llvm/lib/Transforms/Scalar/BoundsChecking.cpp

569 lines
19 KiB
C++

//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass that instruments the code to perform run-time
// bounds checking on loads, stores, and other memory intrinsics.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bounds-checking"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Metadata.h"
#include "llvm/Operator.h"
#include "llvm/Pass.h"
using namespace llvm;
static cl::opt<bool> ManyTrapBB("bounds-checking-multiple-traps",
cl::desc("Use one trap block per assertion"));
STATISTIC(ChecksAdded, "Bounds checks added");
STATISTIC(ChecksSkipped, "Bounds checks skipped");
STATISTIC(ChecksUnable, "Bounds checks unable to add");
STATISTIC(ChecksUnableInterproc, "Bounds checks unable to add (interprocedural)");
STATISTIC(ChecksUnableLoad, "Bounds checks unable to add (LoadInst)");
typedef IRBuilder<true, TargetFolder> BuilderTy;
namespace {
// FIXME: can use unions here to save space
struct CacheData {
APInt Offset;
Value *OffsetValue;
APInt Size;
Value *SizeValue;
bool ReturnVal;
CacheData() {}
CacheData(APInt Off, Value *OffVal, APInt Sz, Value *SzVal, bool Ret) :
Offset(Off), OffsetValue(OffVal), Size(Sz), SizeValue(SzVal),
ReturnVal(Ret) {}
};
typedef DenseMap<Value*, CacheData> CacheMapTy;
typedef SmallPtrSet<Value*, 8> PtrSetTy;
struct BoundsChecking : public FunctionPass {
static char ID;
BoundsChecking(unsigned _Penalty = 5) : FunctionPass(ID), Penalty(_Penalty){
initializeBoundsCheckingPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetData>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
}
private:
const TargetData *TD;
LoopInfo *LI;
ScalarEvolution *SE;
BuilderTy *Builder;
Function *Fn;
BasicBlock *TrapBB;
unsigned Penalty;
CacheMapTy CacheMap;
PtrSetTy SeenPtrs;
BasicBlock *getTrapBB();
void emitBranchToTrap(Value *Cmp = 0);
bool computeAllocSize(Value *Ptr, APInt &Offset, Value* &OffsetValue,
APInt &Size, Value* &SizeValue);
bool instrument(Value *Ptr, Value *Val);
};
}
char BoundsChecking::ID = 0;
INITIALIZE_PASS_BEGIN(BoundsChecking, "bounds-checking",
"Run-time bounds checking", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(BoundsChecking, "bounds-checking",
"Run-time bounds checking", false, false)
/// getTrapBB - create a basic block that traps. All overflowing conditions
/// branch to this block. There's only one trap block per function.
BasicBlock *BoundsChecking::getTrapBB() {
if (TrapBB && !ManyTrapBB)
return TrapBB;
BasicBlock::iterator PrevInsertPoint = Builder->GetInsertPoint();
TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
Builder->SetInsertPoint(TrapBB);
llvm::Value *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
CallInst *TrapCall = Builder->CreateCall(F);
TrapCall->setDoesNotReturn();
TrapCall->setDoesNotThrow();
Builder->CreateUnreachable();
Builder->SetInsertPoint(PrevInsertPoint);
return TrapBB;
}
/// emitBranchToTrap - emit a branch instruction to a trap block.
/// If Cmp is non-null, perform a jump only if its value evaluates to true.
void BoundsChecking::emitBranchToTrap(Value *Cmp) {
Instruction *Inst = Builder->GetInsertPoint();
BasicBlock *OldBB = Inst->getParent();
BasicBlock *Cont = OldBB->splitBasicBlock(Inst);
OldBB->getTerminator()->eraseFromParent();
if (Cmp)
BranchInst::Create(getTrapBB(), Cont, Cmp, OldBB);
else
BranchInst::Create(getTrapBB(), OldBB);
}
#define GET_VALUE(Val, Int) \
if (!Val) \
Val = ConstantInt::get(IntTy, Int)
#define RETURN(Val) \
do { ReturnVal = Val; goto cache_and_return; } while (0)
/// computeAllocSize - compute the object size and the offset within the object
/// pointed by Ptr. OffsetValue/SizeValue will be null if they are constant, and
/// therefore the result is given in Offset/Size variables instead.
/// Returns true if the offset and size could be computed within the given
/// maximum run-time penalty.
bool BoundsChecking::computeAllocSize(Value *Ptr, APInt &Offset,
Value* &OffsetValue, APInt &Size,
Value* &SizeValue) {
Ptr = Ptr->stripPointerCasts();
// lookup to see if we've seen the Ptr before
CacheMapTy::iterator CacheIt = CacheMap.find(Ptr);
if (CacheIt != CacheMap.end()) {
CacheData &Cache = CacheIt->second;
Offset = Cache.Offset;
OffsetValue = Cache.OffsetValue;
Size = Cache.Size;
SizeValue = Cache.SizeValue;
return Cache.ReturnVal;
}
// record the pointers that were handled in this run, so that they can be
// cleaned later if something fails
SeenPtrs.insert(Ptr);
IntegerType *IntTy = TD->getIntPtrType(Fn->getContext());
unsigned IntTyBits = IntTy->getBitWidth();
bool ReturnVal;
// always generate code immediately before the instruction being processed, so
// that the generated code dominates the same BBs
Instruction *PrevInsertPoint = Builder->GetInsertPoint();
if (Instruction *I = dyn_cast<Instruction>(Ptr))
Builder->SetInsertPoint(I);
// initalize with "don't know" state: offset=0 and size=uintmax
Offset = 0;
Size = APInt::getMaxValue(TD->getTypeSizeInBits(IntTy));
OffsetValue = SizeValue = 0;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt PtrOffset(IntTyBits, 0);
Value *PtrOffsetValue = 0;
if (!computeAllocSize(GEP->getPointerOperand(), PtrOffset, PtrOffsetValue,
Size, SizeValue))
RETURN(false);
if (GEP->hasAllConstantIndices()) {
SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
// if PtrOffset is constant, return immediately
if (!PtrOffsetValue) {
Offset += PtrOffset;
RETURN(true);
}
OffsetValue = ConstantInt::get(IntTy, Offset);
} else if (Penalty > 1) {
OffsetValue = EmitGEPOffset(Builder, *TD, GEP);
GET_VALUE(PtrOffsetValue, PtrOffset);
} else
RETURN(false);
OffsetValue = Builder->CreateAdd(PtrOffsetValue, OffsetValue);
RETURN(true);
// global variable with definitive size
} else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
if (GV->hasDefinitiveInitializer()) {
Constant *C = GV->getInitializer();
Size = TD->getTypeAllocSize(C->getType());
RETURN(true);
}
RETURN(false);
// stack allocation
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(Ptr)) {
if (!AI->getAllocatedType()->isSized())
RETURN(false);
Size = TD->getTypeAllocSize(AI->getAllocatedType());
if (!AI->isArrayAllocation())
RETURN(true); // we are done
Value *ArraySize = AI->getArraySize();
if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
Size *= C->getValue();
RETURN(true);
}
if (Penalty < 2)
RETURN(false);
// VLA: compute size dynamically
SizeValue = ConstantInt::get(ArraySize->getType(), Size);
SizeValue = Builder->CreateMul(SizeValue, ArraySize);
RETURN(true);
// function arguments
} else if (Argument *A = dyn_cast<Argument>(Ptr)) {
// right now we only support byval arguments, so that no interprocedural
// analysis is necessary
if (!A->hasByValAttr()) {
++ChecksUnableInterproc;
RETURN(false);
}
PointerType *PT = cast<PointerType>(A->getType());
Size = TD->getTypeAllocSize(PT->getElementType());
RETURN(true);
// ptr = select(ptr1, ptr2)
} else if (SelectInst *SI = dyn_cast<SelectInst>(Ptr)) {
APInt OffsetTrue(IntTyBits, 0), OffsetFalse(IntTyBits, 0);
APInt SizeTrue(IntTyBits, 0), SizeFalse(IntTyBits, 0);
Value *OffsetValueTrue = 0, *OffsetValueFalse = 0;
Value *SizeValueTrue = 0, *SizeValueFalse = 0;
bool TrueAlloc = computeAllocSize(SI->getTrueValue(), OffsetTrue,
OffsetValueTrue, SizeTrue, SizeValueTrue);
bool FalseAlloc = computeAllocSize(SI->getFalseValue(), OffsetFalse,
OffsetValueFalse, SizeFalse,
SizeValueFalse);
if (!TrueAlloc || !FalseAlloc)
RETURN(false);
// fold constant sizes & offsets if they are equal
if (!OffsetValueTrue && !OffsetValueFalse && OffsetTrue == OffsetFalse)
Offset = OffsetTrue;
else if (Penalty > 1) {
GET_VALUE(OffsetValueTrue, OffsetTrue);
GET_VALUE(OffsetValueFalse, OffsetFalse);
OffsetValue = Builder->CreateSelect(SI->getCondition(), OffsetValueTrue,
OffsetValueFalse);
} else
RETURN(false);
if (!SizeValueTrue && !SizeValueFalse && SizeTrue == SizeFalse)
Size = SizeTrue;
else if (Penalty > 1) {
GET_VALUE(SizeValueTrue, SizeTrue);
GET_VALUE(SizeValueFalse, SizeFalse);
SizeValue = Builder->CreateSelect(SI->getCondition(), SizeValueTrue,
SizeValueFalse);
} else
RETURN(false);
RETURN(true);
// call allocation function
} else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
SmallVector<unsigned, 4> Args;
if (MDNode *MD = CI->getMetadata("alloc_size")) {
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
Args.push_back(cast<ConstantInt>(MD->getOperand(i))->getZExtValue());
} else if (Function *Callee = CI->getCalledFunction()) {
FunctionType *FTy = Callee->getFunctionType();
// alloc(size)
if (FTy->getNumParams() == 1 && FTy->getParamType(0)->isIntegerTy()) {
if ((Callee->getName() == "malloc" ||
Callee->getName() == "valloc" ||
Callee->getName() == "_Znwj" || // operator new(unsigned int)
Callee->getName() == "_Znwm" || // operator new(unsigned long)
Callee->getName() == "_Znaj" || // operator new[](unsigned int)
Callee->getName() == "_Znam")) {
Args.push_back(0);
}
} else if (FTy->getNumParams() == 2) {
// alloc(_, x)
if (FTy->getParamType(1)->isIntegerTy() &&
((Callee->getName() == "realloc" ||
Callee->getName() == "reallocf"))) {
Args.push_back(1);
// alloc(x, y)
} else if (FTy->getParamType(0)->isIntegerTy() &&
FTy->getParamType(1)->isIntegerTy() &&
Callee->getName() == "calloc") {
Args.push_back(0);
Args.push_back(1);
}
} else if (FTy->getNumParams() == 3) {
// alloc(_, _, x)
if (FTy->getParamType(2)->isIntegerTy() &&
Callee->getName() == "posix_memalign") {
Args.push_back(2);
}
}
}
if (Args.empty())
RETURN(false);
// check if all arguments are constant. if so, the object size is also const
bool AllConst = true;
for (SmallVectorImpl<unsigned>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
if (!isa<ConstantInt>(CI->getArgOperand(*I))) {
AllConst = false;
break;
}
}
if (AllConst) {
Size = 1;
for (SmallVectorImpl<unsigned>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
ConstantInt *Arg = cast<ConstantInt>(CI->getArgOperand(*I));
Size *= Arg->getValue().zextOrSelf(IntTyBits);
}
RETURN(true);
}
if (Penalty < 2)
RETURN(false);
// not all arguments are constant, so create a sequence of multiplications
for (SmallVectorImpl<unsigned>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
Value *Arg = Builder->CreateZExt(CI->getArgOperand(*I), IntTy);
if (!SizeValue) {
SizeValue = Arg;
continue;
}
SizeValue = Builder->CreateMul(SizeValue, Arg);
}
RETURN(true);
// TODO: handle more standard functions (+ wchar cousins):
// - strdup / strndup
// - strcpy / strncpy
// - strcat / strncat
// - memcpy / memmove
// - strcat / strncat
// - memset
} else if (PHINode *PHI = dyn_cast<PHINode>(Ptr)) {
// create 2 PHIs: one for offset and another for size
PHINode *OffsetPHI = Builder->CreatePHI(IntTy, PHI->getNumIncomingValues());
PHINode *SizePHI = Builder->CreatePHI(IntTy, PHI->getNumIncomingValues());
// insert right away in the cache to handle recursive PHIs
CacheMap[Ptr] = CacheData(APInt(), OffsetPHI, APInt(), SizePHI, true);
// compute offset/size for each PHI incoming pointer
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
Builder->SetInsertPoint(PHI->getIncomingBlock(i)->getFirstInsertionPt());
APInt PhiOffset(IntTyBits, 0), PhiSize(IntTyBits, 0);
Value *PhiOffsetValue = 0, *PhiSizeValue = 0;
if (!computeAllocSize(PHI->getIncomingValue(i), PhiOffset, PhiOffsetValue,
PhiSize, PhiSizeValue)) {
OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
OffsetPHI->eraseFromParent();
SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
SizePHI->eraseFromParent();
RETURN(false);
}
GET_VALUE(PhiOffsetValue, PhiOffset);
GET_VALUE(PhiSizeValue, PhiSize);
OffsetPHI->addIncoming(PhiOffsetValue, PHI->getIncomingBlock(i));
SizePHI->addIncoming(PhiSizeValue, PHI->getIncomingBlock(i));
}
OffsetValue = OffsetPHI;
SizeValue = SizePHI;
RETURN(true);
} else if (isa<UndefValue>(Ptr) || isa<ConstantPointerNull>(Ptr)) {
Size = 0;
RETURN(true);
} else if (isa<LoadInst>(Ptr)) {
++ChecksUnableLoad;
RETURN(false);
}
DEBUG(dbgs() << "computeAllocSize unhandled value:\n" << *Ptr << "\n");
RETURN(false);
cache_and_return:
// cache the result and return
CacheMap[Ptr] = CacheData(Offset, OffsetValue, Size, SizeValue, ReturnVal);
// non-computable results can be safely cached
if (!ReturnVal)
SeenPtrs.erase(Ptr);
Builder->SetInsertPoint(PrevInsertPoint);
return ReturnVal;
}
/// instrument - adds run-time bounds checks to memory accessing instructions.
/// Ptr is the pointer that will be read/written, and InstVal is either the
/// result from the load or the value being stored. It is used to determine the
/// size of memory block that is touched.
/// Returns true if any change was made to the IR, false otherwise.
bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
uint64_t NeededSize = TD->getTypeStoreSize(InstVal->getType());
DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
<< " bytes\n");
IntegerType *IntTy = TD->getIntPtrType(Fn->getContext());
unsigned IntTyBits = IntTy->getBitWidth();
APInt Offset(IntTyBits, 0), Size(IntTyBits, 0);
Value *OffsetValue = 0, *SizeValue = 0;
if (!computeAllocSize(Ptr, Offset, OffsetValue, Size, SizeValue)) {
DEBUG(dbgs() << "computeAllocSize failed:\n" << *Ptr << "\n");
// erase everything that was computed in this iteration from the cache, so
// that no dangling references are left behind. We could be a bit smarter if
// we kept a dependency graph. It's probably not worth the complexity,
// though.
for (PtrSetTy::iterator I=SeenPtrs.begin(), E=SeenPtrs.end(); I != E; ++I)
CacheMap.erase(*I);
SeenPtrs.clear();
++ChecksUnable;
return false;
}
// three checks are required to ensure safety:
// . Offset >= 0 (since the offset is given from the base ptr)
// . Size >= Offset (unsigned)
// . Size - Offset >= NeededSize (unsigned)
if (!OffsetValue && !SizeValue) {
if (Offset.slt(0) || Size.ult(Offset) || (Size - Offset).ult(NeededSize)) {
// Out of bounds
emitBranchToTrap();
++ChecksAdded;
return true;
}
// in bounds
++ChecksSkipped;
return false;
}
// emit check for offset < 0
Value *CmpOffset = 0;
if (OffsetValue)
CmpOffset = Builder->CreateICmpSLT(OffsetValue, ConstantInt::get(IntTy, 0));
else if (Offset.slt(0)) {
// offset proved to be negative
emitBranchToTrap();
++ChecksAdded;
return true;
}
// we couldn't determine statically if the memory access is safe; emit a
// run-time check
GET_VALUE(OffsetValue, Offset);
GET_VALUE(SizeValue, Size);
Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
// FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows
Value *ObjSize = Builder->CreateSub(SizeValue, OffsetValue);
Value *Cmp1 = Builder->CreateICmpULT(SizeValue, OffsetValue);
Value *Cmp2 = Builder->CreateICmpULT(ObjSize, NeededSizeVal);
Value *Or = Builder->CreateOr(Cmp1, Cmp2);
if (CmpOffset)
Or = Builder->CreateOr(CmpOffset, Or);
emitBranchToTrap(Or);
++ChecksAdded;
return true;
}
bool BoundsChecking::runOnFunction(Function &F) {
TD = &getAnalysis<TargetData>();
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
TrapBB = 0;
Fn = &F;
BuilderTy TheBuilder(F.getContext(), TargetFolder(TD));
Builder = &TheBuilder;
// check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
// touching instructions
std::vector<Instruction*> WorkList;
for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) {
Instruction *I = &*i;
if (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<AtomicCmpXchgInst>(I) ||
isa<AtomicRMWInst>(I))
WorkList.push_back(I);
}
bool MadeChange = false;
for (std::vector<Instruction*>::iterator i = WorkList.begin(),
e = WorkList.end(); i != e; ++i) {
Instruction *I = *i;
Builder->SetInsertPoint(I);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
MadeChange |= instrument(LI->getPointerOperand(), LI);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
MadeChange |= instrument(SI->getPointerOperand(), SI->getValueOperand());
} else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
MadeChange |= instrument(AI->getPointerOperand(),AI->getCompareOperand());
} else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(I)) {
MadeChange |= instrument(AI->getPointerOperand(), AI->getValOperand());
} else {
llvm_unreachable("unknown Instruction type");
}
}
return MadeChange;
}
FunctionPass *llvm::createBoundsCheckingPass(unsigned Penalty) {
return new BoundsChecking(Penalty);
}