llvm/lib/Transforms/Scalar/BreakCriticalEdges.cpp
Chris Lattner c178d9459a - Cleanup break-crit-edges pass by making SplitCriticalEdge a member method.
- break-crit-edges pass does not invalidate loop-preheader pass.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3944 91177308-0d34-0410-b5e6-96231b3b80d8
2002-09-26 16:18:51 +00:00

142 lines
5.3 KiB
C++

//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, the structure type is
// forward declared. This pass obviously invalidates the CFG, but can update
// forward dominator (set, immediate dominators, and tree) information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/Support/CFG.h"
#include "Support/StatisticReporter.h"
namespace {
Statistic<> NumBroken("break-crit-edges\t- Number of blocks inserted");
struct BreakCriticalEdges : public FunctionPass {
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorSet>();
AU.addPreserved<ImmediateDominators>();
AU.addPreserved<DominatorTree>();
AU.addPreservedID(LoopPreheadersID); // No preheaders deleted.
}
private:
void SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum);
};
RegisterOpt<BreakCriticalEdges> X("break-crit-edges",
"Break critical edges in CFG");
}
// Publically exposed interface to pass...
const PassInfo *BreakCriticalEdgesID = X.getPassInfo();
Pass *createBreakCriticalEdgesPass() { return new BreakCriticalEdges(); }
// isCriticalEdge - Return true if the specified edge is a critical edge.
// Critical edges are edges from a block with multiple successors to a block
// with multiple predecessors.
//
static bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum) {
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
assert (TI->getNumSuccessors() > 1);
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
// If there is more than one predecessor, this is a critical edge...
assert(I != E && "No preds, but we have an edge to the block?");
++I; // Skip one edge due to the incoming arc from TI.
return I != E;
}
// SplitCriticalEdge - Insert a new node node to split the critical edge. This
// will update DominatorSet, ImmediateDominator and DominatorTree information if
// it is available, thus calling this pass will not invalidate either of them.
//
void BreakCriticalEdges::SplitCriticalEdge(TerminatorInst *TI,unsigned SuccNum){
assert(isCriticalEdge(TI, SuccNum) &&
"Cannot break a critical edge, if it isn't a critical edge");
BasicBlock *TIBB = TI->getParent();
// Create a new basic block, linking it into the CFG.
BasicBlock *NewBB = new BasicBlock(TIBB->getName()+"_crit_edge");
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
// Create our unconditional branch...
BranchInst *BI = new BranchInst(DestBB);
NewBB->getInstList().push_back(BI);
// Branch to the new block, breaking the edge...
TI->setSuccessor(SuccNum, NewBB);
// Insert the block into the function... right after the block TI lives in.
Function &F = *TIBB->getParent();
F.getBasicBlockList().insert(TIBB->getNext(), NewBB);
// If there are any PHI nodes in DestBB, we need to update them so that they
// merge incoming values from NewBB instead of from TIBB.
//
for (BasicBlock::iterator I = DestBB->begin();
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
// We no longer enter through TIBB, now we come in through NewBB.
PN->replaceUsesOfWith(TIBB, NewBB);
}
// Now update analysis information. These are the analyses that we are
// currently capable of updating...
//
// Should we update DominatorSet information?
if (DominatorSet *DS = getAnalysisToUpdate<DominatorSet>()) {
// The blocks that dominate the new one are the blocks that dominate TIBB
// plus the new block itself.
DominatorSet::DomSetType DomSet = DS->getDominators(TIBB);
DomSet.insert(NewBB); // A block always dominates itself.
DS->addBasicBlock(NewBB, DomSet);
}
// Should we update ImmdediateDominator information?
if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
// TIBB is the new immediate dominator for NewBB. NewBB doesn't dominate
// anything.
ID->addNewBlock(NewBB, TIBB);
}
// Should we update DominatorTree information?
if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
DominatorTree::Node *TINode = DT->getNode(TIBB);
// The new block is not the immediate dominator for any other nodes, but
// TINode is the immediate dominator for the new node.
//
DT->createNewNode(NewBB, TINode);
}
}
// runOnFunction - Loop over all of the edges in the CFG, breaking critical
// edges as they are found.
//
bool BreakCriticalEdges::runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
if (TI->getNumSuccessors() > 1)
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (isCriticalEdge(TI, i)) {
SplitCriticalEdge(TI, i);
++NumBroken;
Changed = true;
}
}
return Changed;
}