mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-24 21:14:56 +00:00
1274ced8a3
scheduled in multiple regions, liveness data used by the anti-dependence breaker is carried from one region to the next, however the information reflects the state of the instructions before scheduling. After scheduling, there may be new live range overlaps. Handle this by pessimizing the liveness data carried between regions to the point where it will be conservatively correct now matter how the earlier region is scheduled. This fixes a miscompilation in 176.gcc with the post-RA scheduler enabled. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66558 91177308-0d34-0410-b5e6-96231b3b80d8
954 lines
35 KiB
C++
954 lines
35 KiB
C++
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
#include "ScheduleDAGInstrs.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumNoops, "Number of noops inserted");
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
|
|
static cl::opt<bool>
|
|
EnableAntiDepBreaking("break-anti-dependencies",
|
|
cl::desc("Break post-RA scheduling anti-dependencies"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
EnablePostRAHazardAvoidance("avoid-hazards",
|
|
cl::desc("Enable simple hazard-avoidance"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
PostRAScheduler() : MachineFunctionPass(&ID) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
const char *getPassName() const {
|
|
return "Post RA top-down list latency scheduler";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn);
|
|
};
|
|
char PostRAScheduler::ID = 0;
|
|
|
|
class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
///
|
|
LatencyPriorityQueue AvailableQueue;
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
/// the operation). Once the operands becomes available, the instruction is
|
|
/// added to the AvailableQueue.
|
|
std::vector<SUnit*> PendingQueue;
|
|
|
|
/// Topo - A topological ordering for SUnits.
|
|
ScheduleDAGTopologicalSort Topo;
|
|
|
|
/// AllocatableSet - The set of allocatable registers.
|
|
/// We'll be ignoring anti-dependencies on non-allocatable registers,
|
|
/// because they may not be safe to break.
|
|
const BitVector AllocatableSet;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
ScheduleHazardRecognizer *HazardRec;
|
|
|
|
/// Classes - For live regs that are only used in one register class in a
|
|
/// live range, the register class. If the register is not live, the
|
|
/// corresponding value is null. If the register is live but used in
|
|
/// multiple register classes, the corresponding value is -1 casted to a
|
|
/// pointer.
|
|
const TargetRegisterClass *
|
|
Classes[TargetRegisterInfo::FirstVirtualRegister];
|
|
|
|
/// RegRegs - Map registers to all their references within a live range.
|
|
std::multimap<unsigned, MachineOperand *> RegRefs;
|
|
|
|
/// The index of the most recent kill (proceding bottom-up), or ~0u if
|
|
/// the register is not live.
|
|
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
|
|
|
|
/// The index of the most recent complete def (proceding bottom up), or ~0u
|
|
/// if the register is live.
|
|
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
|
|
|
|
public:
|
|
SchedulePostRATDList(MachineFunction &MF,
|
|
const MachineLoopInfo &MLI,
|
|
const MachineDominatorTree &MDT,
|
|
ScheduleHazardRecognizer *HR)
|
|
: ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
|
|
AllocatableSet(TRI->getAllocatableSet(MF)),
|
|
HazardRec(HR) {}
|
|
|
|
~SchedulePostRATDList() {
|
|
delete HazardRec;
|
|
}
|
|
|
|
/// StartBlock - Initialize register live-range state for scheduling in
|
|
/// this block.
|
|
///
|
|
void StartBlock(MachineBasicBlock *BB);
|
|
|
|
/// Schedule - Schedule the instruction range using list scheduling.
|
|
///
|
|
void Schedule();
|
|
|
|
/// Observe - Update liveness information to account for the current
|
|
/// instruction, which will not be scheduled.
|
|
///
|
|
void Observe(MachineInstr *MI, unsigned Count);
|
|
|
|
/// FinishBlock - Clean up register live-range state.
|
|
///
|
|
void FinishBlock();
|
|
|
|
private:
|
|
void PrescanInstruction(MachineInstr *MI);
|
|
void ScanInstruction(MachineInstr *MI, unsigned Count);
|
|
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
|
|
void ReleaseSuccessors(SUnit *SU);
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
void ListScheduleTopDown();
|
|
bool BreakAntiDependencies();
|
|
};
|
|
|
|
/// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
|
|
/// a coarse classification and attempts to avoid that instructions of
|
|
/// a given class aren't grouped too densely together.
|
|
class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
|
|
/// Class - A simple classification for SUnits.
|
|
enum Class {
|
|
Other, Load, Store
|
|
};
|
|
|
|
/// Window - The Class values of the most recently issued
|
|
/// instructions.
|
|
Class Window[8];
|
|
|
|
/// getClass - Classify the given SUnit.
|
|
Class getClass(const SUnit *SU) {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (TID.mayLoad())
|
|
return Load;
|
|
if (TID.mayStore())
|
|
return Store;
|
|
return Other;
|
|
}
|
|
|
|
/// Step - Rotate the existing entries in Window and insert the
|
|
/// given class value in position as the most recent.
|
|
void Step(Class C) {
|
|
std::copy(Window+1, array_endof(Window), Window);
|
|
Window[array_lengthof(Window)-1] = C;
|
|
}
|
|
|
|
public:
|
|
SimpleHazardRecognizer() : Window() {}
|
|
|
|
virtual HazardType getHazardType(SUnit *SU) {
|
|
Class C = getClass(SU);
|
|
if (C == Other)
|
|
return NoHazard;
|
|
unsigned Score = 0;
|
|
for (unsigned i = 0; i != array_lengthof(Window); ++i)
|
|
if (Window[i] == C)
|
|
Score += i + 1;
|
|
if (Score > array_lengthof(Window) * 2)
|
|
return Hazard;
|
|
return NoHazard;
|
|
}
|
|
|
|
virtual void EmitInstruction(SUnit *SU) {
|
|
Step(getClass(SU));
|
|
}
|
|
|
|
virtual void AdvanceCycle() {
|
|
Step(Other);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// isSchedulingBoundary - Test if the given instruction should be
|
|
/// considered a scheduling boundary. This primarily includes labels
|
|
/// and terminators.
|
|
///
|
|
static bool isSchedulingBoundary(const MachineInstr *MI,
|
|
const MachineFunction &MF) {
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI->getDesc().isTerminator() || MI->isLabel())
|
|
return true;
|
|
|
|
// Don't attempt to schedule around any instruction that modifies
|
|
// a stack-oriented pointer, as it's unlikely to be profitable. This
|
|
// saves compile time, because it doesn't require every single
|
|
// stack slot reference to depend on the instruction that does the
|
|
// modification.
|
|
const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
|
|
if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
|
DOUT << "PostRAScheduler\n";
|
|
|
|
const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
|
|
const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
|
|
ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
|
|
new SimpleHazardRecognizer :
|
|
new ScheduleHazardRecognizer();
|
|
|
|
SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
|
|
|
|
// Loop over all of the basic blocks
|
|
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
|
MBB != MBBe; ++MBB) {
|
|
// Initialize register live-range state for scheduling in this block.
|
|
Scheduler.StartBlock(MBB);
|
|
|
|
// Schedule each sequence of instructions not interrupted by a label
|
|
// or anything else that effectively needs to shut down scheduling.
|
|
MachineBasicBlock::iterator Current = MBB->end();
|
|
unsigned Count = MBB->size(), CurrentCount = Count;
|
|
for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
|
|
MachineInstr *MI = prior(I);
|
|
if (isSchedulingBoundary(MI, Fn)) {
|
|
Scheduler.Run(MBB, I, Current, CurrentCount);
|
|
Scheduler.EmitSchedule();
|
|
Current = MI;
|
|
CurrentCount = Count - 1;
|
|
Scheduler.Observe(MI, CurrentCount);
|
|
}
|
|
I = MI;
|
|
--Count;
|
|
}
|
|
assert(Count == 0 && "Instruction count mismatch!");
|
|
assert(MBB->begin() == Current || CurrentCount != 0 &&
|
|
"Instruction count mismatch!");
|
|
Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
|
|
Scheduler.EmitSchedule();
|
|
|
|
// Clean up register live-range state.
|
|
Scheduler.FinishBlock();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// StartBlock - Initialize register live-range state for scheduling in
|
|
/// this block.
|
|
///
|
|
void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
|
|
// Call the superclass.
|
|
ScheduleDAGInstrs::StartBlock(BB);
|
|
|
|
// Clear out the register class data.
|
|
std::fill(Classes, array_endof(Classes),
|
|
static_cast<const TargetRegisterClass *>(0));
|
|
|
|
// Initialize the indices to indicate that no registers are live.
|
|
std::fill(KillIndices, array_endof(KillIndices), ~0u);
|
|
std::fill(DefIndices, array_endof(DefIndices), BB->size());
|
|
|
|
// Determine the live-out physregs for this block.
|
|
if (!BB->empty() && BB->back().getDesc().isReturn())
|
|
// In a return block, examine the function live-out regs.
|
|
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
|
|
E = MRI.liveout_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BB->size();
|
|
DefIndices[Reg] = ~0u;
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BB->size();
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
else
|
|
// In a non-return block, examine the live-in regs of all successors.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BB->size();
|
|
DefIndices[Reg] = ~0u;
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BB->size();
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
|
|
// Consider callee-saved registers as live-out, since we're running after
|
|
// prologue/epilogue insertion so there's no way to add additional
|
|
// saved registers.
|
|
//
|
|
// TODO: If the callee saves and restores these, then we can potentially
|
|
// use them between the save and the restore. To do that, we could scan
|
|
// the exit blocks to see which of these registers are defined.
|
|
// Alternatively, callee-saved registers that aren't saved and restored
|
|
// could be marked live-in in every block.
|
|
for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
|
|
unsigned Reg = *I;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BB->size();
|
|
DefIndices[Reg] = ~0u;
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[AliasReg] = BB->size();
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Schedule - Schedule the instruction range using list scheduling.
|
|
///
|
|
void SchedulePostRATDList::Schedule() {
|
|
DOUT << "********** List Scheduling **********\n";
|
|
|
|
// Build the scheduling graph.
|
|
BuildSchedGraph();
|
|
|
|
if (EnableAntiDepBreaking) {
|
|
if (BreakAntiDependencies()) {
|
|
// We made changes. Update the dependency graph.
|
|
// Theoretically we could update the graph in place:
|
|
// When a live range is changed to use a different register, remove
|
|
// the def's anti-dependence *and* output-dependence edges due to
|
|
// that register, and add new anti-dependence and output-dependence
|
|
// edges based on the next live range of the register.
|
|
SUnits.clear();
|
|
EntrySU = SUnit();
|
|
ExitSU = SUnit();
|
|
BuildSchedGraph();
|
|
}
|
|
}
|
|
|
|
AvailableQueue.initNodes(SUnits);
|
|
|
|
ListScheduleTopDown();
|
|
|
|
AvailableQueue.releaseState();
|
|
}
|
|
|
|
/// Observe - Update liveness information to account for the current
|
|
/// instruction, which will not be scheduled.
|
|
///
|
|
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
|
|
assert(Count < InsertPosIndex && "Instruction index out of expected range!");
|
|
|
|
// Any register which was defined within the previous scheduling region
|
|
// may have been rescheduled and its lifetime may overlap with registers
|
|
// in ways not reflected in our current liveness state. For each such
|
|
// register, adjust the liveness state to be conservatively correct.
|
|
for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
|
|
if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
|
|
assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
|
|
// Mark this register to be non-renamable.
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
// Move the def index to the end of the previous region, to reflect
|
|
// that the def could theoretically have been scheduled at the end.
|
|
DefIndices[Reg] = InsertPosIndex;
|
|
}
|
|
|
|
PrescanInstruction(MI);
|
|
ScanInstruction(MI, Count);
|
|
}
|
|
|
|
/// FinishBlock - Clean up register live-range state.
|
|
///
|
|
void SchedulePostRATDList::FinishBlock() {
|
|
RegRefs.clear();
|
|
|
|
// Call the superclass.
|
|
ScheduleDAGInstrs::FinishBlock();
|
|
}
|
|
|
|
/// getInstrOperandRegClass - Return register class of the operand of an
|
|
/// instruction of the specified TargetInstrDesc.
|
|
static const TargetRegisterClass*
|
|
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
|
|
const TargetInstrDesc &II, unsigned Op) {
|
|
if (Op >= II.getNumOperands())
|
|
return NULL;
|
|
if (II.OpInfo[Op].isLookupPtrRegClass())
|
|
return TRI->getPointerRegClass();
|
|
return TRI->getRegClass(II.OpInfo[Op].RegClass);
|
|
}
|
|
|
|
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
|
|
/// critical path.
|
|
static SDep *CriticalPathStep(SUnit *SU) {
|
|
SDep *Next = 0;
|
|
unsigned NextDepth = 0;
|
|
// Find the predecessor edge with the greatest depth.
|
|
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
|
P != PE; ++P) {
|
|
SUnit *PredSU = P->getSUnit();
|
|
unsigned PredLatency = P->getLatency();
|
|
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
|
|
// In the case of a latency tie, prefer an anti-dependency edge over
|
|
// other types of edges.
|
|
if (NextDepth < PredTotalLatency ||
|
|
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
|
|
NextDepth = PredTotalLatency;
|
|
Next = &*P;
|
|
}
|
|
}
|
|
return Next;
|
|
}
|
|
|
|
void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
|
|
// Scan the register operands for this instruction and update
|
|
// Classes and RegRefs.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
const TargetRegisterClass *NewRC =
|
|
getInstrOperandRegClass(TRI, MI->getDesc(), i);
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
// Now check for aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
// If an alias of the reg is used during the live range, give up.
|
|
// Note that this allows us to skip checking if AntiDepReg
|
|
// overlaps with any of the aliases, among other things.
|
|
unsigned AliasReg = *Alias;
|
|
if (Classes[AliasReg]) {
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
|
|
// If we're still willing to consider this register, note the reference.
|
|
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
}
|
|
}
|
|
|
|
void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
|
|
unsigned Count) {
|
|
// Update liveness.
|
|
// Proceding upwards, registers that are defed but not used in this
|
|
// instruction are now dead.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isDef()) continue;
|
|
// Ignore two-addr defs.
|
|
if (MI->isRegReDefinedByTwoAddr(i)) continue;
|
|
|
|
DefIndices[Reg] = Count;
|
|
KillIndices[Reg] = ~0u;
|
|
assert(((KillIndices[Reg] == ~0u) !=
|
|
(DefIndices[Reg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for Reg!");
|
|
Classes[Reg] = 0;
|
|
RegRefs.erase(Reg);
|
|
// Repeat, for all subregs.
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
unsigned SubregReg = *Subreg;
|
|
DefIndices[SubregReg] = Count;
|
|
KillIndices[SubregReg] = ~0u;
|
|
Classes[SubregReg] = 0;
|
|
RegRefs.erase(SubregReg);
|
|
}
|
|
// Conservatively mark super-registers as unusable.
|
|
for (const unsigned *Super = TRI->getSuperRegisters(Reg);
|
|
*Super; ++Super) {
|
|
unsigned SuperReg = *Super;
|
|
Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isUse()) continue;
|
|
|
|
const TargetRegisterClass *NewRC =
|
|
getInstrOperandRegClass(TRI, MI->getDesc(), i);
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
// It wasn't previously live but now it is, this is a kill.
|
|
if (KillIndices[Reg] == ~0u) {
|
|
KillIndices[Reg] = Count;
|
|
DefIndices[Reg] = ~0u;
|
|
assert(((KillIndices[Reg] == ~0u) !=
|
|
(DefIndices[Reg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for Reg!");
|
|
}
|
|
// Repeat, for all aliases.
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
if (KillIndices[AliasReg] == ~0u) {
|
|
KillIndices[AliasReg] = Count;
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
|
|
/// of the ScheduleDAG and break them by renaming registers.
|
|
///
|
|
bool SchedulePostRATDList::BreakAntiDependencies() {
|
|
// The code below assumes that there is at least one instruction,
|
|
// so just duck out immediately if the block is empty.
|
|
if (SUnits.empty()) return false;
|
|
|
|
// Find the node at the bottom of the critical path.
|
|
SUnit *Max = 0;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
|
|
Max = SU;
|
|
}
|
|
|
|
DOUT << "Critical path has total latency "
|
|
<< (Max->getDepth() + Max->Latency) << "\n";
|
|
|
|
// Track progress along the critical path through the SUnit graph as we walk
|
|
// the instructions.
|
|
SUnit *CriticalPathSU = Max;
|
|
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
|
|
|
|
// Consider this pattern:
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// There are three anti-dependencies here, and without special care,
|
|
// we'd break all of them using the same register:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// because at each anti-dependence, B is the first register that
|
|
// isn't A which is free. This re-introduces anti-dependencies
|
|
// at all but one of the original anti-dependencies that we were
|
|
// trying to break. To avoid this, keep track of the most recent
|
|
// register that each register was replaced with, avoid avoid
|
|
// using it to repair an anti-dependence on the same register.
|
|
// This lets us produce this:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// C = ...
|
|
// ... = C
|
|
// B = ...
|
|
// ... = B
|
|
// This still has an anti-dependence on B, but at least it isn't on the
|
|
// original critical path.
|
|
//
|
|
// TODO: If we tracked more than one register here, we could potentially
|
|
// fix that remaining critical edge too. This is a little more involved,
|
|
// because unlike the most recent register, less recent registers should
|
|
// still be considered, though only if no other registers are available.
|
|
unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
|
|
|
|
// Attempt to break anti-dependence edges on the critical path. Walk the
|
|
// instructions from the bottom up, tracking information about liveness
|
|
// as we go to help determine which registers are available.
|
|
bool Changed = false;
|
|
unsigned Count = InsertPosIndex - 1;
|
|
for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
|
|
I != E; --Count) {
|
|
MachineInstr *MI = --I;
|
|
|
|
// After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
|
|
// dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
|
|
// is left behind appearing to clobber the super-register, while the
|
|
// subregister needs to remain live. So we just ignore them.
|
|
if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
|
|
continue;
|
|
|
|
// Check if this instruction has a dependence on the critical path that
|
|
// is an anti-dependence that we may be able to break. If it is, set
|
|
// AntiDepReg to the non-zero register associated with the anti-dependence.
|
|
//
|
|
// We limit our attention to the critical path as a heuristic to avoid
|
|
// breaking anti-dependence edges that aren't going to significantly
|
|
// impact the overall schedule. There are a limited number of registers
|
|
// and we want to save them for the important edges.
|
|
//
|
|
// TODO: Instructions with multiple defs could have multiple
|
|
// anti-dependencies. The current code here only knows how to break one
|
|
// edge per instruction. Note that we'd have to be able to break all of
|
|
// the anti-dependencies in an instruction in order to be effective.
|
|
unsigned AntiDepReg = 0;
|
|
if (MI == CriticalPathMI) {
|
|
if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
|
|
SUnit *NextSU = Edge->getSUnit();
|
|
|
|
// Only consider anti-dependence edges.
|
|
if (Edge->getKind() == SDep::Anti) {
|
|
AntiDepReg = Edge->getReg();
|
|
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
|
|
// Don't break anti-dependencies on non-allocatable registers.
|
|
if (!AllocatableSet.test(AntiDepReg))
|
|
AntiDepReg = 0;
|
|
else {
|
|
// If the SUnit has other dependencies on the SUnit that it
|
|
// anti-depends on, don't bother breaking the anti-dependency
|
|
// since those edges would prevent such units from being
|
|
// scheduled past each other regardless.
|
|
//
|
|
// Also, if there are dependencies on other SUnits with the
|
|
// same register as the anti-dependency, don't attempt to
|
|
// break it.
|
|
for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
|
|
PE = CriticalPathSU->Preds.end(); P != PE; ++P)
|
|
if (P->getSUnit() == NextSU ?
|
|
(P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
|
|
(P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
CriticalPathSU = NextSU;
|
|
CriticalPathMI = CriticalPathSU->getInstr();
|
|
} else {
|
|
// We've reached the end of the critical path.
|
|
CriticalPathSU = 0;
|
|
CriticalPathMI = 0;
|
|
}
|
|
}
|
|
|
|
PrescanInstruction(MI);
|
|
|
|
// If this instruction has a use of AntiDepReg, breaking it
|
|
// is invalid.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (MO.isUse() && AntiDepReg == Reg) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Determine AntiDepReg's register class, if it is live and is
|
|
// consistently used within a single class.
|
|
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
|
|
assert((AntiDepReg == 0 || RC != NULL) &&
|
|
"Register should be live if it's causing an anti-dependence!");
|
|
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
|
|
AntiDepReg = 0;
|
|
|
|
// Look for a suitable register to use to break the anti-depenence.
|
|
//
|
|
// TODO: Instead of picking the first free register, consider which might
|
|
// be the best.
|
|
if (AntiDepReg != 0) {
|
|
for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
|
|
RE = RC->allocation_order_end(MF); R != RE; ++R) {
|
|
unsigned NewReg = *R;
|
|
// Don't replace a register with itself.
|
|
if (NewReg == AntiDepReg) continue;
|
|
// Don't replace a register with one that was recently used to repair
|
|
// an anti-dependence with this AntiDepReg, because that would
|
|
// re-introduce that anti-dependence.
|
|
if (NewReg == LastNewReg[AntiDepReg]) continue;
|
|
// If NewReg is dead and NewReg's most recent def is not before
|
|
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
|
|
assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for AntiDepReg!");
|
|
assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for NewReg!");
|
|
if (KillIndices[NewReg] == ~0u &&
|
|
Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
|
|
KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
|
|
DOUT << "Breaking anti-dependence edge on "
|
|
<< TRI->getName(AntiDepReg)
|
|
<< " with " << RegRefs.count(AntiDepReg) << " references"
|
|
<< " using " << TRI->getName(NewReg) << "!\n";
|
|
|
|
// Update the references to the old register to refer to the new
|
|
// register.
|
|
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
|
|
std::multimap<unsigned, MachineOperand *>::iterator>
|
|
Range = RegRefs.equal_range(AntiDepReg);
|
|
for (std::multimap<unsigned, MachineOperand *>::iterator
|
|
Q = Range.first, QE = Range.second; Q != QE; ++Q)
|
|
Q->second->setReg(NewReg);
|
|
|
|
// We just went back in time and modified history; the
|
|
// liveness information for the anti-depenence reg is now
|
|
// inconsistent. Set the state as if it were dead.
|
|
Classes[NewReg] = Classes[AntiDepReg];
|
|
DefIndices[NewReg] = DefIndices[AntiDepReg];
|
|
KillIndices[NewReg] = KillIndices[AntiDepReg];
|
|
assert(((KillIndices[NewReg] == ~0u) !=
|
|
(DefIndices[NewReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for NewReg!");
|
|
|
|
Classes[AntiDepReg] = 0;
|
|
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
|
|
KillIndices[AntiDepReg] = ~0u;
|
|
assert(((KillIndices[AntiDepReg] == ~0u) !=
|
|
(DefIndices[AntiDepReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for AntiDepReg!");
|
|
|
|
RegRefs.erase(AntiDepReg);
|
|
Changed = true;
|
|
LastNewReg[AntiDepReg] = NewReg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ScanInstruction(MI, Count);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
|
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
|
SUnit *SuccSU = SuccEdge->getSUnit();
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft < 0) {
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
SuccSU->dump(this);
|
|
cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
// Compute how many cycles it will be before this actually becomes
|
|
// available. This is the max of the start time of all predecessors plus
|
|
// their latencies.
|
|
SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
|
|
|
|
// If all the node's predecessors are scheduled, this node is ready
|
|
// to be scheduled. Ignore the special ExitSU node.
|
|
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
|
|
PendingQueue.push_back(SuccSU);
|
|
}
|
|
|
|
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
|
|
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
ReleaseSucc(SU, &*I);
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(this));
|
|
|
|
Sequence.push_back(SU);
|
|
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
|
|
SU->setDepthToAtLeast(CurCycle);
|
|
|
|
ReleaseSuccessors(SU);
|
|
SU->isScheduled = true;
|
|
AvailableQueue.ScheduledNode(SU);
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void SchedulePostRATDList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
|
|
// Release any successors of the special Entry node.
|
|
ReleaseSuccessors(&EntrySU);
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if (SUnits[i].Preds.empty()) {
|
|
AvailableQueue.push(&SUnits[i]);
|
|
SUnits[i].isAvailable = true;
|
|
}
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
unsigned MinDepth = ~0u;
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
if (PendingQueue[i]->getDepth() <= CurCycle) {
|
|
AvailableQueue.push(PendingQueue[i]);
|
|
PendingQueue[i]->isAvailable = true;
|
|
PendingQueue[i] = PendingQueue.back();
|
|
PendingQueue.pop_back();
|
|
--i; --e;
|
|
} else if (PendingQueue[i]->getDepth() < MinDepth)
|
|
MinDepth = PendingQueue[i]->getDepth();
|
|
}
|
|
|
|
// If there are no instructions available, don't try to issue anything, and
|
|
// don't advance the hazard recognizer.
|
|
if (AvailableQueue.empty()) {
|
|
CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
|
|
continue;
|
|
}
|
|
|
|
SUnit *FoundSUnit = 0;
|
|
|
|
bool HasNoopHazards = false;
|
|
while (!AvailableQueue.empty()) {
|
|
SUnit *CurSUnit = AvailableQueue.pop();
|
|
|
|
ScheduleHazardRecognizer::HazardType HT =
|
|
HazardRec->getHazardType(CurSUnit);
|
|
if (HT == ScheduleHazardRecognizer::NoHazard) {
|
|
FoundSUnit = CurSUnit;
|
|
break;
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurSUnit);
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
if (!NotReady.empty()) {
|
|
AvailableQueue.push_all(NotReady);
|
|
NotReady.clear();
|
|
}
|
|
|
|
// If we found a node to schedule, do it now.
|
|
if (FoundSUnit) {
|
|
ScheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
HazardRec->EmitInstruction(FoundSUnit);
|
|
|
|
// If this is a pseudo-op node, we don't want to increment the current
|
|
// cycle.
|
|
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
|
++CurCycle;
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
// the current cycle and try again.
|
|
DOUT << "*** Advancing cycle, no work to do\n";
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
++CurCycle;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
DOUT << "*** Emitting noop\n";
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(0); // NULL here means noop
|
|
++NumNoops;
|
|
++CurCycle;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifySchedule(/*isBottomUp=*/false);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createPostRAScheduler() {
|
|
return new PostRAScheduler();
|
|
}
|