mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 01:14:12 +00:00
e0b632a5d8
do it. :) <_sabre_> excuses excuses git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24471 91177308-0d34-0410-b5e6-96231b3b80d8
773 lines
28 KiB
C++
773 lines
28 KiB
C++
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a linear scan register allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "PhysRegTracker.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <set>
|
|
#include <queue>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
Statistic<double> efficiency
|
|
("regalloc", "Ratio of intervals processed over total intervals");
|
|
Statistic<> NumBacktracks("regalloc", "Number of times we had to backtrack");
|
|
|
|
static unsigned numIterations = 0;
|
|
static unsigned numIntervals = 0;
|
|
|
|
struct RA : public MachineFunctionPass {
|
|
typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
|
|
typedef std::vector<IntervalPtr> IntervalPtrs;
|
|
private:
|
|
/// RelatedRegClasses - This structure is built the first time a function is
|
|
/// compiled, and keeps track of which register classes have registers that
|
|
/// belong to multiple classes or have aliases that are in other classes.
|
|
EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
|
|
std::map<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
|
|
|
|
MachineFunction* mf_;
|
|
const TargetMachine* tm_;
|
|
const MRegisterInfo* mri_;
|
|
LiveIntervals* li_;
|
|
bool *PhysRegsUsed;
|
|
|
|
/// handled_ - Intervals are added to the handled_ set in the order of their
|
|
/// start value. This is uses for backtracking.
|
|
std::vector<LiveInterval*> handled_;
|
|
|
|
/// fixed_ - Intervals that correspond to machine registers.
|
|
///
|
|
IntervalPtrs fixed_;
|
|
|
|
/// active_ - Intervals that are currently being processed, and which have a
|
|
/// live range active for the current point.
|
|
IntervalPtrs active_;
|
|
|
|
/// inactive_ - Intervals that are currently being processed, but which have
|
|
/// a hold at the current point.
|
|
IntervalPtrs inactive_;
|
|
|
|
typedef std::priority_queue<LiveInterval*,
|
|
std::vector<LiveInterval*>,
|
|
greater_ptr<LiveInterval> > IntervalHeap;
|
|
IntervalHeap unhandled_;
|
|
std::auto_ptr<PhysRegTracker> prt_;
|
|
std::auto_ptr<VirtRegMap> vrm_;
|
|
std::auto_ptr<Spiller> spiller_;
|
|
|
|
public:
|
|
virtual const char* getPassName() const {
|
|
return "Linear Scan Register Allocator";
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LiveIntervals>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// runOnMachineFunction - register allocate the whole function
|
|
bool runOnMachineFunction(MachineFunction&);
|
|
|
|
private:
|
|
/// linearScan - the linear scan algorithm
|
|
void linearScan();
|
|
|
|
/// initIntervalSets - initialize the interval sets.
|
|
///
|
|
void initIntervalSets();
|
|
|
|
/// processActiveIntervals - expire old intervals and move non-overlapping
|
|
/// ones to the inactive list.
|
|
void processActiveIntervals(unsigned CurPoint);
|
|
|
|
/// processInactiveIntervals - expire old intervals and move overlapping
|
|
/// ones to the active list.
|
|
void processInactiveIntervals(unsigned CurPoint);
|
|
|
|
/// assignRegOrStackSlotAtInterval - assign a register if one
|
|
/// is available, or spill.
|
|
void assignRegOrStackSlotAtInterval(LiveInterval* cur);
|
|
|
|
///
|
|
/// register handling helpers
|
|
///
|
|
|
|
/// getFreePhysReg - return a free physical register for this virtual
|
|
/// register interval if we have one, otherwise return 0.
|
|
unsigned getFreePhysReg(LiveInterval* cur);
|
|
|
|
/// assignVirt2StackSlot - assigns this virtual register to a
|
|
/// stack slot. returns the stack slot
|
|
int assignVirt2StackSlot(unsigned virtReg);
|
|
|
|
void ComputeRelatedRegClasses();
|
|
|
|
template <typename ItTy>
|
|
void printIntervals(const char* const str, ItTy i, ItTy e) const {
|
|
if (str) std::cerr << str << " intervals:\n";
|
|
for (; i != e; ++i) {
|
|
std::cerr << "\t" << *i->first << " -> ";
|
|
unsigned reg = i->first->reg;
|
|
if (MRegisterInfo::isVirtualRegister(reg)) {
|
|
reg = vrm_->getPhys(reg);
|
|
}
|
|
std::cerr << mri_->getName(reg) << '\n';
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
void RA::ComputeRelatedRegClasses() {
|
|
const MRegisterInfo &MRI = *mri_;
|
|
|
|
// First pass, add all reg classes to the union, and determine at least one
|
|
// reg class that each register is in.
|
|
bool HasAliases = false;
|
|
for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(),
|
|
E = MRI.regclass_end(); RCI != E; ++RCI) {
|
|
RelatedRegClasses.insert(*RCI);
|
|
for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
|
|
I != E; ++I) {
|
|
HasAliases = HasAliases || *MRI.getAliasSet(*I) != 0;
|
|
|
|
const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
|
|
if (PRC) {
|
|
// Already processed this register. Just make sure we know that
|
|
// multiple register classes share a register.
|
|
RelatedRegClasses.unionSets(PRC, *RCI);
|
|
} else {
|
|
PRC = *RCI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second pass, now that we know conservatively what register classes each reg
|
|
// belongs to, add info about aliases. We don't need to do this for targets
|
|
// without register aliases.
|
|
if (HasAliases)
|
|
for (std::map<unsigned, const TargetRegisterClass*>::iterator
|
|
I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
|
|
I != E; ++I)
|
|
for (const unsigned *AS = MRI.getAliasSet(I->first); *AS; ++AS)
|
|
RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
|
|
}
|
|
|
|
bool RA::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
tm_ = &fn.getTarget();
|
|
mri_ = tm_->getRegisterInfo();
|
|
li_ = &getAnalysis<LiveIntervals>();
|
|
|
|
// If this is the first function compiled, compute the related reg classes.
|
|
if (RelatedRegClasses.empty())
|
|
ComputeRelatedRegClasses();
|
|
|
|
PhysRegsUsed = new bool[mri_->getNumRegs()];
|
|
std::fill(PhysRegsUsed, PhysRegsUsed+mri_->getNumRegs(), false);
|
|
fn.setUsedPhysRegs(PhysRegsUsed);
|
|
|
|
if (!prt_.get()) prt_.reset(new PhysRegTracker(*mri_));
|
|
vrm_.reset(new VirtRegMap(*mf_));
|
|
if (!spiller_.get()) spiller_.reset(createSpiller());
|
|
|
|
initIntervalSets();
|
|
|
|
linearScan();
|
|
|
|
// Rewrite spill code and update the PhysRegsUsed set.
|
|
spiller_->runOnMachineFunction(*mf_, *vrm_);
|
|
|
|
vrm_.reset(); // Free the VirtRegMap
|
|
|
|
|
|
while (!unhandled_.empty()) unhandled_.pop();
|
|
fixed_.clear();
|
|
active_.clear();
|
|
inactive_.clear();
|
|
handled_.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// initIntervalSets - initialize the interval sets.
|
|
///
|
|
void RA::initIntervalSets()
|
|
{
|
|
assert(unhandled_.empty() && fixed_.empty() &&
|
|
active_.empty() && inactive_.empty() &&
|
|
"interval sets should be empty on initialization");
|
|
|
|
for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
|
|
if (MRegisterInfo::isPhysicalRegister(i->second.reg)) {
|
|
PhysRegsUsed[i->second.reg] = true;
|
|
fixed_.push_back(std::make_pair(&i->second, i->second.begin()));
|
|
} else
|
|
unhandled_.push(&i->second);
|
|
}
|
|
}
|
|
|
|
void RA::linearScan()
|
|
{
|
|
// linear scan algorithm
|
|
DEBUG(std::cerr << "********** LINEAR SCAN **********\n");
|
|
DEBUG(std::cerr << "********** Function: "
|
|
<< mf_->getFunction()->getName() << '\n');
|
|
|
|
// DEBUG(printIntervals("unhandled", unhandled_.begin(), unhandled_.end()));
|
|
DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
|
|
DEBUG(printIntervals("active", active_.begin(), active_.end()));
|
|
DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
|
|
|
|
while (!unhandled_.empty()) {
|
|
// pick the interval with the earliest start point
|
|
LiveInterval* cur = unhandled_.top();
|
|
unhandled_.pop();
|
|
++numIterations;
|
|
DEBUG(std::cerr << "\n*** CURRENT ***: " << *cur << '\n');
|
|
|
|
processActiveIntervals(cur->beginNumber());
|
|
processInactiveIntervals(cur->beginNumber());
|
|
|
|
assert(MRegisterInfo::isVirtualRegister(cur->reg) &&
|
|
"Can only allocate virtual registers!");
|
|
|
|
// Allocating a virtual register. try to find a free
|
|
// physical register or spill an interval (possibly this one) in order to
|
|
// assign it one.
|
|
assignRegOrStackSlotAtInterval(cur);
|
|
|
|
DEBUG(printIntervals("active", active_.begin(), active_.end()));
|
|
DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
|
|
}
|
|
numIntervals += li_->getNumIntervals();
|
|
efficiency = double(numIterations) / double(numIntervals);
|
|
|
|
// expire any remaining active intervals
|
|
for (IntervalPtrs::reverse_iterator
|
|
i = active_.rbegin(); i != active_.rend(); ) {
|
|
unsigned reg = i->first->reg;
|
|
DEBUG(std::cerr << "\tinterval " << *i->first << " expired\n");
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->delRegUse(reg);
|
|
i = IntervalPtrs::reverse_iterator(active_.erase(i.base()-1));
|
|
}
|
|
|
|
// expire any remaining inactive intervals
|
|
for (IntervalPtrs::reverse_iterator
|
|
i = inactive_.rbegin(); i != inactive_.rend(); ) {
|
|
DEBUG(std::cerr << "\tinterval " << *i->first << " expired\n");
|
|
i = IntervalPtrs::reverse_iterator(inactive_.erase(i.base()-1));
|
|
}
|
|
|
|
DEBUG(std::cerr << *vrm_);
|
|
}
|
|
|
|
/// processActiveIntervals - expire old intervals and move non-overlapping ones
|
|
/// to the inactive list.
|
|
void RA::processActiveIntervals(unsigned CurPoint)
|
|
{
|
|
DEBUG(std::cerr << "\tprocessing active intervals:\n");
|
|
|
|
for (unsigned i = 0, e = active_.size(); i != e; ++i) {
|
|
LiveInterval *Interval = active_[i].first;
|
|
LiveInterval::iterator IntervalPos = active_[i].second;
|
|
unsigned reg = Interval->reg;
|
|
|
|
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
|
|
|
|
if (IntervalPos == Interval->end()) { // Remove expired intervals.
|
|
DEBUG(std::cerr << "\t\tinterval " << *Interval << " expired\n");
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->delRegUse(reg);
|
|
|
|
// Pop off the end of the list.
|
|
active_[i] = active_.back();
|
|
active_.pop_back();
|
|
--i; --e;
|
|
|
|
} else if (IntervalPos->start > CurPoint) {
|
|
// Move inactive intervals to inactive list.
|
|
DEBUG(std::cerr << "\t\tinterval " << *Interval << " inactive\n");
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->delRegUse(reg);
|
|
// add to inactive.
|
|
inactive_.push_back(std::make_pair(Interval, IntervalPos));
|
|
|
|
// Pop off the end of the list.
|
|
active_[i] = active_.back();
|
|
active_.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
// Otherwise, just update the iterator position.
|
|
active_[i].second = IntervalPos;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// processInactiveIntervals - expire old intervals and move overlapping
|
|
/// ones to the active list.
|
|
void RA::processInactiveIntervals(unsigned CurPoint)
|
|
{
|
|
DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
|
|
|
|
for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
|
|
LiveInterval *Interval = inactive_[i].first;
|
|
LiveInterval::iterator IntervalPos = inactive_[i].second;
|
|
unsigned reg = Interval->reg;
|
|
|
|
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
|
|
|
|
if (IntervalPos == Interval->end()) { // remove expired intervals.
|
|
DEBUG(std::cerr << "\t\tinterval " << *Interval << " expired\n");
|
|
|
|
// Pop off the end of the list.
|
|
inactive_[i] = inactive_.back();
|
|
inactive_.pop_back();
|
|
--i; --e;
|
|
} else if (IntervalPos->start <= CurPoint) {
|
|
// move re-activated intervals in active list
|
|
DEBUG(std::cerr << "\t\tinterval " << *Interval << " active\n");
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->addRegUse(reg);
|
|
// add to active
|
|
active_.push_back(std::make_pair(Interval, IntervalPos));
|
|
|
|
// Pop off the end of the list.
|
|
inactive_[i] = inactive_.back();
|
|
inactive_.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
// Otherwise, just update the iterator position.
|
|
inactive_[i].second = IntervalPos;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// updateSpillWeights - updates the spill weights of the specifed physical
|
|
/// register and its weight.
|
|
static void updateSpillWeights(std::vector<float> &Weights,
|
|
unsigned reg, float weight,
|
|
const MRegisterInfo *MRI) {
|
|
Weights[reg] += weight;
|
|
for (const unsigned* as = MRI->getAliasSet(reg); *as; ++as)
|
|
Weights[*as] += weight;
|
|
}
|
|
|
|
static RA::IntervalPtrs::iterator FindIntervalInVector(RA::IntervalPtrs &IP,
|
|
LiveInterval *LI) {
|
|
for (RA::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); I != E; ++I)
|
|
if (I->first == LI) return I;
|
|
return IP.end();
|
|
}
|
|
|
|
static void RevertVectorIteratorsTo(RA::IntervalPtrs &V, unsigned Point) {
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i) {
|
|
RA::IntervalPtr &IP = V[i];
|
|
LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
|
|
IP.second, Point);
|
|
if (I != IP.first->begin()) --I;
|
|
IP.second = I;
|
|
}
|
|
}
|
|
|
|
|
|
/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
|
|
/// spill.
|
|
void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur)
|
|
{
|
|
DEBUG(std::cerr << "\tallocating current interval: ");
|
|
|
|
PhysRegTracker backupPrt = *prt_;
|
|
|
|
std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
|
|
unsigned StartPosition = cur->beginNumber();
|
|
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(cur->reg);
|
|
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
|
|
|
|
// for every interval in inactive we overlap with, mark the
|
|
// register as not free and update spill weights.
|
|
for (IntervalPtrs::const_iterator i = inactive_.begin(),
|
|
e = inactive_.end(); i != e; ++i) {
|
|
unsigned Reg = i->first->reg;
|
|
assert(MRegisterInfo::isVirtualRegister(Reg) &&
|
|
"Can only allocate virtual registers!");
|
|
const TargetRegisterClass *RegRC = mf_->getSSARegMap()->getRegClass(Reg);
|
|
// If this is not in a related reg class to the register we're allocating,
|
|
// don't check it.
|
|
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
|
|
cur->overlapsFrom(*i->first, i->second-1)) {
|
|
Reg = vrm_->getPhys(Reg);
|
|
prt_->addRegUse(Reg);
|
|
SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
|
|
}
|
|
}
|
|
|
|
// Speculatively check to see if we can get a register right now. If not,
|
|
// we know we won't be able to by adding more constraints. If so, we can
|
|
// check to see if it is valid. Doing an exhaustive search of the fixed_ list
|
|
// is very bad (it contains all callee clobbered registers for any functions
|
|
// with a call), so we want to avoid doing that if possible.
|
|
unsigned physReg = getFreePhysReg(cur);
|
|
if (physReg) {
|
|
// We got a register. However, if it's in the fixed_ list, we might
|
|
// conflict with it. Check to see if we conflict with it or any of its
|
|
// aliases.
|
|
std::set<unsigned> RegAliases;
|
|
for (const unsigned *AS = mri_->getAliasSet(physReg); *AS; ++AS)
|
|
RegAliases.insert(*AS);
|
|
|
|
bool ConflictsWithFixed = false;
|
|
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
|
|
if (physReg == fixed_[i].first->reg ||
|
|
RegAliases.count(fixed_[i].first->reg)) {
|
|
// Okay, this reg is on the fixed list. Check to see if we actually
|
|
// conflict.
|
|
IntervalPtr &IP = fixed_[i];
|
|
LiveInterval *I = IP.first;
|
|
if (I->endNumber() > StartPosition) {
|
|
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
|
|
IP.second = II;
|
|
if (II != I->begin() && II->start > StartPosition)
|
|
--II;
|
|
if (cur->overlapsFrom(*I, II)) {
|
|
ConflictsWithFixed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Okay, the register picked by our speculative getFreePhysReg call turned
|
|
// out to be in use. Actually add all of the conflicting fixed registers to
|
|
// prt so we can do an accurate query.
|
|
if (ConflictsWithFixed) {
|
|
// For every interval in fixed we overlap with, mark the register as not
|
|
// free and update spill weights.
|
|
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
|
|
IntervalPtr &IP = fixed_[i];
|
|
LiveInterval *I = IP.first;
|
|
|
|
const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
|
|
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
|
|
I->endNumber() > StartPosition) {
|
|
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
|
|
IP.second = II;
|
|
if (II != I->begin() && II->start > StartPosition)
|
|
--II;
|
|
if (cur->overlapsFrom(*I, II)) {
|
|
unsigned reg = I->reg;
|
|
prt_->addRegUse(reg);
|
|
SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Using the newly updated prt_ object, which includes conflicts in the
|
|
// future, see if there are any registers available.
|
|
physReg = getFreePhysReg(cur);
|
|
}
|
|
}
|
|
|
|
// Restore the physical register tracker, removing information about the
|
|
// future.
|
|
*prt_ = backupPrt;
|
|
|
|
// if we find a free register, we are done: assign this virtual to
|
|
// the free physical register and add this interval to the active
|
|
// list.
|
|
if (physReg) {
|
|
DEBUG(std::cerr << mri_->getName(physReg) << '\n');
|
|
vrm_->assignVirt2Phys(cur->reg, physReg);
|
|
prt_->addRegUse(physReg);
|
|
active_.push_back(std::make_pair(cur, cur->begin()));
|
|
handled_.push_back(cur);
|
|
return;
|
|
}
|
|
DEBUG(std::cerr << "no free registers\n");
|
|
|
|
// Compile the spill weights into an array that is better for scanning.
|
|
std::vector<float> SpillWeights(mri_->getNumRegs(), 0.0);
|
|
for (std::vector<std::pair<unsigned, float> >::iterator
|
|
I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
|
|
updateSpillWeights(SpillWeights, I->first, I->second, mri_);
|
|
|
|
// for each interval in active, update spill weights.
|
|
for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
|
|
i != e; ++i) {
|
|
unsigned reg = i->first->reg;
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
updateSpillWeights(SpillWeights, reg, i->first->weight, mri_);
|
|
}
|
|
|
|
DEBUG(std::cerr << "\tassigning stack slot at interval "<< *cur << ":\n");
|
|
|
|
float minWeight = float(HUGE_VAL);
|
|
unsigned minReg = 0;
|
|
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
|
|
e = RC->allocation_order_end(*mf_); i != e; ++i) {
|
|
unsigned reg = *i;
|
|
if (minWeight > SpillWeights[reg]) {
|
|
minWeight = SpillWeights[reg];
|
|
minReg = reg;
|
|
}
|
|
}
|
|
// FIXME: assert(minReg && "Didn't find any reg!");
|
|
DEBUG(std::cerr << "\t\tregister with min weight: "
|
|
<< mri_->getName(minReg) << " (" << minWeight << ")\n");
|
|
|
|
// if the current has the minimum weight, we need to spill it and
|
|
// add any added intervals back to unhandled, and restart
|
|
// linearscan.
|
|
if (cur->weight <= minWeight) {
|
|
DEBUG(std::cerr << "\t\t\tspilling(c): " << *cur << '\n';);
|
|
int slot = vrm_->assignVirt2StackSlot(cur->reg);
|
|
std::vector<LiveInterval*> added =
|
|
li_->addIntervalsForSpills(*cur, *vrm_, slot);
|
|
if (added.empty())
|
|
return; // Early exit if all spills were folded.
|
|
|
|
// Merge added with unhandled. Note that we know that
|
|
// addIntervalsForSpills returns intervals sorted by their starting
|
|
// point.
|
|
for (unsigned i = 0, e = added.size(); i != e; ++i)
|
|
unhandled_.push(added[i]);
|
|
return;
|
|
}
|
|
|
|
++NumBacktracks;
|
|
|
|
// push the current interval back to unhandled since we are going
|
|
// to re-run at least this iteration. Since we didn't modify it it
|
|
// should go back right in the front of the list
|
|
unhandled_.push(cur);
|
|
|
|
// otherwise we spill all intervals aliasing the register with
|
|
// minimum weight, rollback to the interval with the earliest
|
|
// start point and let the linear scan algorithm run again
|
|
std::vector<LiveInterval*> added;
|
|
assert(MRegisterInfo::isPhysicalRegister(minReg) &&
|
|
"did not choose a register to spill?");
|
|
std::vector<bool> toSpill(mri_->getNumRegs(), false);
|
|
|
|
// We are going to spill minReg and all its aliases.
|
|
toSpill[minReg] = true;
|
|
for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
|
|
toSpill[*as] = true;
|
|
|
|
// the earliest start of a spilled interval indicates up to where
|
|
// in handled we need to roll back
|
|
unsigned earliestStart = cur->beginNumber();
|
|
|
|
// set of spilled vregs (used later to rollback properly)
|
|
std::set<unsigned> spilled;
|
|
|
|
// spill live intervals of virtual regs mapped to the physical register we
|
|
// want to clear (and its aliases). We only spill those that overlap with the
|
|
// current interval as the rest do not affect its allocation. we also keep
|
|
// track of the earliest start of all spilled live intervals since this will
|
|
// mark our rollback point.
|
|
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
|
|
unsigned reg = i->first->reg;
|
|
if (//MRegisterInfo::isVirtualRegister(reg) &&
|
|
toSpill[vrm_->getPhys(reg)] &&
|
|
cur->overlapsFrom(*i->first, i->second)) {
|
|
DEBUG(std::cerr << "\t\t\tspilling(a): " << *i->first << '\n');
|
|
earliestStart = std::min(earliestStart, i->first->beginNumber());
|
|
int slot = vrm_->assignVirt2StackSlot(i->first->reg);
|
|
std::vector<LiveInterval*> newIs =
|
|
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
|
|
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
|
|
spilled.insert(reg);
|
|
}
|
|
}
|
|
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
|
|
unsigned reg = i->first->reg;
|
|
if (//MRegisterInfo::isVirtualRegister(reg) &&
|
|
toSpill[vrm_->getPhys(reg)] &&
|
|
cur->overlapsFrom(*i->first, i->second-1)) {
|
|
DEBUG(std::cerr << "\t\t\tspilling(i): " << *i->first << '\n');
|
|
earliestStart = std::min(earliestStart, i->first->beginNumber());
|
|
int slot = vrm_->assignVirt2StackSlot(reg);
|
|
std::vector<LiveInterval*> newIs =
|
|
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
|
|
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
|
|
spilled.insert(reg);
|
|
}
|
|
}
|
|
|
|
DEBUG(std::cerr << "\t\trolling back to: " << earliestStart << '\n');
|
|
|
|
// Scan handled in reverse order up to the earliest start of a
|
|
// spilled live interval and undo each one, restoring the state of
|
|
// unhandled.
|
|
while (!handled_.empty()) {
|
|
LiveInterval* i = handled_.back();
|
|
// If this interval starts before t we are done.
|
|
if (i->beginNumber() < earliestStart)
|
|
break;
|
|
DEBUG(std::cerr << "\t\t\tundo changes for: " << *i << '\n');
|
|
handled_.pop_back();
|
|
|
|
// When undoing a live interval allocation we must know if it is active or
|
|
// inactive to properly update the PhysRegTracker and the VirtRegMap.
|
|
IntervalPtrs::iterator it;
|
|
if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
|
|
active_.erase(it);
|
|
if (MRegisterInfo::isPhysicalRegister(i->reg)) {
|
|
assert(0 && "daksjlfd");
|
|
prt_->delRegUse(i->reg);
|
|
unhandled_.push(i);
|
|
} else {
|
|
if (!spilled.count(i->reg))
|
|
unhandled_.push(i);
|
|
prt_->delRegUse(vrm_->getPhys(i->reg));
|
|
vrm_->clearVirt(i->reg);
|
|
}
|
|
} else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
|
|
inactive_.erase(it);
|
|
if (MRegisterInfo::isPhysicalRegister(i->reg)) {
|
|
assert(0 && "daksjlfd");
|
|
unhandled_.push(i);
|
|
} else {
|
|
if (!spilled.count(i->reg))
|
|
unhandled_.push(i);
|
|
vrm_->clearVirt(i->reg);
|
|
}
|
|
} else {
|
|
assert(MRegisterInfo::isVirtualRegister(i->reg) &&
|
|
"Can only allocate virtual registers!");
|
|
vrm_->clearVirt(i->reg);
|
|
unhandled_.push(i);
|
|
}
|
|
}
|
|
|
|
// Rewind the iterators in the active, inactive, and fixed lists back to the
|
|
// point we reverted to.
|
|
RevertVectorIteratorsTo(active_, earliestStart);
|
|
RevertVectorIteratorsTo(inactive_, earliestStart);
|
|
RevertVectorIteratorsTo(fixed_, earliestStart);
|
|
|
|
// scan the rest and undo each interval that expired after t and
|
|
// insert it in active (the next iteration of the algorithm will
|
|
// put it in inactive if required)
|
|
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
|
|
LiveInterval *HI = handled_[i];
|
|
if (!HI->expiredAt(earliestStart) &&
|
|
HI->expiredAt(cur->beginNumber())) {
|
|
DEBUG(std::cerr << "\t\t\tundo changes for: " << *HI << '\n');
|
|
active_.push_back(std::make_pair(HI, HI->begin()));
|
|
if (MRegisterInfo::isPhysicalRegister(HI->reg)) {
|
|
assert(0 &&"sdflkajsdf");
|
|
prt_->addRegUse(HI->reg);
|
|
} else
|
|
prt_->addRegUse(vrm_->getPhys(HI->reg));
|
|
}
|
|
}
|
|
|
|
// merge added with unhandled
|
|
for (unsigned i = 0, e = added.size(); i != e; ++i)
|
|
unhandled_.push(added[i]);
|
|
}
|
|
|
|
/// getFreePhysReg - return a free physical register for this virtual register
|
|
/// interval if we have one, otherwise return 0.
|
|
unsigned RA::getFreePhysReg(LiveInterval* cur)
|
|
{
|
|
std::vector<unsigned> inactiveCounts(mri_->getNumRegs(), 0);
|
|
unsigned MaxInactiveCount = 0;
|
|
|
|
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(cur->reg);
|
|
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
|
|
|
|
for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
|
|
i != e; ++i) {
|
|
unsigned reg = i->first->reg;
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
|
|
// If this is not in a related reg class to the register we're allocating,
|
|
// don't check it.
|
|
const TargetRegisterClass *RegRC = mf_->getSSARegMap()->getRegClass(reg);
|
|
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
|
|
reg = vrm_->getPhys(reg);
|
|
++inactiveCounts[reg];
|
|
MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
|
|
}
|
|
}
|
|
|
|
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
|
|
|
|
unsigned FreeReg = 0;
|
|
unsigned FreeRegInactiveCount = 0;
|
|
|
|
// Scan for the first available register.
|
|
TargetRegisterClass::iterator I = rc->allocation_order_begin(*mf_);
|
|
TargetRegisterClass::iterator E = rc->allocation_order_end(*mf_);
|
|
for (; I != E; ++I)
|
|
if (prt_->isRegAvail(*I)) {
|
|
FreeReg = *I;
|
|
FreeRegInactiveCount = inactiveCounts[FreeReg];
|
|
break;
|
|
}
|
|
|
|
// If there are no free regs, or if this reg has the max inactive count,
|
|
// return this register.
|
|
if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) return FreeReg;
|
|
|
|
// Continue scanning the registers, looking for the one with the highest
|
|
// inactive count. Alkis found that this reduced register pressure very
|
|
// slightly on X86 (in rev 1.94 of this file), though this should probably be
|
|
// reevaluated now.
|
|
for (; I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
if (prt_->isRegAvail(Reg) && FreeRegInactiveCount < inactiveCounts[Reg]) {
|
|
FreeReg = Reg;
|
|
FreeRegInactiveCount = inactiveCounts[Reg];
|
|
if (FreeRegInactiveCount == MaxInactiveCount)
|
|
break; // We found the one with the max inactive count.
|
|
}
|
|
}
|
|
|
|
return FreeReg;
|
|
}
|
|
|
|
FunctionPass* llvm::createLinearScanRegisterAllocator() {
|
|
return new RA();
|
|
}
|