpcode() == ISD::TokenFactor) {
|
|
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
|
|
if (Chain.getOperand(i).getOpcode() == ISD::CALLSEQ_END ||
|
|
Chain.getOperand(i).getOpcode() == X86ISD::TAILCALL) {
|
|
TokFactorOperand = i;
|
|
TokFactor = Chain;
|
|
Chain = Chain.getOperand(i);
|
|
break;
|
|
}
|
|
if (TokFactor.Val == 0) return false; // No call operand.
|
|
}
|
|
|
|
// Skip the CALLSEQ_END node if present.
|
|
if (Chain.getOpcode() == ISD::CALLSEQ_END)
|
|
Chain = Chain.getOperand(0);
|
|
|
|
// Is a tailcall the last control operation that occurs before the return?
|
|
if (Chain.getOpcode() != X86ISD::TAILCALL)
|
|
return false;
|
|
|
|
// If we return a value, is it the value produced by the call?
|
|
if (RetNode->getNumOperands() > 1) {
|
|
// Not returning the ret val of the call?
|
|
if (Chain.Val->getNumValues() == 1 ||
|
|
RetNode->getOperand(1) != Chain.getValue(1))
|
|
return false;
|
|
|
|
if (RetNode->getNumOperands() > 2) {
|
|
if (Chain.Val->getNumValues() == 2 ||
|
|
RetNode->getOperand(2) != Chain.getValue(2))
|
|
return false;
|
|
}
|
|
assert(RetNode->getNumOperands() <= 3);
|
|
}
|
|
|
|
// CalleeCallArgAmt - The total number of bytes used for the callee arg area.
|
|
// For FastCC, this will always be > 0.
|
|
unsigned CalleeCallArgAmt =
|
|
cast<ConstantSDNode>(Chain.getOperand(2))->getValue();
|
|
|
|
// CalleeCallArgPopAmt - The number of bytes in the call area popped by the
|
|
// callee. For FastCC this will always be > 0, for CCC this is always 0.
|
|
unsigned CalleeCallArgPopAmt =
|
|
cast<ConstantSDNode>(Chain.getOperand(3))->getValue();
|
|
|
|
// There are several cases we can handle here. First, if the caller and
|
|
// callee are both CCC functions, we can tailcall if the callee takes <= the
|
|
// number of argument bytes that the caller does.
|
|
if (CalleeCallArgPopAmt == 0 && // Callee is C CallingConv?
|
|
X86Lowering.getBytesToPopOnReturn() == 0) { // Caller is C CallingConv?
|
|
// Check to see if caller arg area size >= callee arg area size.
|
|
if (X86Lowering.getBytesCallerReserves() >= CalleeCallArgAmt) {
|
|
//std::cerr << "CCC TAILCALL UNIMP!\n";
|
|
// If TokFactor is non-null, emit all operands.
|
|
|
|
//EmitCCCToCCCTailCall(Chain.Val);
|
|
//return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Second, if both are FastCC functions, we can always perform the tail call.
|
|
if (CalleeCallArgPopAmt && X86Lowering.getBytesToPopOnReturn()) {
|
|
// If TokFactor is non-null, emit all operands before the call.
|
|
if (TokFactor.Val) {
|
|
for (unsigned i = 0, e = TokFactor.getNumOperands(); i != e; ++i)
|
|
if (i != TokFactorOperand)
|
|
Select(TokFactor.getOperand(i));
|
|
}
|
|
|
|
EmitFastCCToFastCCTailCall(Chain.Val);
|
|
return true;
|
|
}
|
|
|
|
// We don't support mixed calls, due to issues with alignment. We could in
|
|
// theory handle some mixed calls from CCC -> FastCC if the stack is properly
|
|
// aligned (which depends on the number of arguments to the callee). TODO.
|
|
return false;
|
|
}
|
|
|
|
static SDOperand GetAdjustedArgumentStores(SDOperand Chain, int Offset,
|
|
SelectionDAG &DAG) {
|
|
MVT::ValueType StoreVT;
|
|
switch (Chain.getOpcode()) {
|
|
default: assert(0 && "Unexpected node!");
|
|
case ISD::CALLSEQ_START:
|
|
// If we found the start of the call sequence, we're done. We actually
|
|
// strip off the CALLSEQ_START node, to avoid generating the
|
|
// ADJCALLSTACKDOWN marker for the tail call.
|
|
return Chain.getOperand(0);
|
|
case ISD::TokenFactor: {
|
|
std::vector<SDOperand> Ops;
|
|
Ops.reserve(Chain.getNumOperands());
|
|
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
|
|
Ops.push_back(GetAdjustedArgumentStores(Chain.getOperand(i), Offset,DAG));
|
|
return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
|
|
}
|
|
case ISD::STORE: // Normal store
|
|
StoreVT = Chain.getOperand(1).getValueType();
|
|
break;
|
|
case ISD::TRUNCSTORE: // FLOAT store
|
|
StoreVT = cast<VTSDNode>(Chain.getOperand(4))->getVT();
|
|
break;
|
|
}
|
|
|
|
SDOperand OrigDest = Chain.getOperand(2);
|
|
unsigned OrigOffset;
|
|
|
|
if (OrigDest.getOpcode() == ISD::CopyFromReg) {
|
|
OrigOffset = 0;
|
|
assert(cast<RegisterSDNode>(OrigDest.getOperand(1))->getReg() == X86::ESP);
|
|
} else {
|
|
// We expect only (ESP+C)
|
|
assert(OrigDest.getOpcode() == ISD::ADD &&
|
|
isa<ConstantSDNode>(OrigDest.getOperand(1)) &&
|
|
OrigDest.getOperand(0).getOpcode() == ISD::CopyFromReg &&
|
|
cast<RegisterSDNode>(OrigDest.getOperand(0).getOperand(1))->getReg()
|
|
== X86::ESP);
|
|
OrigOffset = cast<ConstantSDNode>(OrigDest.getOperand(1))->getValue();
|
|
}
|
|
|
|
// Compute the new offset from the incoming ESP value we wish to use.
|
|
unsigned NewOffset = OrigOffset + Offset;
|
|
|
|
unsigned OpSize = (MVT::getSizeInBits(StoreVT)+7)/8; // Bits -> Bytes
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, NewOffset);
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
|
|
SDOperand InChain = GetAdjustedArgumentStores(Chain.getOperand(0), Offset,
|
|
DAG);
|
|
if (Chain.getOpcode() == ISD::STORE)
|
|
return DAG.getNode(ISD::STORE, MVT::Other, InChain, Chain.getOperand(1),
|
|
FIN);
|
|
assert(Chain.getOpcode() == ISD::TRUNCSTORE);
|
|
return DAG.getNode(ISD::TRUNCSTORE, MVT::Other, InChain, Chain.getOperand(1),
|
|
FIN, DAG.getSrcValue(NULL), DAG.getValueType(StoreVT));
|
|
}
|
|
|
|
|
|
/// EmitFastCCToFastCCTailCall - Given a tailcall in the tail position to a
|
|
/// fastcc function from a fastcc function, emit the code to emit a 'proper'
|
|
/// tail call.
|
|
void ISel::EmitFastCCToFastCCTailCall(SDNode *TailCallNode) {
|
|
unsigned CalleeCallArgSize =
|
|
cast<ConstantSDNode>(TailCallNode->getOperand(2))->getValue();
|
|
unsigned CallerArgSize = X86Lowering.getBytesToPopOnReturn();
|
|
|
|
//std::cerr << "****\n*** EMITTING TAIL CALL!\n****\n";
|
|
|
|
// Adjust argument stores. Instead of storing to [ESP], f.e., store to frame
|
|
// indexes that are relative to the incoming ESP. If the incoming and
|
|
// outgoing arg sizes are the same we will store to [InESP] instead of
|
|
// [CurESP] and the ESP referenced will be relative to the incoming function
|
|
// ESP.
|
|
int ESPOffset = CallerArgSize-CalleeCallArgSize;
|
|
SDOperand AdjustedArgStores =
|
|
GetAdjustedArgumentStores(TailCallNode->getOperand(0), ESPOffset, *TheDAG);
|
|
|
|
// Copy the return address of the caller into a virtual register so we don't
|
|
// clobber it.
|
|
SDOperand RetVal(0, 0);
|
|
if (ESPOffset) {
|
|
SDOperand RetValAddr = X86Lowering.getReturnAddressFrameIndex(*TheDAG);
|
|
RetVal = TheDAG->getLoad(MVT::i32, TheDAG->getEntryNode(),
|
|
RetValAddr, TheDAG->getSrcValue(NULL));
|
|
SelectExpr(RetVal);
|
|
}
|
|
|
|
// Codegen all of the argument stores.
|
|
Select(AdjustedArgStores);
|
|
|
|
if (RetVal.Val) {
|
|
// Emit a store of the saved ret value to the new location.
|
|
MachineFunction &MF = TheDAG->getMachineFunction();
|
|
int ReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(4, ESPOffset-4);
|
|
SDOperand RetValAddr = TheDAG->getFrameIndex(ReturnAddrFI, MVT::i32);
|
|
Select(TheDAG->getNode(ISD::STORE, MVT::Other, TheDAG->getEntryNode(),
|
|
RetVal, RetValAddr));
|
|
}
|
|
|
|
// Get the destination value.
|
|
SDOperand Callee = TailCallNode->getOperand(1);
|
|
bool isDirect = isa<GlobalAddressSDNode>(Callee) ||
|
|
isa<ExternalSymbolSDNode>(Callee);
|
|
unsigned CalleeReg = 0;
|
|
if (!isDirect) {
|
|
// If this is not a direct tail call, evaluate the callee's address.
|
|
CalleeReg = SelectExpr(Callee);
|
|
}
|
|
|
|
unsigned RegOp1 = 0;
|
|
unsigned RegOp2 = 0;
|
|
|
|
if (TailCallNode->getNumOperands() > 4) {
|
|
// The first value is passed in (a part of) EAX, the second in EDX.
|
|
RegOp1 = SelectExpr(TailCallNode->getOperand(4));
|
|
if (TailCallNode->getNumOperands() > 5)
|
|
RegOp2 = SelectExpr(TailCallNode->getOperand(5));
|
|
|
|
switch (TailCallNode->getOperand(4).getValueType()) {
|
|
default: assert(0 && "Bad thing to pass in regs");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(RegOp1);
|
|
RegOp1 = X86::AL;
|
|
break;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1);
|
|
RegOp1 = X86::AX;
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);
|
|
RegOp1 = X86::EAX;
|
|
break;
|
|
}
|
|
if (RegOp2)
|
|
switch (TailCallNode->getOperand(5).getValueType()) {
|
|
default: assert(0 && "Bad thing to pass in regs");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::DL).addReg(RegOp2);
|
|
RegOp2 = X86::DL;
|
|
break;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2);
|
|
RegOp2 = X86::DX;
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2);
|
|
RegOp2 = X86::EDX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If this is not a direct tail call, put the callee's address into ECX.
|
|
// The address has to be evaluated into a non-callee save register that is
|
|
// not used for arguments. This means either ECX, as EAX and EDX may be
|
|
// used for argument passing. We do this here to make sure that the
|
|
// expressions for arguments and callee are all evaluated before the copies
|
|
// into physical registers.
|
|
if (!isDirect)
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CalleeReg);
|
|
|
|
// Adjust ESP.
|
|
if (ESPOffset)
|
|
BuildMI(BB, X86::ADJSTACKPTRri, 2,
|
|
X86::ESP).addReg(X86::ESP).addImm(ESPOffset);
|
|
|
|
// TODO: handle jmp [mem]
|
|
if (!isDirect) {
|
|
BuildMI(BB, X86::TAILJMPr, 1).addReg(X86::ECX);
|
|
} else if (GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Callee)){
|
|
BuildMI(BB, X86::TAILJMPd, 1).addGlobalAddress(GASD->getGlobal(), true);
|
|
} else {
|
|
ExternalSymbolSDNode *ESSDN = cast<ExternalSymbolSDNode>(Callee);
|
|
BuildMI(BB, X86::TAILJMPd, 1).addExternalSymbol(ESSDN->getSymbol(), true);
|
|
}
|
|
// ADD IMPLICIT USE RegOp1/RegOp2's
|
|
}
|
|
|
|
|
|
void ISel::Select(SDOperand N) {
|
|
unsigned Tmp1 = 0, Tmp2 = 0, Opc = 0;
|
|
|
|
if (!ExprMap.insert(std::make_pair(N, 1)).second)
|
|
return; // Already selected.
|
|
|
|
SDNode *Node = N.Val;
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
Node->dump(); std::cerr << "\n";
|
|
assert(0 && "Node not handled yet!");
|
|
case X86ISD::RDTSC_DAG:
|
|
Select(Node->getOperand(0)); //Chain
|
|
BuildMI(BB, X86::RDTSC, 0);
|
|
return;
|
|
|
|
case ISD::EntryToken: return; // Noop
|
|
case ISD::TokenFactor:
|
|
if (Node->getNumOperands() == 2) {
|
|
bool OneFirst =
|
|
getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0));
|
|
Select(Node->getOperand(OneFirst));
|
|
Select(Node->getOperand(!OneFirst));
|
|
} else {
|
|
std::vector<std::pair<unsigned, unsigned> > OpsP;
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
|
|
OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i));
|
|
std::sort(OpsP.begin(), OpsP.end());
|
|
std::reverse(OpsP.begin(), OpsP.end());
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
|
|
Select(Node->getOperand(OpsP[i].second));
|
|
}
|
|
return;
|
|
case ISD::CopyToReg:
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(2));
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(2));
|
|
Select(N.getOperand(0));
|
|
}
|
|
Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
|
|
|
|
if (Tmp1 != Tmp2) {
|
|
switch (N.getOperand(2).getValueType()) {
|
|
default: assert(0 && "Invalid type for operation!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::MOV8rr; break;
|
|
case MVT::i16: Opc = X86::MOV16rr; break;
|
|
case MVT::i32: Opc = X86::MOV32rr; break;
|
|
case MVT::f32: Opc = X86::MOVSSrr; break;
|
|
case MVT::f64:
|
|
if (X86ScalarSSE) {
|
|
Opc = X86::MOVSDrr;
|
|
} else {
|
|
Opc = X86::FpMOV;
|
|
ContainsFPCode = true;
|
|
}
|
|
break;
|
|
}
|
|
BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
|
|
}
|
|
return;
|
|
case ISD::RET:
|
|
if (N.getOperand(0).getOpcode() == ISD::CALLSEQ_END ||
|
|
N.getOperand(0).getOpcode() == X86ISD::TAILCALL ||
|
|
N.getOperand(0).getOpcode() == ISD::TokenFactor)
|
|
if (EmitPotentialTailCall(Node))
|
|
return;
|
|
|
|
switch (N.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Unknown return instruction!");
|
|
case 3:
|
|
assert(N.getOperand(1).getValueType() == MVT::i32 &&
|
|
N.getOperand(2).getValueType() == MVT::i32 &&
|
|
"Unknown two-register value!");
|
|
if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Tmp2 = SelectExpr(N.getOperand(2));
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(2));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
}
|
|
Select(N.getOperand(0));
|
|
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2);
|
|
break;
|
|
case 2:
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Select(N.getOperand(0));
|
|
}
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 && "All other types should have been promoted!!");
|
|
case MVT::f32:
|
|
if (X86ScalarSSE) {
|
|
// Spill the value to memory and reload it into top of stack.
|
|
unsigned Size = MVT::getSizeInBits(MVT::f32)/8;
|
|
MachineFunction *F = BB->getParent();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
|
|
addFrameReference(BuildMI(BB, X86::MOVSSmr, 5), FrameIdx).addReg(Tmp1);
|
|
addFrameReference(BuildMI(BB, X86::FpLD32m, 4, X86::FP0), FrameIdx);
|
|
BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0);
|
|
ContainsFPCode = true;
|
|
} else {
|
|
assert(0 && "MVT::f32 only legal with scalar sse fp");
|
|
abort();
|
|
}
|
|
break;
|
|
case MVT::f64:
|
|
if (X86ScalarSSE) {
|
|
// Spill the value to memory and reload it into top of stack.
|
|
unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
|
|
MachineFunction *F = BB->getParent();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
|
|
addFrameReference(BuildMI(BB, X86::MOVSDmr, 5), FrameIdx).addReg(Tmp1);
|
|
addFrameReference(BuildMI(BB, X86::FpLD64m, 4, X86::FP0), FrameIdx);
|
|
BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0);
|
|
ContainsFPCode = true;
|
|
} else {
|
|
BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1);
|
|
}
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
Select(N.getOperand(0));
|
|
break;
|
|
}
|
|
if (X86Lowering.getBytesToPopOnReturn() == 0)
|
|
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
|
|
else
|
|
BuildMI(BB, X86::RETI, 1).addImm(X86Lowering.getBytesToPopOnReturn());
|
|
return;
|
|
case ISD::BR: {
|
|
Select(N.getOperand(0));
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
|
|
BuildMI(BB, X86::JMP, 1).addMBB(Dest);
|
|
return;
|
|
}
|
|
|
|
case ISD::BRCOND: {
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
|
|
|
|
// Try to fold a setcc into the branch. If this fails, emit a test/jne
|
|
// pair.
|
|
if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) {
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
Select(N.getOperand(0));
|
|
}
|
|
BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1);
|
|
BuildMI(BB, X86::JNE, 1).addMBB(Dest);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case ISD::LOAD:
|
|
// If this load could be folded into the only using instruction, and if it
|
|
// is safe to emit the instruction here, try to do so now.
|
|
if (Node->hasNUsesOfValue(1, 0)) {
|
|
SDOperand TheVal = N.getValue(0);
|
|
SDNode *User = 0;
|
|
for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) {
|
|
assert(UI != Node->use_end() && "Didn't find use!");
|
|
SDNode *UN = *UI;
|
|
for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i)
|
|
if (UN->getOperand(i) == TheVal) {
|
|
User = UN;
|
|
goto FoundIt;
|
|
}
|
|
}
|
|
FoundIt:
|
|
// Only handle unary operators right now.
|
|
if (User->getNumOperands() == 1) {
|
|
ExprMap.erase(N);
|
|
SelectExpr(SDOperand(User, 0));
|
|
return;
|
|
}
|
|
}
|
|
ExprMap.erase(N);
|
|
SelectExpr(N);
|
|
return;
|
|
case ISD::READPORT:
|
|
case ISD::EXTLOAD:
|
|
case ISD::SEXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
case X86ISD::TAILCALL:
|
|
case X86ISD::CALL:
|
|
ExprMap.erase(N);
|
|
SelectExpr(N);
|
|
return;
|
|
case ISD::CopyFromReg:
|
|
case X86ISD::FILD64m:
|
|
ExprMap.erase(N);
|
|
SelectExpr(N.getValue(0));
|
|
return;
|
|
|
|
case X86ISD::FP_TO_INT16_IN_MEM:
|
|
case X86ISD::FP_TO_INT32_IN_MEM:
|
|
case X86ISD::FP_TO_INT64_IN_MEM: {
|
|
assert(N.getOperand(1).getValueType() == MVT::f64);
|
|
X86AddressMode AM;
|
|
Select(N.getOperand(0)); // Select the token chain
|
|
|
|
unsigned ValReg;
|
|
if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) {
|
|
ValReg = SelectExpr(N.getOperand(1));
|
|
SelectAddress(N.getOperand(2), AM);
|
|
} else {
|
|
SelectAddress(N.getOperand(2), AM);
|
|
ValReg = SelectExpr(N.getOperand(1));
|
|
}
|
|
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
//
|
|
MachineFunction *F = BB->getParent();
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
|
|
addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned OldCW = MakeReg(MVT::i16);
|
|
addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
|
|
|
|
// Get the X86 opcode to use.
|
|
switch (N.getOpcode()) {
|
|
case X86ISD::FP_TO_INT16_IN_MEM: Tmp1 = X86::FpIST16m; break;
|
|
case X86ISD::FP_TO_INT32_IN_MEM: Tmp1 = X86::FpIST32m; break;
|
|
case X86ISD::FP_TO_INT64_IN_MEM: Tmp1 = X86::FpIST64m; break;
|
|
}
|
|
|
|
addFullAddress(BuildMI(BB, Tmp1, 5), AM).addReg(ValReg);
|
|
|
|
// Reload the original control word now.
|
|
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
|
|
return;
|
|
}
|
|
|
|
case ISD::TRUNCSTORE: { // truncstore chain, val, ptr, SRCVALUE, storety
|
|
X86AddressMode AM;
|
|
MVT::ValueType StoredTy = cast<VTSDNode>(N.getOperand(4))->getVT();
|
|
assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 ||
|
|
StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/)
|
|
&& "Unsupported TRUNCSTORE for this target!");
|
|
|
|
if (StoredTy == MVT::i16) {
|
|
// FIXME: This is here just to allow testing. X86 doesn't really have a
|
|
// TRUNCSTORE i16 operation, but this is required for targets that do not
|
|
// have 16-bit integer registers. We occasionally disable 16-bit integer
|
|
// registers to test the promotion code.
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
SelectAddress(N.getOperand(2), AM);
|
|
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
|
|
addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX);
|
|
return;
|
|
}
|
|
|
|
// Store of constant bool?
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
|
|
Select(N.getOperand(0));
|
|
SelectAddress(N.getOperand(2), AM);
|
|
} else {
|
|
SelectAddress(N.getOperand(2), AM);
|
|
Select(N.getOperand(0));
|
|
}
|
|
addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue());
|
|
return;
|
|
}
|
|
|
|
switch (StoredTy) {
|
|
default: assert(0 && "Cannot truncstore this type!");
|
|
case MVT::i1: Opc = X86::MOV8mr; break;
|
|
case MVT::f32:
|
|
assert(!X86ScalarSSE && "Cannot truncstore scalar SSE regs");
|
|
Opc = X86::FpST32m; break;
|
|
}
|
|
|
|
std::vector<std::pair<unsigned, unsigned> > RP;
|
|
RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0));
|
|
RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1));
|
|
RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2));
|
|
std::sort(RP.begin(), RP.end());
|
|
|
|
Tmp1 = 0; // Silence a warning.
|
|
for (unsigned i = 0; i != 3; ++i)
|
|
switch (RP[2-i].second) {
|
|
default: assert(0 && "Unknown operand number!");
|
|
case 0: Select(N.getOperand(0)); break;
|
|
case 1: Tmp1 = SelectExpr(N.getOperand(1)); break;
|
|
case 2: SelectAddress(N.getOperand(2), AM); break;
|
|
}
|
|
|
|
addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
|
|
return;
|
|
}
|
|
case ISD::STORE: {
|
|
X86AddressMode AM;
|
|
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Opc = 0;
|
|
switch (CN->getValueType(0)) {
|
|
default: assert(0 && "Invalid type for operation!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::MOV8mi; break;
|
|
case MVT::i16: Opc = X86::MOV16mi; break;
|
|
case MVT::i32: Opc = X86::MOV32mi; break;
|
|
}
|
|
if (Opc) {
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
|
|
Select(N.getOperand(0));
|
|
SelectAddress(N.getOperand(2), AM);
|
|
} else {
|
|
SelectAddress(N.getOperand(2), AM);
|
|
Select(N.getOperand(0));
|
|
}
|
|
addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue());
|
|
return;
|
|
}
|
|
} else if (GlobalAddressSDNode *GA =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
|
|
assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand");
|
|
|
|
if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
|
|
Select(N.getOperand(0));
|
|
SelectAddress(N.getOperand(2), AM);
|
|
} else {
|
|
SelectAddress(N.getOperand(2), AM);
|
|
Select(N.getOperand(0));
|
|
}
|
|
GlobalValue *GV = GA->getGlobal();
|
|
// For Darwin, external and weak symbols are indirect, so we want to load
|
|
// the value at address GV, not the value of GV itself.
|
|
if (Subtarget->getIndirectExternAndWeakGlobals() &&
|
|
(GV->hasWeakLinkage() || GV->isExternal())) {
|
|
Tmp1 = MakeReg(MVT::i32);
|
|
BuildMI(BB, X86::MOV32rm, 4, Tmp1).addReg(0).addZImm(1).addReg(0)
|
|
.addGlobalAddress(GV, false, 0);
|
|
addFullAddress(BuildMI(BB, X86::MOV32mr, 4+1),AM).addReg(Tmp1);
|
|
} else {
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1),AM).addGlobalAddress(GV);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Check to see if this is a load/op/store combination.
|
|
if (TryToFoldLoadOpStore(Node))
|
|
return;
|
|
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 && "Cannot store this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = X86::MOV8mr; break;
|
|
case MVT::i16: Opc = X86::MOV16mr; break;
|
|
case MVT::i32: Opc = X86::MOV32mr; break;
|
|
case MVT::f32: Opc = X86::MOVSSmr; break;
|
|
case MVT::f64: Opc = X86ScalarSSE ? X86::MOVSDmr : X86::FpST64m; break;
|
|
}
|
|
|
|
std::vector<std::pair<unsigned, unsigned> > RP;
|
|
RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0));
|
|
RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1));
|
|
RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2));
|
|
std::sort(RP.begin(), RP.end());
|
|
|
|
Tmp1 = 0; // Silence a warning.
|
|
for (unsigned i = 0; i != 3; ++i)
|
|
switch (RP[2-i].second) {
|
|
default: assert(0 && "Unknown operand number!");
|
|
case 0: Select(N.getOperand(0)); break;
|
|
case 1: Tmp1 = SelectExpr(N.getOperand(1)); break;
|
|
case 2: SelectAddress(N.getOperand(2), AM); break;
|
|
}
|
|
|
|
addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
|
|
return;
|
|
}
|
|
case ISD::CALLSEQ_START:
|
|
Select(N.getOperand(0));
|
|
// Stack amount
|
|
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(Tmp1);
|
|
return;
|
|
case ISD::CALLSEQ_END:
|
|
Select(N.getOperand(0));
|
|
return;
|
|
case ISD::MEMSET: {
|
|
Select(N.getOperand(0)); // Select the chain.
|
|
unsigned Align =
|
|
(unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue();
|
|
if (Align == 0) Align = 1;
|
|
|
|
// Turn the byte code into # iterations
|
|
unsigned CountReg;
|
|
unsigned Opcode;
|
|
if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
|
|
unsigned Val = ValC->getValue() & 255;
|
|
|
|
// If the value is a constant, then we can potentially use larger sets.
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
CountReg = MakeReg(MVT::i32);
|
|
if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
|
|
BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2);
|
|
} else {
|
|
unsigned ByteReg = SelectExpr(Node->getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
|
|
}
|
|
BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
|
|
Opcode = X86::REP_STOSW;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
CountReg = MakeReg(MVT::i32);
|
|
if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
|
|
BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4);
|
|
} else {
|
|
unsigned ByteReg = SelectExpr(Node->getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
|
|
}
|
|
Val = (Val << 8) | Val;
|
|
BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
|
|
Opcode = X86::REP_STOSD;
|
|
break;
|
|
default: // BYTE aligned
|
|
CountReg = SelectExpr(Node->getOperand(3));
|
|
BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
|
|
Opcode = X86::REP_STOSB;
|
|
break;
|
|
}
|
|
} else {
|
|
// If it's not a constant value we are storing, just fall back. We could
|
|
// try to be clever to form 16 bit and 32 bit values, but we don't yet.
|
|
unsigned ValReg = SelectExpr(Node->getOperand(2));
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
|
|
CountReg = SelectExpr(Node->getOperand(3));
|
|
Opcode = X86::REP_STOSB;
|
|
}
|
|
|
|
// No matter what the alignment is, we put the source in ESI, the
|
|
// destination in EDI, and the count in ECX.
|
|
unsigned TmpReg1 = SelectExpr(Node->getOperand(1));
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
|
|
BuildMI(BB, Opcode, 0);
|
|
return;
|
|
}
|
|
case ISD::MEMCPY: {
|
|
Select(N.getOperand(0)); // Select the chain.
|
|
unsigned Align =
|
|
(unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue();
|
|
if (Align == 0) Align = 1;
|
|
|
|
// Turn the byte code into # iterations
|
|
unsigned CountReg;
|
|
unsigned Opcode;
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
CountReg = MakeReg(MVT::i32);
|
|
if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
|
|
BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2);
|
|
} else {
|
|
unsigned ByteReg = SelectExpr(Node->getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
|
|
}
|
|
Opcode = X86::REP_MOVSW;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
CountReg = MakeReg(MVT::i32);
|
|
if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
|
|
BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4);
|
|
} else {
|
|
unsigned ByteReg = SelectExpr(Node->getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
|
|
}
|
|
Opcode = X86::REP_MOVSD;
|
|
break;
|
|
default: // BYTE aligned
|
|
CountReg = SelectExpr(Node->getOperand(3));
|
|
Opcode = X86::REP_MOVSB;
|
|
break;
|
|
}
|
|
|
|
// No matter what the alignment is, we put the source in ESI, the
|
|
// destination in EDI, and the count in ECX.
|
|
unsigned TmpReg1 = SelectExpr(Node->getOperand(1));
|
|
unsigned TmpReg2 = SelectExpr(Node->getOperand(2));
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
|
|
BuildMI(BB, Opcode, 0);
|
|
return;
|
|
}
|
|
case ISD::WRITEPORT:
|
|
if (Node->getOperand(2).getValueType() != MVT::i16) {
|
|
std::cerr << "llvm.writeport: Address size is not 16 bits\n";
|
|
exit(1);
|
|
}
|
|
Select(Node->getOperand(0)); // Emit the chain.
|
|
|
|
Tmp1 = SelectExpr(Node->getOperand(1));
|
|
switch (Node->getOperand(1).getValueType()) {
|
|
case MVT::i8:
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
|
|
Tmp2 = X86::OUT8ir; Opc = X86::OUT8rr;
|
|
break;
|
|
case MVT::i16:
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1);
|
|
Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr;
|
|
break;
|
|
case MVT::i32:
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
|
|
Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr;
|
|
break;
|
|
default:
|
|
std::cerr << "llvm.writeport: invalid data type for X86 target";
|
|
exit(1);
|
|
}
|
|
|
|
// If the port is a single-byte constant, use the immediate form.
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node->getOperand(2)))
|
|
if ((CN->getValue() & 255) == CN->getValue()) {
|
|
BuildMI(BB, Tmp2, 1).addImm(CN->getValue());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, move the I/O port address into the DX register.
|
|
unsigned Reg = SelectExpr(Node->getOperand(2));
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
|
|
BuildMI(BB, Opc, 0);
|
|
return;
|
|
}
|
|
assert(0 && "Should not be reached!");
|
|
}
|
|
|
|
|
|
/// createX86ISelPattern - This pass converts an LLVM function
|
|
/// into a machine code representation using pattern matching and a machine
|
|
/// description file.
|
|
///
|
|
FunctionPass *llvm::createX86ISelPattern(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|