llvm/lib/Target/PowerPC/PPCCallingConv.td
Bill Schmidt 11addd2a2f [PowerPC] Call support for fast-isel.
This patch adds fast-isel support for calls (but not intrinsic calls
or varargs calls).  It also removes a badly-formed assert.  There are
some new tests just for calls, and also for folding loads into
arguments on calls to avoid extra extends.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189701 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-30 22:18:55 +00:00

181 lines
7.8 KiB
TableGen

//===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the PowerPC 32- and 64-bit
// architectures.
//
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("State.getTarget().getSubtarget<PPCSubtarget>().", F), A>;
//===----------------------------------------------------------------------===//
// Return Value Calling Convention
//===----------------------------------------------------------------------===//
// Return-value convention for PowerPC
def RetCC_PPC : CallingConv<[
// On PPC64, integer return values are always promoted to i64
CCIfType<[i32], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
CCIfType<[f32], CCAssignToReg<[F1, F2]>>,
CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4]>>,
// Vector types are always returned in V2.
CCIfType<[v16i8, v8i16, v4i32, v4f32], CCAssignToReg<[V2]>>
]>;
// Note that we don't currently have calling conventions for 64-bit
// PowerPC, but handle all the complexities of the ABI in the lowering
// logic. FIXME: See if the logic can be simplified with use of CCs.
// This may require some extensions to current table generation.
// Simple calling convention for 64-bit ELF PowerPC fast isel.
// Only handle ints and floats. All ints are promoted to i64.
// Vector types and quadword ints are not handled.
def CC_PPC64_ELF_FIS : CallingConv<[
CCIfType<[i8], CCPromoteToType<i64>>,
CCIfType<[i16], CCPromoteToType<i64>>,
CCIfType<[i32], CCPromoteToType<i64>>,
CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
]>;
// Simple return-value convention for 64-bit ELF PowerPC fast isel.
// All small ints are promoted to i64. Vector types, quadword ints,
// and multiple register returns are "supported" to avoid compile
// errors, but none are handled by the fast selector.
def RetCC_PPC64_ELF_FIS : CallingConv<[
CCIfType<[i8], CCPromoteToType<i64>>,
CCIfType<[i16], CCPromoteToType<i64>>,
CCIfType<[i32], CCPromoteToType<i64>>,
CCIfType<[i64], CCAssignToReg<[X3, X4]>>,
CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
CCIfType<[f32], CCAssignToReg<[F1, F2]>>,
CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4]>>,
CCIfType<[v16i8, v8i16, v4i32, v4f32], CCAssignToReg<[V2]>>
]>;
//===----------------------------------------------------------------------===//
// PowerPC System V Release 4 32-bit ABI
//===----------------------------------------------------------------------===//
def CC_PPC32_SVR4_Common : CallingConv<[
// The ABI requires i64 to be passed in two adjacent registers with the first
// register having an odd register number.
CCIfType<[i32], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>,
// The first 8 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
// Make sure the i64 words from a long double are either both passed in
// registers or both passed on the stack.
CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
// FP values are passed in F1 - F8.
CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
// Split arguments have an alignment of 8 bytes on the stack.
CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
CCIfType<[i32], CCAssignToStack<4, 4>>,
// Floats are stored in double precision format, thus they have the same
// alignment and size as doubles.
CCIfType<[f32,f64], CCAssignToStack<8, 8>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v4f32], CCAssignToStack<16, 16>>
]>;
// This calling convention puts vector arguments always on the stack. It is used
// to assign vector arguments which belong to the variable portion of the
// parameter list of a variable argument function.
def CC_PPC32_SVR4_VarArg : CallingConv<[
CCDelegateTo<CC_PPC32_SVR4_Common>
]>;
// In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
// put vector arguments in vector registers before putting them on the stack.
def CC_PPC32_SVR4 : CallingConv<[
// The first 12 Vector arguments are passed in AltiVec registers.
CCIfType<[v16i8, v8i16, v4i32, v4f32],
CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13]>>,
CCDelegateTo<CC_PPC32_SVR4_Common>
]>;
// Helper "calling convention" to handle aggregate by value arguments.
// Aggregate by value arguments are always placed in the local variable space
// of the caller. This calling convention is only used to assign those stack
// offsets in the callers stack frame.
//
// Still, the address of the aggregate copy in the callers stack frame is passed
// in a GPR (or in the parameter list area if all GPRs are allocated) from the
// caller to the callee. The location for the address argument is assigned by
// the CC_PPC32_SVR4 calling convention.
//
// The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
// not passed by value.
def CC_PPC32_SVR4_ByVal : CallingConv<[
CCIfByVal<CCPassByVal<4, 4>>,
CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
]>;
def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
V28, V29, V30, V31)>;
def CSR_Darwin32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
R21, R22, R23, R24, R25, R26, R27, R28,
R29, R30, R31, F14, F15, F16, F17, F18,
F19, F20, F21, F22, F23, F24, F25, F26,
F27, F28, F29, F30, F31, CR2, CR3, CR4
)>;
def CSR_Darwin32_Altivec : CalleeSavedRegs<(add CSR_Darwin32, CSR_Altivec)>;
def CSR_SVR432 : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
R21, R22, R23, R24, R25, R26, R27, R28,
R29, R30, R31, F14, F15, F16, F17, F18,
F19, F20, F21, F22, F23, F24, F25, F26,
F27, F28, F29, F30, F31, CR2, CR3, CR4
)>;
def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
def CSR_Darwin64 : CalleeSavedRegs<(add X13, X14, X15, X16, X17, X18, X19, X20,
X21, X22, X23, X24, X25, X26, X27, X28,
X29, X30, X31, F14, F15, F16, F17, F18,
F19, F20, F21, F22, F23, F24, F25, F26,
F27, F28, F29, F30, F31, CR2, CR3, CR4
)>;
def CSR_Darwin64_Altivec : CalleeSavedRegs<(add CSR_Darwin64, CSR_Altivec)>;
def CSR_SVR464 : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
X21, X22, X23, X24, X25, X26, X27, X28,
X29, X30, X31, F14, F15, F16, F17, F18,
F19, F20, F21, F22, F23, F24, F25, F26,
F27, F28, F29, F30, F31, CR2, CR3, CR4
)>;
def CSR_SVR464_Altivec : CalleeSavedRegs<(add CSR_SVR464, CSR_Altivec)>;
def CSR_NoRegs : CalleeSavedRegs<(add)>;