llvm/lib/CodeGen/AsmPrinter.cpp
Duncan Sands a0fcc08e65 Change packed struct layout so that field sizes
are the same as in unpacked structs, only field
positions differ.  This only matters for structs
containing x86 long double or an apint; it may
cause backwards compatibility problems if someone
has bitcode containing a packed struct with a
field of one of those types.
The issue is that only 10 bytes are needed to
hold an x86 long double: the store size is 10
bytes, but the ABI size is 12 or 16 bytes (linux/
darwin) which comes from rounding the store size
up by the alignment.  Because it seemed silly not
to pack an x86 long double into 10 bytes in a
packed struct, this is what was done.  I now
think this was a mistake.  Reserving the ABI size
for an x86 long double field even in a packed
struct makes things more uniform: the ABI size is
now always used when reserving space for a type.
This means that developers are less likely to
make mistakes.  It also makes life easier for the
CBE which otherwise could not represent all LLVM
packed structs (PR2402).
Front-end people might need to adjust the way
they create LLVM structs - see following change
to llvm-gcc.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51928 91177308-0d34-0410-b5e6-96231b3b80d8
2008-06-04 08:21:45 +00:00

1448 lines
51 KiB
C++

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/Collector.h"
#include "llvm/CodeGen/CollectorMetadata.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <cerrno>
using namespace llvm;
static cl::opt<bool>
AsmVerbose("asm-verbose", cl::Hidden, cl::desc("Add comments to directives."));
char AsmPrinter::ID = 0;
AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm,
const TargetAsmInfo *T)
: MachineFunctionPass((intptr_t)&ID), FunctionNumber(0), O(o),
TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
IsInTextSection(false)
{}
std::string AsmPrinter::getSectionForFunction(const Function &F) const {
return TAI->getTextSection();
}
/// SwitchToTextSection - Switch to the specified text section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToTextSection(const char *NewSection,
const GlobalValue *GV) {
std::string NS;
if (GV && GV->hasSection())
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
else
NS = NewSection;
// If we're already in this section, we're done.
if (CurrentSection == NS) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";
CurrentSection = NS;
if (!CurrentSection.empty())
O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
IsInTextSection = true;
}
/// SwitchToDataSection - Switch to the specified data section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToDataSection(const char *NewSection,
const GlobalValue *GV) {
std::string NS;
if (GV && GV->hasSection())
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
else
NS = NewSection;
// If we're already in this section, we're done.
if (CurrentSection == NS) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";
CurrentSection = NS;
if (!CurrentSection.empty())
O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
IsInTextSection = false;
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<CollectorModuleMetadata>();
}
bool AsmPrinter::doInitialization(Module &M) {
Mang = new Mangler(M, TAI->getGlobalPrefix());
CollectorModuleMetadata *CMM = getAnalysisToUpdate<CollectorModuleMetadata>();
assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?");
for (CollectorModuleMetadata::iterator I = CMM->begin(),
E = CMM->end(); I != E; ++I)
(*I)->beginAssembly(O, *this, *TAI);
if (!M.getModuleInlineAsm().empty())
O << TAI->getCommentString() << " Start of file scope inline assembly\n"
<< M.getModuleInlineAsm()
<< "\n" << TAI->getCommentString()
<< " End of file scope inline assembly\n";
SwitchToDataSection(""); // Reset back to no section.
MMI = getAnalysisToUpdate<MachineModuleInfo>();
if (MMI) MMI->AnalyzeModule(M);
return false;
}
bool AsmPrinter::doFinalization(Module &M) {
if (TAI->getWeakRefDirective()) {
if (!ExtWeakSymbols.empty())
SwitchToDataSection("");
for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
e = ExtWeakSymbols.end(); i != e; ++i) {
const GlobalValue *GV = *i;
std::string Name = Mang->getValueName(GV);
O << TAI->getWeakRefDirective() << Name << "\n";
}
}
if (TAI->getSetDirective()) {
if (!M.alias_empty())
SwitchToTextSection(TAI->getTextSection());
O << "\n";
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I!=E; ++I) {
std::string Name = Mang->getValueName(I);
std::string Target;
const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
Target = Mang->getValueName(GV);
if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
O << "\t.globl\t" << Name << "\n";
else if (I->hasWeakLinkage())
O << TAI->getWeakRefDirective() << Name << "\n";
else if (!I->hasInternalLinkage())
assert(0 && "Invalid alias linkage");
if (I->hasHiddenVisibility()) {
if (const char *Directive = TAI->getHiddenDirective())
O << Directive << Name << "\n";
} else if (I->hasProtectedVisibility()) {
if (const char *Directive = TAI->getProtectedDirective())
O << Directive << Name << "\n";
}
O << TAI->getSetDirective() << ' ' << Name << ", " << Target << "\n";
// If the aliasee has external weak linkage it can be referenced only by
// alias itself. In this case it can be not in ExtWeakSymbols list. Emit
// weak reference in such case.
if (GV->hasExternalWeakLinkage()) {
if (TAI->getWeakRefDirective())
O << TAI->getWeakRefDirective() << Target << "\n";
else
O << "\t.globl\t" << Target << "\n";
}
}
}
CollectorModuleMetadata *CMM = getAnalysisToUpdate<CollectorModuleMetadata>();
assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?");
for (CollectorModuleMetadata::iterator I = CMM->end(),
E = CMM->begin(); I != E; )
(*--I)->finishAssembly(O, *this, *TAI);
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (TAI->getNonexecutableStackDirective())
O << TAI->getNonexecutableStackDirective() << "\n";
delete Mang; Mang = 0;
return false;
}
std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
assert(MF && "No machine function?");
std::string Name = MF->getFunction()->getName();
if (Name.empty())
Name = Mang->getValueName(MF->getFunction());
return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
IncrementFunctionNumber();
}
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Some targets require 4-, 8-, and 16- byte constant literals to be placed
// in special sections.
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = CP[i];
const Type *Ty = CPE.getType();
if (TAI->getFourByteConstantSection() &&
TM.getTargetData()->getABITypeSize(Ty) == 4)
FourByteCPs.push_back(std::make_pair(CPE, i));
else if (TAI->getEightByteConstantSection() &&
TM.getTargetData()->getABITypeSize(Ty) == 8)
EightByteCPs.push_back(std::make_pair(CPE, i));
else if (TAI->getSixteenByteConstantSection() &&
TM.getTargetData()->getABITypeSize(Ty) == 16)
SixteenByteCPs.push_back(std::make_pair(CPE, i));
else
OtherCPs.push_back(std::make_pair(CPE, i));
}
unsigned Alignment = MCP->getConstantPoolAlignment();
EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
SixteenByteCPs);
EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
}
void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
if (CP.empty()) return;
SwitchToDataSection(Section);
EmitAlignment(Alignment);
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << " ";
WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n';
if (CP[i].first.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
else
EmitGlobalConstant(CP[i].first.Val.ConstVal);
if (i != e-1) {
const Type *Ty = CP[i].first.getType();
unsigned EntSize =
TM.getTargetData()->getABITypeSize(Ty);
unsigned ValEnd = CP[i].first.getOffset() + EntSize;
// Emit inter-object padding for alignment.
EmitZeros(CP[i+1].first.getOffset()-ValEnd);
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
MachineFunction &MF) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
TargetLowering *LoweringInfo = TM.getTargetLowering();
const char* JumpTableDataSection = TAI->getJumpTableDataSection();
if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
!JumpTableDataSection) {
// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// We should also do if the section name is NULL.
const Function *F = MF.getFunction();
SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
} else {
SwitchToDataSection(JumpTableDataSection);
}
EmitAlignment(Log2_32(MJTI->getAlignment()));
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For PIC codegen, if possible we want to use the SetDirective to reduce
// the number of relocations the assembler will generate for the jump table.
// Set directives are all printed before the jump table itself.
SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
if (TAI->getSetDirective() && IsPic)
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
if (EmittedSets.insert(JTBBs[ii]))
printPICJumpTableSetLabel(i, JTBBs[ii]);
// On some targets (e.g. darwin) we want to emit two consequtive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << i << ":\n";
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
printPICJumpTableEntry(MJTI, JTBBs[ii], i);
O << '\n';
}
}
}
void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Use JumpTableDirective otherwise honor the entry size from the jump table
// info.
const char *JTEntryDirective = TAI->getJumpTableDirective();
bool HadJTEntryDirective = JTEntryDirective != NULL;
if (!HadJTEntryDirective) {
JTEntryDirective = MJTI->getEntrySize() == 4 ?
TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
}
O << JTEntryDirective << ' ';
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
// If we're emitting non-PIC code, then emit the entries as direct
// references to the target basic blocks.
if (IsPic) {
if (TAI->getSetDirective()) {
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
} else {
printBasicBlockLabel(MBB, false, false, false);
// If the arch uses custom Jump Table directives, don't calc relative to
// JT
if (!HadJTEntryDirective)
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid;
}
} else {
printBasicBlockLabel(MBB, false, false, false);
}
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (TAI->getUsedDirective() != 0) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
// Ignore debug and non-emitted data.
if (GV->getSection() == "llvm.metadata") return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
const TargetData *TD = TM.getTargetData();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
SwitchToDataSection(TAI->getStaticCtorsSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
SwitchToDataSection(TAI->getStaticDtorsSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
return false;
}
/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
/// global in the specified llvm.used list as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
const char *Directive = TAI->getUsedDirective();
// Should be an array of 'sbyte*'.
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
O << Directive;
EmitConstantValueOnly(InitList->getOperand(i));
O << "\n";
}
}
/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority, which we ignore.
if (!isa<ConstantArray>(List)) return;
ConstantArray *InitList = cast<ConstantArray>(List);
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
// Emit the function pointer.
EmitGlobalConstant(CS->getOperand(1));
}
}
/// getGlobalLinkName - Returns the asm/link name of of the specified
/// global variable. Should be overridden by each target asm printer to
/// generate the appropriate value.
const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
std::string LinkName;
if (isa<Function>(GV)) {
LinkName += TAI->getFunctionAddrPrefix();
LinkName += Mang->getValueName(GV);
LinkName += TAI->getFunctionAddrSuffix();
} else {
LinkName += TAI->getGlobalVarAddrPrefix();
LinkName += Mang->getValueName(GV);
LinkName += TAI->getGlobalVarAddrSuffix();
}
return LinkName;
}
/// EmitExternalGlobal - Emit the external reference to a global variable.
/// Should be overridden if an indirect reference should be used.
void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
O << getGlobalLinkName(GV);
}
//===----------------------------------------------------------------------===//
/// LEB 128 number encoding.
/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
/// representing an unsigned leb128 value.
void AsmPrinter::PrintULEB128(unsigned Value) const {
do {
unsigned Byte = Value & 0x7f;
Value >>= 7;
if (Value) Byte |= 0x80;
O << "0x" << std::hex << Byte << std::dec;
if (Value) O << ", ";
} while (Value);
}
/// SizeULEB128 - Compute the number of bytes required for an unsigned leb128
/// value.
unsigned AsmPrinter::SizeULEB128(unsigned Value) {
unsigned Size = 0;
do {
Value >>= 7;
Size += sizeof(int8_t);
} while (Value);
return Size;
}
/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
/// representing a signed leb128 value.
void AsmPrinter::PrintSLEB128(int Value) const {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
unsigned Byte = Value & 0x7f;
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
O << "0x" << std::hex << Byte << std::dec;
if (IsMore) O << ", ";
} while (IsMore);
}
/// SizeSLEB128 - Compute the number of bytes required for a signed leb128
/// value.
unsigned AsmPrinter::SizeSLEB128(int Value) {
unsigned Size = 0;
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
unsigned Byte = Value & 0x7f;
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
Size += sizeof(int8_t);
} while (IsMore);
return Size;
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// PrintHex - Print a value as a hexidecimal value.
///
void AsmPrinter::PrintHex(int Value) const {
O << "0x" << std::hex << Value << std::dec;
}
/// EOL - Print a newline character to asm stream. If a comment is present
/// then it will be printed first. Comments should not contain '\n'.
void AsmPrinter::EOL() const {
O << "\n";
}
void AsmPrinter::EOL(const std::string &Comment) const {
if (AsmVerbose && !Comment.empty()) {
O << "\t"
<< TAI->getCommentString()
<< " "
<< Comment;
}
O << "\n";
}
/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
/// unsigned leb128 value.
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
if (TAI->hasLEB128()) {
O << "\t.uleb128\t"
<< Value;
} else {
O << TAI->getData8bitsDirective();
PrintULEB128(Value);
}
}
/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
/// signed leb128 value.
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
if (TAI->hasLEB128()) {
O << "\t.sleb128\t"
<< Value;
} else {
O << TAI->getData8bitsDirective();
PrintSLEB128(Value);
}
}
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
O << TAI->getData8bitsDirective();
PrintHex(Value & 0xFF);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
O << TAI->getData16bitsDirective();
PrintHex(Value & 0xFFFF);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
O << TAI->getData32bitsDirective();
PrintHex(Value);
}
/// EmitInt64 - Emit a long long directive and value.
///
void AsmPrinter::EmitInt64(uint64_t Value) const {
if (TAI->getData64bitsDirective()) {
O << TAI->getData64bitsDirective();
PrintHex(Value);
} else {
if (TM.getTargetData()->isBigEndian()) {
EmitInt32(unsigned(Value >> 32)); O << "\n";
EmitInt32(unsigned(Value));
} else {
EmitInt32(unsigned(Value)); O << "\n";
EmitInt32(unsigned(Value >> 32));
}
}
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
/// printStringChar - Print a char, escaped if necessary.
///
static void printStringChar(std::ostream &O, unsigned char C) {
if (C == '"') {
O << "\\\"";
} else if (C == '\\') {
O << "\\\\";
} else if (isprint(C)) {
O << C;
} else {
switch(C) {
case '\b': O << "\\b"; break;
case '\f': O << "\\f"; break;
case '\n': O << "\\n"; break;
case '\r': O << "\\r"; break;
case '\t': O << "\\t"; break;
default:
O << '\\';
O << toOctal(C >> 6);
O << toOctal(C >> 3);
O << toOctal(C >> 0);
break;
}
}
}
/// EmitString - Emit a string with quotes and a null terminator.
/// Special characters are emitted properly.
/// \literal (Eg. '\t') \endliteral
void AsmPrinter::EmitString(const std::string &String) const {
const char* AscizDirective = TAI->getAscizDirective();
if (AscizDirective)
O << AscizDirective;
else
O << TAI->getAsciiDirective();
O << "\"";
for (unsigned i = 0, N = String.size(); i < N; ++i) {
unsigned char C = String[i];
printStringChar(O, C);
}
if (AscizDirective)
O << "\"";
else
O << "\\0\"";
}
/// EmitFile - Emit a .file directive.
void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
O << "\t.file\t" << Number << " \"";
for (unsigned i = 0, N = Name.size(); i < N; ++i) {
unsigned char C = Name[i];
printStringChar(O, C);
}
O << "\"";
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will unconditionally override the
// alignment request. However, if ForcedAlignBits is specified, this value
// has final say: the ultimate alignment will be the max of ForcedAlignBits
// and the alignment computed with NumBits and the global.
//
// The algorithm is:
// Align = NumBits;
// if (GV && GV->hasalignment) Align = GV->getalignment();
// Align = std::max(Align, ForcedAlignBits);
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
unsigned ForcedAlignBits,
bool UseFillExpr) const {
if (GV && GV->getAlignment())
NumBits = Log2_32(GV->getAlignment());
NumBits = std::max(NumBits, ForcedAlignBits);
if (NumBits == 0) return; // No need to emit alignment.
if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
O << TAI->getAlignDirective() << NumBits;
unsigned FillValue = TAI->getTextAlignFillValue();
UseFillExpr &= IsInTextSection && FillValue;
if (UseFillExpr) O << ",0x" << std::hex << FillValue << std::dec;
O << "\n";
}
/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
if (NumZeros) {
if (TAI->getZeroDirective()) {
O << TAI->getZeroDirective() << NumZeros;
if (TAI->getZeroDirectiveSuffix())
O << TAI->getZeroDirectiveSuffix();
O << "\n";
} else {
for (; NumZeros; --NumZeros)
O << TAI->getData8bitsDirective() << "0\n";
}
}
}
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
if (CV->isNullValue() || isa<UndefValue>(CV))
O << "0";
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
O << CI->getZExtValue();
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
// name of the variable or function as the address value, possibly
// decorating it with GlobalVarAddrPrefix/Suffix or
// FunctionAddrPrefix/Suffix (these all default to "" )
if (isa<Function>(GV)) {
O << TAI->getFunctionAddrPrefix()
<< Mang->getValueName(GV)
<< TAI->getFunctionAddrSuffix();
} else {
O << TAI->getGlobalVarAddrPrefix()
<< Mang->getValueName(GV)
<< TAI->getGlobalVarAddrSuffix();
}
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
unsigned Opcode = CE->getOpcode();
switch (Opcode) {
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
idxVec.size())) {
if (Offset)
O << "(";
EmitConstantValueOnly(ptrVal);
if (Offset > 0)
O << ") + " << Offset;
else if (Offset < 0)
O << ") - " << -Offset;
} else {
EmitConstantValueOnly(ptrVal);
}
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
break;
case Instruction::BitCast:
return EmitConstantValueOnly(CE->getOperand(0));
case Instruction::IntToPtr: {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
return EmitConstantValueOnly(Op);
}
case Instruction::PtrToInt: {
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
const Type *Ty = CE->getType();
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
if (Ty->isInteger() &&
TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
return EmitConstantValueOnly(Op);
assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
EmitConstantValueOnly(Op);
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
O << "(";
EmitConstantValueOnly(CE->getOperand(0));
O << ")";
switch (Opcode) {
case Instruction::Add:
O << " + ";
break;
case Instruction::Sub:
O << " - ";
break;
case Instruction::And:
O << " & ";
break;
case Instruction::Or:
O << " | ";
break;
case Instruction::Xor:
O << " ^ ";
break;
default:
break;
}
O << "(";
EmitConstantValueOnly(CE->getOperand(1));
O << ")";
break;
default:
assert(0 && "Unsupported operator!");
}
} else {
assert(0 && "Unknown constant value!");
}
}
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
O << "\"";
for (unsigned i = 0; i != LastElt; ++i) {
unsigned char C =
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
printStringChar(O, C);
}
O << "\"";
}
/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (TAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
O << TAI->getAscizDirective();
printAsCString(O, CVA, NumElts-1);
} else {
O << TAI->getAsciiDirective();
printAsCString(O, CVA, NumElts);
}
O << "\n";
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getABITypeSize(CV->getType());
if (CV->isNullValue() || isa<UndefValue>(CV)) {
EmitZeros(Size);
return;
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
EmitString(CVA);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i));
}
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
// Print the fields in successive locations. Pad to align if needed!
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getABITypeSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
EmitGlobalConstant(field);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
EmitZeros(padSize);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// FP Constants are printed as integer constants to avoid losing
// precision...
if (CFP->getType() == Type::DoubleTy) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
if (TAI->getData64bitsDirective())
O << TAI->getData64bitsDirective() << i << "\t"
<< TAI->getCommentString() << " double value: " << Val << "\n";
else if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective() << unsigned(i >> 32)
<< "\t" << TAI->getCommentString()
<< " double most significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(i)
<< "\t" << TAI->getCommentString()
<< " double least significant word " << Val << "\n";
} else {
O << TAI->getData32bitsDirective() << unsigned(i)
<< "\t" << TAI->getCommentString()
<< " double least significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(i >> 32)
<< "\t" << TAI->getCommentString()
<< " double most significant word " << Val << "\n";
}
return;
} else if (CFP->getType() == Type::FloatTy) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
O << TAI->getData32bitsDirective()
<< CFP->getValueAPF().convertToAPInt().getZExtValue()
<< "\t" << TAI->getCommentString() << " float " << Val << "\n";
return;
} else if (CFP->getType() == Type::X86_FP80Ty) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().convertToAPInt();
const uint64_t *p = api.getRawData();
APFloat DoubleVal = CFP->getValueAPF();
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
if (TD->isBigEndian()) {
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
<< "\t" << TAI->getCommentString()
<< " long double most significant halfword of ~"
<< DoubleVal.convertToDouble() << "\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
<< "\t" << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
<< "\t" << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0])
<< "\t" << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective() << uint16_t(p[1])
<< "\t" << TAI->getCommentString()
<< " long double least significant halfword\n";
} else {
O << TAI->getData16bitsDirective() << uint16_t(p[1])
<< "\t" << TAI->getCommentString()
<< " long double least significant halfword of ~"
<< DoubleVal.convertToDouble() << "\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0])
<< "\t" << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
<< "\t" << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
<< "\t" << TAI->getCommentString()
<< " long double next halfword\n";
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
<< "\t" << TAI->getCommentString()
<< " long double most significant halfword\n";
}
EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
return;
} else if (CFP->getType() == Type::PPC_FP128Ty) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().convertToAPInt();
const uint64_t *p = api.getRawData();
if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
<< "\t" << TAI->getCommentString()
<< " long double most significant word\n";
O << TAI->getData32bitsDirective() << uint32_t(p[0])
<< "\t" << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
<< "\t" << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective() << uint32_t(p[1])
<< "\t" << TAI->getCommentString()
<< " long double least significant word\n";
} else {
O << TAI->getData32bitsDirective() << uint32_t(p[1])
<< "\t" << TAI->getCommentString()
<< " long double least significant word\n";
O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
<< "\t" << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective() << uint32_t(p[0])
<< "\t" << TAI->getCommentString()
<< " long double next word\n";
O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
<< "\t" << TAI->getCommentString()
<< " long double most significant word\n";
}
return;
} else assert(0 && "Floating point constant type not handled");
} else if (CV->getType() == Type::Int64Ty) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
uint64_t Val = CI->getZExtValue();
if (TAI->getData64bitsDirective())
O << TAI->getData64bitsDirective() << Val << "\n";
else if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
<< "\t" << TAI->getCommentString()
<< " Double-word most significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(Val)
<< "\t" << TAI->getCommentString()
<< " Double-word least significant word " << Val << "\n";
} else {
O << TAI->getData32bitsDirective() << unsigned(Val)
<< "\t" << TAI->getCommentString()
<< " Double-word least significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
<< "\t" << TAI->getCommentString()
<< " Double-word most significant word " << Val << "\n";
}
return;
}
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I));
return;
}
const Type *type = CV->getType();
printDataDirective(type);
EmitConstantValueOnly(CV);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
O << "\t\t\t"
<< TAI->getCommentString()
<< " 0x" << CI->getValue().toStringUnsigned(16);
}
O << "\n";
}
void
AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
abort();
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
if (!strcmp(Code, "private")) {
O << TAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
O << TAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Assign a unique ID to this machine instruction.
static const MachineInstr *LastMI = 0;
static const Function *F = 0;
static unsigned Counter = 0U-1;
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
const Function *ThisF = MI->getParent()->getParent()->getFunction();
// If this is a new machine instruction, bump the counter.
if (LastMI != MI || F != ThisF) {
++Counter;
LastMI = MI;
F = ThisF;
}
O << Counter;
} else {
cerr << "Unknown special formatter '" << Code
<< "' for machine instr: " << *MI;
exit(1);
}
}
/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
unsigned NumOperands = MI->getNumOperands();
// Count the number of register definitions.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
++NumDefs)
assert(NumDefs != NumOperands-1 && "No asm string?");
assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << "\n";
return;
}
O << TAI->getInlineAsmStart() << "\n\t";
// The variant of the current asmprinter.
int AsmPrinterVariant = TAI->getAssemblerDialect();
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
O << "\n"; // Indent code with newline.
break;
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
cerr << "Nested variants found in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1) {
cerr << "Found '|' character outside of variant in inline asm "
<< "string: '" << AsmStr << "'\n";
exit(1);
}
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1) {
cerr << "Found '}' character outside of variant in inline asm "
<< "string: '" << AsmStr << "'\n";
exit(1);
}
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
const char *IDStart = LastEmitted;
char *IDEnd;
errno = 0;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
cerr << "Bad $ operand number in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
cerr << "Bad ${:} expression in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}') {
cerr << "Bad ${} expression in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
cerr << "Invalid $ operand number in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = 1;
bool Error = false;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
OpNo += (OpFlags >> 3) + 1;
}
if (OpNo >= MI->getNumOperands()) {
Error = true;
} else {
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (Modifier[0]=='l') // labels are target independent
printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
false, false, false);
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
}
}
}
if (Error) {
cerr << "Invalid operand found in inline asm: '"
<< AsmStr << "'\n";
MI->dump();
exit(1);
}
}
break;
}
}
}
O << "\n\t" << TAI->getInlineAsmEnd() << "\n";
}
/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
O << "\t" << TAI->getCommentString() << " implicit-def: "
<< TRI->getAsmName(MI->getOperand(0).getReg()) << "\n";
}
/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void AsmPrinter::printLabel(const MachineInstr *MI) const {
O << TAI->getPrivateGlobalPrefix()
<< "label" << MI->getOperand(0).getImm() << ":\n";
}
void AsmPrinter::printLabel(unsigned Id) const {
O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
}
/// printDeclare - This method prints a local variable declaration used by
/// debug tables.
/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
/// entry into dwarf table.
void AsmPrinter::printDeclare(const MachineInstr *MI) const {
int FI = MI->getOperand(0).getIndex();
GlobalValue *GV = MI->getOperand(1).getGlobal();
MMI->RecordVariable(GV, FI);
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
/// printBasicBlockLabel - This method prints the label for the specified
/// MachineBasicBlock
void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
bool printAlign,
bool printColon,
bool printComment) const {
if (printAlign) {
unsigned Align = MBB->getAlignment();
if (Align)
EmitAlignment(Log2_32(Align));
}
O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << "_"
<< MBB->getNumber();
if (printColon)
O << ':';
if (printComment && MBB->getBasicBlock())
O << '\t' << TAI->getCommentString() << ' '
<< MBB->getBasicBlock()->getName();
}
/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
}
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '_' << uid2 << '\n';
}
/// printDataDirective - This method prints the asm directive for the
/// specified type.
void AsmPrinter::printDataDirective(const Type *type) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
if (BitWidth <= 8)
O << TAI->getData8bitsDirective();
else if (BitWidth <= 16)
O << TAI->getData16bitsDirective();
else if (BitWidth <= 32)
O << TAI->getData32bitsDirective();
else if (BitWidth <= 64) {
assert(TAI->getData64bitsDirective() &&
"Target cannot handle 64-bit constant exprs!");
O << TAI->getData64bitsDirective();
}
break;
}
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
assert(TAI->getData64bitsDirective() &&
"Target cannot handle 64-bit pointer exprs!");
O << TAI->getData64bitsDirective();
} else {
O << TAI->getData32bitsDirective();
}
break;
case Type::FloatTyID: case Type::DoubleTyID:
case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
assert (0 && "Should have already output floating point constant.");
default:
assert (0 && "Can't handle printing this type of thing");
break;
}
}
void AsmPrinter::printSuffixedName(std::string &Name, const char* Suffix) {
if (Name[0]=='\"')
O << "\"" << TAI->getPrivateGlobalPrefix() <<
Name.substr(1, Name.length()-2) << Suffix << "\"";
else
O << TAI->getPrivateGlobalPrefix() << Name << Suffix;
}