llvm/lib/Transforms/Utils/InlineFunction.cpp
Devang Patel e4b275610a Reapply 79977.
Use MDNodes to encode debug info in llvm IR.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80406 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-28 23:24:31 +00:00

701 lines
29 KiB
C++

//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Intrinsics.h"
#include "llvm/Attributes.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD,
SmallVectorImpl<AllocaInst*> *StaticAllocas) {
return InlineFunction(CallSite(CI), CG, TD, StaticAllocas);
}
bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD,
SmallVectorImpl<AllocaInst*> *StaticAllocas) {
return InlineFunction(CallSite(II), CG, TD, StaticAllocas);
}
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to check all of all of the calls that can throw into
/// invokes. This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues. If
/// CallerCGN is specified, this function updates the call graph.
///
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
BasicBlock *InvokeDest,
const SmallVectorImpl<Value*> &InvokeDestPHIValues,
CallGraphNode *CallerCGN) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *I = BBI++;
// We only need to check for function calls: inlined invoke
// instructions require no special handling.
CallInst *CI = dyn_cast<CallInst>(I);
if (CI == 0) continue;
// If this call cannot unwind, don't convert it to an invoke.
if (CI->doesNotThrow())
continue;
// Convert this function call into an invoke instruction.
// First, split the basic block.
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
// Next, create the new invoke instruction, inserting it at the end
// of the old basic block.
SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
InvokeInst *II =
InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
InvokeArgs.begin(), InvokeArgs.end(),
CI->getName(), BB->getTerminator());
II->setCallingConv(CI->getCallingConv());
II->setAttributes(CI->getAttributes());
// Make sure that anything using the call now uses the invoke!
CI->replaceAllUsesWith(II);
// Update the callgraph if present.
if (CallerCGN) {
// We should be able to do this:
// (*CG)[Caller]->replaceCallSite(CI, II);
// but that fails if the old call site isn't in the call graph,
// which, because of LLVM bug 3601, it sometimes isn't.
for (CallGraphNode::iterator NI = CallerCGN->begin(), NE = CallerCGN->end();
NI != NE; ++NI) {
if (NI->first == CI) {
NI->first = II;
break;
}
}
}
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
Split->getInstList().pop_front(); // Delete the original call
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
isa<PHINode>(I); ++I, ++i)
cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
// This basic block is now complete, the caller will continue scanning the
// next one.
return;
}
}
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes and turn unwind
/// instructions into branches to the invoke unwind dest.
///
/// II is the invoke instruction being inlined. FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
ClonedCodeInfo &InlinedCodeInfo,
CallGraph *CG) {
BasicBlock *InvokeDest = II->getUnwindDest();
SmallVector<Value*, 8> InvokeDestPHIValues;
// If there are PHI nodes in the unwind destination block, we need to
// keep track of which values came into them from this invoke, then remove
// the entry for this block.
BasicBlock *InvokeBlock = II->getParent();
for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// Save the value to use for this edge.
InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
}
Function *Caller = FirstNewBlock->getParent();
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
// rewrite. If the code doesn't have calls or unwinds, we know there is
// nothing to rewrite.
if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
return;
}
CallGraphNode *CallerCGN = 0;
if (CG) CallerCGN = (*CG)[Caller];
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
if (InlinedCodeInfo.ContainsCalls)
HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
InvokeDestPHIValues, CallerCGN);
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
// An UnwindInst requires special handling when it gets inlined into an
// invoke site. Once this happens, we know that the unwind would cause
// a control transfer to the invoke exception destination, so we can
// transform it into a direct branch to the exception destination.
BranchInst::Create(InvokeDest, UI);
// Delete the unwind instruction!
UI->eraseFromParent();
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
isa<PHINode>(I); ++I, ++i) {
PHINode *PN = cast<PHINode>(I);
PN->addIncoming(InvokeDestPHIValues[i], BB);
}
}
}
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
}
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
/// into the caller, update the specified callgraph to reflect the changes we
/// made. Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
Function::iterator FirstNewBlock,
DenseMap<const Value*, Value*> &ValueMap,
CallGraph &CG) {
const Function *Caller = CS.getInstruction()->getParent()->getParent();
const Function *Callee = CS.getCalledFunction();
CallGraphNode *CalleeNode = CG[Callee];
CallGraphNode *CallerNode = CG[Caller];
// Since we inlined some uninlined call sites in the callee into the caller,
// add edges from the caller to all of the callees of the callee.
CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
// Consider the case where CalleeNode == CallerNode.
CallGraphNode::CalledFunctionsVector CallCache;
if (CalleeNode == CallerNode) {
CallCache.assign(I, E);
I = CallCache.begin();
E = CallCache.end();
}
for (; I != E; ++I) {
const Instruction *OrigCall = I->first.getInstruction();
DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
// Only copy the edge if the call was inlined!
if (VMI == ValueMap.end() || VMI->second == 0)
continue;
// If the call was inlined, but then constant folded, there is no edge to
// add. Check for this case.
if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
}
// Update the call graph by deleting the edge from Callee to Caller. We must
// do this after the loop above in case Caller and Callee are the same.
CallerNode->removeCallEdgeFor(CS);
}
/// findFnRegionEndMarker - This is a utility routine that is used by
/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
///
static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
MDNode *FnStart = NULL;
const DbgRegionEndInst *FnEnd = NULL;
for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
++BI) {
if (FnStart == NULL) {
if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
DISubprogram SP(FSI->getSubprogram());
assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
if (SP.describes(F))
FnStart = SP.getNode();
}
continue;
}
if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
if (REI->getContext() == FnStart)
FnEnd = REI;
}
return FnEnd;
}
// InlineFunction - This function inlines the called function into the basic
// block of the caller. This returns false if it is not possible to inline this
// call. The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining. For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream. Similiarly this will inline a recursive
// function by one level.
//
bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD,
SmallVectorImpl<AllocaInst*> *StaticAllocas) {
Instruction *TheCall = CS.getInstruction();
LLVMContext &Context = TheCall->getContext();
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
"Instruction not in function!");
const Function *CalledFunc = CS.getCalledFunction();
if (CalledFunc == 0 || // Can't inline external function or indirect
CalledFunc->isDeclaration() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
// If the call to the callee is not a tail call, we must clear the 'tail'
// flags on any calls that we inline.
bool MustClearTailCallFlags =
!(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
// If the call to the callee cannot throw, set the 'nounwind' flag on any
// calls that we inline.
bool MarkNoUnwind = CS.doesNotThrow();
BasicBlock *OrigBB = TheCall->getParent();
Function *Caller = OrigBB->getParent();
// GC poses two hazards to inlining, which only occur when the callee has GC:
// 1. If the caller has no GC, then the callee's GC must be propagated to the
// caller.
// 2. If the caller has a differing GC, it is invalid to inline.
if (CalledFunc->hasGC()) {
if (!Caller->hasGC())
Caller->setGC(CalledFunc->getGC());
else if (CalledFunc->getGC() != Caller->getGC())
return false;
}
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
//
Function::iterator LastBlock = &Caller->back();
// Make sure to capture all of the return instructions from the cloned
// function.
SmallVector<ReturnInst*, 8> Returns;
ClonedCodeInfo InlinedFunctionInfo;
Function::iterator FirstNewBlock;
{ // Scope to destroy ValueMap after cloning.
DenseMap<const Value*, Value*> ValueMap;
assert(CalledFunc->arg_size() == CS.arg_size() &&
"No varargs calls can be inlined!");
// Calculate the vector of arguments to pass into the function cloner, which
// matches up the formal to the actual argument values.
CallSite::arg_iterator AI = CS.arg_begin();
unsigned ArgNo = 0;
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
Value *ActualArg = *AI;
// When byval arguments actually inlined, we need to make the copy implied
// by them explicit. However, we don't do this if the callee is readonly
// or readnone, because the copy would be unneeded: the callee doesn't
// modify the struct.
if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
!CalledFunc->onlyReadsMemory()) {
const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
const Type *VoidPtrTy =
PointerType::getUnqual(Type::getInt8Ty(Context));
// Create the alloca. If we have TargetData, use nice alignment.
unsigned Align = 1;
if (TD) Align = TD->getPrefTypeAlignment(AggTy);
Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
I->getName(),
&*Caller->begin()->begin());
// Emit a memcpy.
const Type *Tys[] = { Type::getInt64Ty(Context) };
Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
Intrinsic::memcpy,
Tys, 1);
Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
Value *Size;
if (TD == 0)
Size = ConstantExpr::getSizeOf(AggTy);
else
Size = ConstantInt::get(Type::getInt64Ty(Context),
TD->getTypeStoreSize(AggTy));
// Always generate a memcpy of alignment 1 here because we don't know
// the alignment of the src pointer. Other optimizations can infer
// better alignment.
Value *CallArgs[] = {
DestCast, SrcCast, Size,
ConstantInt::get(Type::getInt32Ty(Context), 1)
};
CallInst *TheMemCpy =
CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
// If we have a call graph, update it.
if (CG) {
CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
CallGraphNode *CallerNode = (*CG)[Caller];
CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
}
// Uses of the argument in the function should use our new alloca
// instead.
ActualArg = NewAlloca;
}
ValueMap[I] = ActualArg;
}
// Adjust llvm.dbg.region.end. If the CalledFunc has region end
// marker then clone that marker after next stop point at the
// call site. The function body cloner does not clone original
// region end marker from the CalledFunc. This will ensure that
// inlined function's scope ends at the right place.
if (const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc)) {
for (BasicBlock::iterator BI = TheCall, BE = TheCall->getParent()->end();
BI != BE; ++BI) {
if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
if (DbgRegionEndInst *NewDREI =
dyn_cast<DbgRegionEndInst>(DREI->clone(Context)))
NewDREI->insertAfter(DSPI);
break;
}
}
}
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
// happy with whatever the cloner can do.
CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
&InlinedFunctionInfo, TD);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;
// Update the callgraph if requested.
if (CG)
UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
}
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
//
{
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
for (BasicBlock::iterator I = FirstNewBlock->begin(),
E = FirstNewBlock->end(); I != E; ) {
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
if (AI == 0) continue;
// If the alloca is now dead, remove it. This often occurs due to code
// specialization.
if (AI->use_empty()) {
AI->eraseFromParent();
continue;
}
if (!isa<Constant>(AI->getArraySize()))
continue;
// Keep track of the static allocas that we inline into the caller if the
// StaticAllocas pointer is non-null.
if (StaticAllocas) StaticAllocas->push_back(AI);
// Scan for the block of allocas that we can move over, and move them
// all at once.
while (isa<AllocaInst>(I) &&
isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
if (StaticAllocas) StaticAllocas->push_back(cast<AllocaInst>(I));
++I;
}
// Transfer all of the allocas over in a block. Using splice means
// that the instructions aren't removed from the symbol table, then
// reinserted.
Caller->getEntryBlock().getInstList().splice(InsertPoint,
FirstNewBlock->getInstList(),
AI, I);
}
}
// If the inlined code contained dynamic alloca instructions, wrap the inlined
// code with llvm.stacksave/llvm.stackrestore intrinsics.
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
Module *M = Caller->getParent();
// Get the two intrinsics we care about.
Constant *StackSave, *StackRestore;
StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
// If we are preserving the callgraph, add edges to the stacksave/restore
// functions for the calls we insert.
CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
if (CG) {
// We know that StackSave/StackRestore are Function*'s, because they are
// intrinsics which must have the right types.
StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
CallerNode = (*CG)[Caller];
}
// Insert the llvm.stacksave.
CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
FirstNewBlock->begin());
if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
// Insert a call to llvm.stackrestore before any return instructions in the
// inlined function.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
}
// Count the number of StackRestore calls we insert.
unsigned NumStackRestores = Returns.size();
// If we are inlining an invoke instruction, insert restores before each
// unwind. These unwinds will be rewritten into branches later.
if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB)
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
CallInst::Create(StackRestore, SavedPtr, "", UI);
++NumStackRestores;
}
}
}
// If we are inlining tail call instruction through a call site that isn't
// marked 'tail', we must remove the tail marker for any calls in the inlined
// code. Also, calls inlined through a 'nounwind' call site should be marked
// 'nounwind'.
if (InlinedFunctionInfo.ContainsCalls &&
(MustClearTailCallFlags || MarkNoUnwind)) {
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (MustClearTailCallFlags)
CI->setTailCall(false);
if (MarkNoUnwind)
CI->setDoesNotThrow();
}
}
// If we are inlining through a 'nounwind' call site then any inlined 'unwind'
// instructions are unreachable.
if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB) {
TerminatorInst *Term = BB->getTerminator();
if (isa<UnwindInst>(Term)) {
new UnreachableInst(Context, Term);
BB->getInstList().erase(Term);
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any inlined 'unwind' instructions into branches to the invoke exception
// destination, and call instructions into invoke instructions.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
// If we cloned in _exactly one_ basic block, and if that block ends in a
// return instruction, we splice the body of the inlined callee directly into
// the calling basic block.
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
// Move all of the instructions right before the call.
OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
FirstNewBlock->begin(), FirstNewBlock->end());
// Remove the cloned basic block.
Caller->getBasicBlockList().pop_back();
// If the call site was an invoke instruction, add a branch to the normal
// destination.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
BranchInst::Create(II->getNormalDest(), TheCall);
// If the return instruction returned a value, replace uses of the call with
// uses of the returned value.
if (!TheCall->use_empty()) {
ReturnInst *R = Returns[0];
if (TheCall == R->getReturnValue())
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
else
TheCall->replaceAllUsesWith(R->getReturnValue());
}
// Since we are now done with the Call/Invoke, we can delete it.
TheCall->eraseFromParent();
// Since we are now done with the return instruction, delete it also.
Returns[0]->eraseFromParent();
// We are now done with the inlining.
return true;
}
// Otherwise, we have the normal case, of more than one block to inline or
// multiple return sites.
// We want to clone the entire callee function into the hole between the
// "starter" and "ender" blocks. How we accomplish this depends on whether
// this is an invoke instruction or a call instruction.
BasicBlock *AfterCallBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
// Add an unconditional branch to make this look like the CallInst case...
BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
// Split the basic block. This guarantees that no PHI nodes will have to be
// updated due to new incoming edges, and make the invoke case more
// symmetric to the call case.
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
CalledFunc->getName()+".exit");
} else { // It's a call
// If this is a call instruction, we need to split the basic block that
// the call lives in.
//
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
CalledFunc->getName()+".exit");
}
// Change the branch that used to go to AfterCallBB to branch to the first
// basic block of the inlined function.
//
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
Br->setOperand(0, FirstNewBlock);
// Now that the function is correct, make it a little bit nicer. In
// particular, move the basic blocks inserted from the end of the function
// into the space made by splitting the source basic block.
Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
FirstNewBlock, Caller->end());
// Handle all of the return instructions that we just cloned in, and eliminate
// any users of the original call/invoke instruction.
const Type *RTy = CalledFunc->getReturnType();
if (Returns.size() > 1) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
PHINode *PHI = 0;
if (!TheCall->use_empty()) {
PHI = PHINode::Create(RTy, TheCall->getName(),
AfterCallBB->begin());
// Anything that used the result of the function call should now use the
// PHI node as their operand.
TheCall->replaceAllUsesWith(PHI);
}
// Loop over all of the return instructions adding entries to the PHI node
// as appropriate.
if (PHI) {
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
assert(RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
}
}
// Add a branch to the merge points and remove return instructions.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
BranchInst::Create(AfterCallBB, RI);
RI->eraseFromParent();
}
} else if (!Returns.empty()) {
// Otherwise, if there is exactly one return value, just replace anything
// using the return value of the call with the computed value.
if (!TheCall->use_empty()) {
if (TheCall == Returns[0]->getReturnValue())
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
else
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
}
// Splice the code from the return block into the block that it will return
// to, which contains the code that was after the call.
BasicBlock *ReturnBB = Returns[0]->getParent();
AfterCallBB->getInstList().splice(AfterCallBB->begin(),
ReturnBB->getInstList());
// Update PHI nodes that use the ReturnBB to use the AfterCallBB.
ReturnBB->replaceAllUsesWith(AfterCallBB);
// Delete the return instruction now and empty ReturnBB now.
Returns[0]->eraseFromParent();
ReturnBB->eraseFromParent();
} else if (!TheCall->use_empty()) {
// No returns, but something is using the return value of the call. Just
// nuke the result.
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
}
// Since we are now done with the Call/Invoke, we can delete it.
TheCall->eraseFromParent();
// We should always be able to fold the entry block of the function into the
// single predecessor of the block...
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
// Splice the code entry block into calling block, right before the
// unconditional branch.
OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
// Remove the unconditional branch.
OrigBB->getInstList().erase(Br);
// Now we can remove the CalleeEntry block, which is now empty.
Caller->getBasicBlockList().erase(CalleeEntry);
return true;
}