mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-06 20:10:26 +00:00
9a59fbb896
This fixes LSR crashes on 301.apsi, 191.fma3d, and 189.lucas git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22673 91177308-0d34-0410-b5e6-96231b3b80d8
678 lines
26 KiB
C++
678 lines
26 KiB
C++
//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Nate Begeman and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs a strength reduction on array references inside loops that
|
|
// have as one or more of their components the loop induction variable. This is
|
|
// accomplished by creating a new Value to hold the initial value of the array
|
|
// access for the first iteration, and then creating a new GEP instruction in
|
|
// the loop to increment the value by the appropriate amount.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "loop-reduce"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced");
|
|
Statistic<> NumInserted("loop-reduce", "Number of PHIs inserted");
|
|
|
|
/// IVStrideUse - Keep track of one use of a strided induction variable, where
|
|
/// the stride is stored externally. The Offset member keeps track of the
|
|
/// offset from the IV, User is the actual user of the operand, and 'Operand'
|
|
/// is the operand # of the User that is the use.
|
|
struct IVStrideUse {
|
|
SCEVHandle Offset;
|
|
Instruction *User;
|
|
Value *OperandValToReplace;
|
|
|
|
IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
|
|
: Offset(Offs), User(U), OperandValToReplace(O) {}
|
|
};
|
|
|
|
/// IVUsersOfOneStride - This structure keeps track of all instructions that
|
|
/// have an operand that is based on the trip count multiplied by some stride.
|
|
/// The stride for all of these users is common and kept external to this
|
|
/// structure.
|
|
struct IVUsersOfOneStride {
|
|
/// Users - Keep track of all of the users of this stride as well as the
|
|
/// initial value and the operand that uses the IV.
|
|
std::vector<IVStrideUse> Users;
|
|
|
|
void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
|
|
Users.push_back(IVStrideUse(Offset, User, Operand));
|
|
}
|
|
};
|
|
|
|
|
|
class LoopStrengthReduce : public FunctionPass {
|
|
LoopInfo *LI;
|
|
DominatorSet *DS;
|
|
ScalarEvolution *SE;
|
|
const TargetData *TD;
|
|
const Type *UIntPtrTy;
|
|
bool Changed;
|
|
|
|
/// MaxTargetAMSize - This is the maximum power-of-two scale value that the
|
|
/// target can handle for free with its addressing modes.
|
|
unsigned MaxTargetAMSize;
|
|
|
|
/// IVUsesByStride - Keep track of all uses of induction variables that we
|
|
/// are interested in. The key of the map is the stride of the access.
|
|
std::map<Value*, IVUsersOfOneStride> IVUsesByStride;
|
|
|
|
/// CastedValues - As we need to cast values to uintptr_t, this keeps track
|
|
/// of the casted version of each value. This is accessed by
|
|
/// getCastedVersionOf.
|
|
std::map<Value*, Value*> CastedPointers;
|
|
|
|
/// DeadInsts - Keep track of instructions we may have made dead, so that
|
|
/// we can remove them after we are done working.
|
|
std::set<Instruction*> DeadInsts;
|
|
public:
|
|
LoopStrengthReduce(unsigned MTAMS = 1)
|
|
: MaxTargetAMSize(MTAMS) {
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &) {
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DS = &getAnalysis<DominatorSet>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
TD = &getAnalysis<TargetData>();
|
|
UIntPtrTy = TD->getIntPtrType();
|
|
Changed = false;
|
|
|
|
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
|
|
runOnLoop(*I);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorSet>();
|
|
AU.addRequired<TargetData>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
}
|
|
|
|
/// getCastedVersionOf - Return the specified value casted to uintptr_t.
|
|
///
|
|
Value *getCastedVersionOf(Value *V);
|
|
private:
|
|
void runOnLoop(Loop *L);
|
|
bool AddUsersIfInteresting(Instruction *I, Loop *L,
|
|
std::set<Instruction*> &Processed);
|
|
SCEVHandle GetExpressionSCEV(Instruction *E, Loop *L);
|
|
|
|
|
|
void StrengthReduceStridedIVUsers(Value *Stride, IVUsersOfOneStride &Uses,
|
|
Loop *L, bool isOnlyStride);
|
|
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
|
|
};
|
|
RegisterOpt<LoopStrengthReduce> X("loop-reduce",
|
|
"Strength Reduce GEP Uses of Ind. Vars");
|
|
}
|
|
|
|
FunctionPass *llvm::createLoopStrengthReducePass(unsigned MaxTargetAMSize) {
|
|
return new LoopStrengthReduce(MaxTargetAMSize);
|
|
}
|
|
|
|
/// getCastedVersionOf - Return the specified value casted to uintptr_t.
|
|
///
|
|
Value *LoopStrengthReduce::getCastedVersionOf(Value *V) {
|
|
if (V->getType() == UIntPtrTy) return V;
|
|
if (Constant *CB = dyn_cast<Constant>(V))
|
|
return ConstantExpr::getCast(CB, UIntPtrTy);
|
|
|
|
Value *&New = CastedPointers[V];
|
|
if (New) return New;
|
|
|
|
BasicBlock::iterator InsertPt;
|
|
if (Argument *Arg = dyn_cast<Argument>(V)) {
|
|
// Insert into the entry of the function, after any allocas.
|
|
InsertPt = Arg->getParent()->begin()->begin();
|
|
while (isa<AllocaInst>(InsertPt)) ++InsertPt;
|
|
} else {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
|
|
InsertPt = II->getNormalDest()->begin();
|
|
} else {
|
|
InsertPt = cast<Instruction>(V);
|
|
++InsertPt;
|
|
}
|
|
|
|
// Do not insert casts into the middle of PHI node blocks.
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
}
|
|
|
|
New = new CastInst(V, UIntPtrTy, V->getName(), InsertPt);
|
|
DeadInsts.insert(cast<Instruction>(New));
|
|
return New;
|
|
}
|
|
|
|
|
|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
|
|
/// specified set are trivially dead, delete them and see if this makes any of
|
|
/// their operands subsequently dead.
|
|
void LoopStrengthReduce::
|
|
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
|
|
while (!Insts.empty()) {
|
|
Instruction *I = *Insts.begin();
|
|
Insts.erase(Insts.begin());
|
|
if (isInstructionTriviallyDead(I)) {
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
|
|
Insts.insert(U);
|
|
SE->deleteInstructionFromRecords(I);
|
|
I->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// GetExpressionSCEV - Compute and return the SCEV for the specified
|
|
/// instruction.
|
|
SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp, Loop *L) {
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
|
|
if (!GEP)
|
|
return SE->getSCEV(Exp);
|
|
|
|
// Analyze all of the subscripts of this getelementptr instruction, looking
|
|
// for uses that are determined by the trip count of L. First, skip all
|
|
// operands the are not dependent on the IV.
|
|
|
|
// Build up the base expression. Insert an LLVM cast of the pointer to
|
|
// uintptr_t first.
|
|
SCEVHandle GEPVal = SCEVUnknown::get(getCastedVersionOf(GEP->getOperand(0)));
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
|
|
for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
|
|
// If this is a use of a recurrence that we can analyze, and it comes before
|
|
// Op does in the GEP operand list, we will handle this when we process this
|
|
// operand.
|
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
const StructLayout *SL = TD->getStructLayout(STy);
|
|
unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
|
|
uint64_t Offset = SL->MemberOffsets[Idx];
|
|
GEPVal = SCEVAddExpr::get(GEPVal,
|
|
SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy));
|
|
} else {
|
|
Value *OpVal = getCastedVersionOf(GEP->getOperand(i));
|
|
SCEVHandle Idx = SE->getSCEV(OpVal);
|
|
|
|
uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
|
|
if (TypeSize != 1)
|
|
Idx = SCEVMulExpr::get(Idx,
|
|
SCEVConstant::get(ConstantUInt::get(UIntPtrTy,
|
|
TypeSize)));
|
|
GEPVal = SCEVAddExpr::get(GEPVal, Idx);
|
|
}
|
|
}
|
|
|
|
return GEPVal;
|
|
}
|
|
|
|
/// getSCEVStartAndStride - Compute the start and stride of this expression,
|
|
/// returning false if the expression is not a start/stride pair, or true if it
|
|
/// is. The stride must be a loop invariant expression, but the start may be
|
|
/// a mix of loop invariant and loop variant expressions.
|
|
static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
|
|
SCEVHandle &Start, Value *&Stride) {
|
|
SCEVHandle TheAddRec = Start; // Initialize to zero.
|
|
|
|
// If the outer level is an AddExpr, the operands are all start values except
|
|
// for a nested AddRecExpr.
|
|
if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
|
|
for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
|
|
if (SCEVAddRecExpr *AddRec =
|
|
dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
|
|
if (AddRec->getLoop() == L)
|
|
TheAddRec = SCEVAddExpr::get(AddRec, TheAddRec);
|
|
else
|
|
return false; // Nested IV of some sort?
|
|
} else {
|
|
Start = SCEVAddExpr::get(Start, AE->getOperand(i));
|
|
}
|
|
|
|
} else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SH)) {
|
|
TheAddRec = SH;
|
|
} else {
|
|
return false; // not analyzable.
|
|
}
|
|
|
|
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
|
|
if (!AddRec || AddRec->getLoop() != L) return false;
|
|
|
|
// FIXME: Generalize to non-affine IV's.
|
|
if (!AddRec->isAffine()) return false;
|
|
|
|
Start = SCEVAddExpr::get(Start, AddRec->getOperand(0));
|
|
|
|
// FIXME: generalize to IV's with more complex strides (must emit stride
|
|
// expression outside of loop!)
|
|
if (!isa<SCEVConstant>(AddRec->getOperand(1)))
|
|
return false;
|
|
|
|
SCEVConstant *StrideC = cast<SCEVConstant>(AddRec->getOperand(1));
|
|
Stride = StrideC->getValue();
|
|
|
|
assert(Stride->getType()->isUnsigned() &&
|
|
"Constants should be canonicalized to unsigned!");
|
|
return true;
|
|
}
|
|
|
|
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
|
|
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
|
/// return true. Otherwise, return false.
|
|
bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
|
|
std::set<Instruction*> &Processed) {
|
|
if (I->getType() == Type::VoidTy) return false;
|
|
if (!Processed.insert(I).second)
|
|
return true; // Instruction already handled.
|
|
|
|
// Get the symbolic expression for this instruction.
|
|
SCEVHandle ISE = GetExpressionSCEV(I, L);
|
|
if (isa<SCEVCouldNotCompute>(ISE)) return false;
|
|
|
|
// Get the start and stride for this expression.
|
|
SCEVHandle Start = SCEVUnknown::getIntegerSCEV(0, ISE->getType());
|
|
Value *Stride = 0;
|
|
if (!getSCEVStartAndStride(ISE, L, Start, Stride))
|
|
return false; // Non-reducible symbolic expression, bail out.
|
|
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
// Do not infinitely recurse on PHI nodes.
|
|
if (isa<PHINode>(User) && User->getParent() == L->getHeader())
|
|
continue;
|
|
|
|
// If this is an instruction defined in a nested loop, or outside this loop,
|
|
// don't recurse into it.
|
|
bool AddUserToIVUsers = false;
|
|
if (LI->getLoopFor(User->getParent()) != L) {
|
|
DEBUG(std::cerr << "FOUND USER in nested loop: " << *User
|
|
<< " OF SCEV: " << *ISE << "\n");
|
|
AddUserToIVUsers = true;
|
|
} else if (!AddUsersIfInteresting(User, L, Processed)) {
|
|
DEBUG(std::cerr << "FOUND USER: " << *User
|
|
<< " OF SCEV: " << *ISE << "\n");
|
|
AddUserToIVUsers = true;
|
|
}
|
|
|
|
if (AddUserToIVUsers) {
|
|
// Okay, we found a user that we cannot reduce. Analyze the instruction
|
|
// and decide what to do with it.
|
|
IVUsesByStride[Stride].addUser(Start, User, I);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// BasedUser - For a particular base value, keep information about how we've
|
|
/// partitioned the expression so far.
|
|
struct BasedUser {
|
|
/// Inst - The instruction using the induction variable.
|
|
Instruction *Inst;
|
|
|
|
/// OperandValToReplace - The operand value of Inst to replace with the
|
|
/// EmittedBase.
|
|
Value *OperandValToReplace;
|
|
|
|
/// Imm - The immediate value that should be added to the base immediately
|
|
/// before Inst, because it will be folded into the imm field of the
|
|
/// instruction.
|
|
SCEVHandle Imm;
|
|
|
|
/// EmittedBase - The actual value* to use for the base value of this
|
|
/// operation. This is null if we should just use zero so far.
|
|
Value *EmittedBase;
|
|
|
|
BasedUser(Instruction *I, Value *Op, const SCEVHandle &IMM)
|
|
: Inst(I), OperandValToReplace(Op), Imm(IMM), EmittedBase(0) {}
|
|
|
|
// Once we rewrite the code to insert the new IVs we want, update the
|
|
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
|
|
// to it.
|
|
void RewriteInstructionToUseNewBase(Value *NewBase, SCEVExpander &Rewriter);
|
|
|
|
// No need to compare these.
|
|
bool operator<(const BasedUser &BU) const { return 0; }
|
|
|
|
void dump() const;
|
|
};
|
|
}
|
|
|
|
void BasedUser::dump() const {
|
|
std::cerr << " Imm=" << *Imm;
|
|
if (EmittedBase)
|
|
std::cerr << " EB=" << *EmittedBase;
|
|
|
|
std::cerr << " Inst: " << *Inst;
|
|
}
|
|
|
|
// Once we rewrite the code to insert the new IVs we want, update the
|
|
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
|
|
// to it.
|
|
void BasedUser::RewriteInstructionToUseNewBase(Value *NewBase,
|
|
SCEVExpander &Rewriter) {
|
|
if (!isa<PHINode>(Inst)) {
|
|
SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(NewBase), Imm);
|
|
Value *NewVal = Rewriter.expandCodeFor(NewValSCEV, Inst,
|
|
OperandValToReplace->getType());
|
|
|
|
// Replace the use of the operand Value with the new Phi we just created.
|
|
Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
|
|
DEBUG(std::cerr << " CHANGED: IMM =" << *Imm << " Inst = " << *Inst);
|
|
return;
|
|
}
|
|
|
|
// PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
|
|
// expression into each operand block that uses it.
|
|
PHINode *PN = cast<PHINode>(Inst);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
if (PN->getIncomingValue(i) == OperandValToReplace) {
|
|
// FIXME: this should split any critical edges.
|
|
|
|
// Insert the code into the end of the predecessor block.
|
|
BasicBlock::iterator InsertPt = PN->getIncomingBlock(i)->getTerminator();
|
|
|
|
SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(NewBase), Imm);
|
|
Value *NewVal = Rewriter.expandCodeFor(NewValSCEV, InsertPt,
|
|
OperandValToReplace->getType());
|
|
|
|
// Replace the use of the operand Value with the new Phi we just created.
|
|
PN->setIncomingValue(i, NewVal);
|
|
Rewriter.clear();
|
|
}
|
|
}
|
|
DEBUG(std::cerr << " CHANGED: IMM =" << *Imm << " Inst = " << *Inst);
|
|
}
|
|
|
|
|
|
/// isTargetConstant - Return true if the following can be referenced by the
|
|
/// immediate field of a target instruction.
|
|
static bool isTargetConstant(const SCEVHandle &V) {
|
|
|
|
// FIXME: Look at the target to decide if &GV is a legal constant immediate.
|
|
if (isa<SCEVConstant>(V)) return true;
|
|
|
|
return false; // ENABLE this for x86
|
|
|
|
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
|
|
if (CE->getOpcode() == Instruction::Cast)
|
|
if (isa<GlobalValue>(CE->getOperand(0)))
|
|
// FIXME: should check to see that the dest is uintptr_t!
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// MoveImmediateValues - Look at Val, and pull out any additions of constants
|
|
/// that can fit into the immediate field of instructions in the target.
|
|
/// Accumulate these immediate values into the Imm value.
|
|
static void MoveImmediateValues(SCEVHandle &Val, SCEVHandle &Imm,
|
|
bool isAddress, Loop *L) {
|
|
if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
|
|
std::vector<SCEVHandle> NewOps;
|
|
NewOps.reserve(SAE->getNumOperands());
|
|
|
|
for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
|
|
if (isAddress && isTargetConstant(SAE->getOperand(i))) {
|
|
Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
|
|
} else if (!SAE->getOperand(i)->isLoopInvariant(L)) {
|
|
// If this is a loop-variant expression, it must stay in the immediate
|
|
// field of the expression.
|
|
Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
|
|
} else {
|
|
NewOps.push_back(SAE->getOperand(i));
|
|
}
|
|
|
|
if (NewOps.empty())
|
|
Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
|
|
else
|
|
Val = SCEVAddExpr::get(NewOps);
|
|
return;
|
|
} else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
|
|
// Try to pull immediates out of the start value of nested addrec's.
|
|
SCEVHandle Start = SARE->getStart();
|
|
MoveImmediateValues(Start, Imm, isAddress, L);
|
|
|
|
if (Start != SARE->getStart()) {
|
|
std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
|
|
Ops[0] = Start;
|
|
Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Loop-variant expressions must stay in the immediate field of the
|
|
// expression.
|
|
if ((isAddress && isTargetConstant(Val)) ||
|
|
!Val->isLoopInvariant(L)) {
|
|
Imm = SCEVAddExpr::get(Imm, Val);
|
|
Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, no immediates to move.
|
|
}
|
|
|
|
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
|
|
/// stride of IV. All of the users may have different starting values, and this
|
|
/// may not be the only stride (we know it is if isOnlyStride is true).
|
|
void LoopStrengthReduce::StrengthReduceStridedIVUsers(Value *Stride,
|
|
IVUsersOfOneStride &Uses,
|
|
Loop *L,
|
|
bool isOnlyStride) {
|
|
// Transform our list of users and offsets to a bit more complex table. In
|
|
// this new vector, the first entry for each element is the base of the
|
|
// strided access, and the second is the BasedUser object for the use. We
|
|
// progressively move information from the first to the second entry, until we
|
|
// eventually emit the object.
|
|
std::vector<std::pair<SCEVHandle, BasedUser> > UsersToProcess;
|
|
UsersToProcess.reserve(Uses.Users.size());
|
|
|
|
SCEVHandle ZeroBase = SCEVUnknown::getIntegerSCEV(0,
|
|
Uses.Users[0].Offset->getType());
|
|
|
|
for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i)
|
|
UsersToProcess.push_back(std::make_pair(Uses.Users[i].Offset,
|
|
BasedUser(Uses.Users[i].User,
|
|
Uses.Users[i].OperandValToReplace,
|
|
ZeroBase)));
|
|
|
|
// First pass, figure out what we can represent in the immediate fields of
|
|
// instructions. If we can represent anything there, move it to the imm
|
|
// fields of the BasedUsers.
|
|
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
|
|
// Addressing modes can be folded into loads and stores. Be careful that
|
|
// the store is through the expression, not of the expression though.
|
|
bool isAddress = isa<LoadInst>(UsersToProcess[i].second.Inst);
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].second.Inst))
|
|
if (SI->getOperand(1) == UsersToProcess[i].second.OperandValToReplace)
|
|
isAddress = true;
|
|
|
|
MoveImmediateValues(UsersToProcess[i].first, UsersToProcess[i].second.Imm,
|
|
isAddress, L);
|
|
|
|
assert(UsersToProcess[i].first->isLoopInvariant(L) &&
|
|
"Base value is not loop invariant!");
|
|
}
|
|
|
|
SCEVExpander Rewriter(*SE, *LI);
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
Instruction *PreInsertPt = Preheader->getTerminator();
|
|
Instruction *PhiInsertBefore = L->getHeader()->begin();
|
|
|
|
assert(isa<PHINode>(PhiInsertBefore) &&
|
|
"How could this loop have IV's without any phis?");
|
|
PHINode *SomeLoopPHI = cast<PHINode>(PhiInsertBefore);
|
|
assert(SomeLoopPHI->getNumIncomingValues() == 2 &&
|
|
"This loop isn't canonicalized right");
|
|
BasicBlock *LatchBlock =
|
|
SomeLoopPHI->getIncomingBlock(SomeLoopPHI->getIncomingBlock(0) == Preheader);
|
|
|
|
DEBUG(std::cerr << "INSERTING IVs of STRIDE " << *Stride << ":\n");
|
|
|
|
// FIXME: This loop needs increasing levels of intelligence.
|
|
// STAGE 0: just emit everything as its own base.
|
|
// STAGE 1: factor out common vars from bases, and try and push resulting
|
|
// constants into Imm field. <-- We are here
|
|
// STAGE 2: factor out large constants to try and make more constants
|
|
// acceptable for target loads and stores.
|
|
|
|
// Sort by the base value, so that all IVs with identical bases are next to
|
|
// each other.
|
|
std::sort(UsersToProcess.begin(), UsersToProcess.end());
|
|
while (!UsersToProcess.empty()) {
|
|
SCEVHandle Base = UsersToProcess.front().first;
|
|
|
|
DEBUG(std::cerr << " INSERTING PHI with BASE = " << *Base << ":\n");
|
|
|
|
// Create a new Phi for this base, and stick it in the loop header.
|
|
const Type *ReplacedTy = Base->getType();
|
|
PHINode *NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
|
|
++NumInserted;
|
|
|
|
// Emit the initial base value into the loop preheader, and add it to the
|
|
// Phi node.
|
|
Value *BaseV = Rewriter.expandCodeFor(Base, PreInsertPt, ReplacedTy);
|
|
NewPHI->addIncoming(BaseV, Preheader);
|
|
|
|
// Emit the increment of the base value before the terminator of the loop
|
|
// latch block, and add it to the Phi node.
|
|
SCEVHandle Inc = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
|
|
SCEVUnknown::get(Stride));
|
|
|
|
Value *IncV = Rewriter.expandCodeFor(Inc, LatchBlock->getTerminator(),
|
|
ReplacedTy);
|
|
IncV->setName(NewPHI->getName()+".inc");
|
|
NewPHI->addIncoming(IncV, LatchBlock);
|
|
|
|
// Emit the code to add the immediate offset to the Phi value, just before
|
|
// the instructions that we identified as using this stride and base.
|
|
while (!UsersToProcess.empty() && UsersToProcess.front().first == Base) {
|
|
BasedUser &User = UsersToProcess.front().second;
|
|
|
|
// Clear the SCEVExpander's expression map so that we are guaranteed
|
|
// to have the code emitted where we expect it.
|
|
Rewriter.clear();
|
|
|
|
// Now that we know what we need to do, insert code before User for the
|
|
// immediate and any loop-variant expressions.
|
|
User.RewriteInstructionToUseNewBase(NewPHI, Rewriter);
|
|
|
|
// Mark old value we replaced as possibly dead, so that it is elminated
|
|
// if we just replaced the last use of that value.
|
|
DeadInsts.insert(cast<Instruction>(User.OperandValToReplace));
|
|
|
|
UsersToProcess.erase(UsersToProcess.begin());
|
|
++NumReduced;
|
|
}
|
|
// TODO: Next, find out which base index is the most common, pull it out.
|
|
}
|
|
|
|
// IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
|
|
// different starting values, into different PHIs.
|
|
}
|
|
|
|
|
|
void LoopStrengthReduce::runOnLoop(Loop *L) {
|
|
// First step, transform all loops nesting inside of this loop.
|
|
for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
|
|
runOnLoop(*I);
|
|
|
|
// Next, find all uses of induction variables in this loop, and catagorize
|
|
// them by stride. Start by finding all of the PHI nodes in the header for
|
|
// this loop. If they are induction variables, inspect their uses.
|
|
std::set<Instruction*> Processed; // Don't reprocess instructions.
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
|
AddUsersIfInteresting(I, L, Processed);
|
|
|
|
// If we have nothing to do, return.
|
|
//if (IVUsesByStride.empty()) return;
|
|
|
|
// FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
|
|
// doing computation in byte values, promote to 32-bit values if safe.
|
|
|
|
// FIXME: Attempt to reuse values across multiple IV's. In particular, we
|
|
// could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
|
|
// codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. Need
|
|
// to be careful that IV's are all the same type. Only works for intptr_t
|
|
// indvars.
|
|
|
|
// If we only have one stride, we can more aggressively eliminate some things.
|
|
bool HasOneStride = IVUsesByStride.size() == 1;
|
|
|
|
for (std::map<Value*, IVUsersOfOneStride>::iterator SI
|
|
= IVUsesByStride.begin(), E = IVUsesByStride.end(); SI != E; ++SI)
|
|
StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
|
|
|
|
// Clean up after ourselves
|
|
if (!DeadInsts.empty()) {
|
|
DeleteTriviallyDeadInstructions(DeadInsts);
|
|
|
|
BasicBlock::iterator I = L->getHeader()->begin();
|
|
PHINode *PN;
|
|
while ((PN = dyn_cast<PHINode>(I))) {
|
|
++I; // Preincrement iterator to avoid invalidating it when deleting PN.
|
|
|
|
// At this point, we know that we have killed one or more GEP instructions.
|
|
// It is worth checking to see if the cann indvar is also dead, so that we
|
|
// can remove it as well. The requirements for the cann indvar to be
|
|
// considered dead are:
|
|
// 1. the cann indvar has one use
|
|
// 2. the use is an add instruction
|
|
// 3. the add has one use
|
|
// 4. the add is used by the cann indvar
|
|
// If all four cases above are true, then we can remove both the add and
|
|
// the cann indvar.
|
|
// FIXME: this needs to eliminate an induction variable even if it's being
|
|
// compared against some value to decide loop termination.
|
|
if (PN->hasOneUse()) {
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
|
|
if (BO && BO->hasOneUse()) {
|
|
if (PN == *(BO->use_begin())) {
|
|
DeadInsts.insert(BO);
|
|
// Break the cycle, then delete the PHI.
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
SE->deleteInstructionFromRecords(PN);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DeleteTriviallyDeadInstructions(DeadInsts);
|
|
}
|
|
|
|
CastedPointers.clear();
|
|
IVUsesByStride.clear();
|
|
return;
|
|
}
|