mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 17:28:21 +00:00
20adf47dbc
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29091 91177308-0d34-0410-b5e6-96231b3b80d8
699 lines
20 KiB
Plaintext
699 lines
20 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend: SSE-specific stuff.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
|
|
other fast SSE modes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Think about doing i64 math in SSE regs.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase should have no SSE instructions in it, and only one load from
|
|
a constant pool:
|
|
|
|
double %test3(bool %B) {
|
|
%C = select bool %B, double 123.412, double 523.01123123
|
|
ret double %C
|
|
}
|
|
|
|
Currently, the select is being lowered, which prevents the dag combiner from
|
|
turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
|
|
|
|
The pattern isel got this one right.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
|
|
like this:
|
|
|
|
X += y
|
|
|
|
and the register allocator decides to spill X, it is cheaper to emit this as:
|
|
|
|
Y += [xslot]
|
|
store Y -> [xslot]
|
|
|
|
than as:
|
|
|
|
tmp = [xslot]
|
|
tmp += y
|
|
store tmp -> [xslot]
|
|
|
|
..and this uses one fewer register (so this should be done at load folding
|
|
time, not at spiller time). *Note* however that this can only be done
|
|
if Y is dead. Here's a testcase:
|
|
|
|
%.str_3 = external global [15 x sbyte] ; <[15 x sbyte]*> [#uses=0]
|
|
implementation ; Functions:
|
|
declare void %printf(int, ...)
|
|
void %main() {
|
|
build_tree.exit:
|
|
br label %no_exit.i7
|
|
no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
|
|
%tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.34.i18, %no_exit.i7 ] ; <double> [#uses=1]
|
|
%tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.28.i16, %no_exit.i7 ] ; <double> [#uses=1]
|
|
%tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
|
|
%tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
|
|
br bool false, label %Compute_Tree.exit23, label %no_exit.i7
|
|
Compute_Tree.exit23: ; preds = %no_exit.i7
|
|
tail call void (int, ...)* %printf( int 0 )
|
|
store double %tmp.34.i18, double* null
|
|
ret void
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
.BBmain_1:
|
|
xorpd %XMM1, %XMM1
|
|
addsd %XMM0, %XMM1
|
|
*** movsd %XMM2, QWORD PTR [%ESP + 8]
|
|
*** addsd %XMM2, %XMM1
|
|
*** movsd QWORD PTR [%ESP + 8], %XMM2
|
|
jmp .BBmain_1 # no_exit.i7
|
|
|
|
This is a bugpoint reduced testcase, which is why the testcase doesn't make
|
|
much sense (e.g. its an infinite loop). :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE should implement 'select_cc' using 'emulated conditional moves' that use
|
|
pcmp/pand/pandn/por to do a selection instead of a conditional branch:
|
|
|
|
double %X(double %Y, double %Z, double %A, double %B) {
|
|
%C = setlt double %A, %B
|
|
%z = add double %Z, 0.0 ;; select operand is not a load
|
|
%D = select bool %C, double %Y, double %z
|
|
ret double %D
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
_X:
|
|
subl $12, %esp
|
|
xorpd %xmm0, %xmm0
|
|
addsd 24(%esp), %xmm0
|
|
movsd 32(%esp), %xmm1
|
|
movsd 16(%esp), %xmm2
|
|
ucomisd 40(%esp), %xmm1
|
|
jb LBB_X_2
|
|
LBB_X_1:
|
|
movsd %xmm0, %xmm2
|
|
LBB_X_2:
|
|
movsd %xmm2, (%esp)
|
|
fldl (%esp)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It's not clear whether we should use pxor or xorps / xorpd to clear XMM
|
|
registers. The choice may depend on subtarget information. We should do some
|
|
more experiments on different x86 machines.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Currently the x86 codegen isn't very good at mixing SSE and FPStack
|
|
code:
|
|
|
|
unsigned int foo(double x) { return x; }
|
|
|
|
foo:
|
|
subl $20, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, 8(%esp)
|
|
fldl 8(%esp)
|
|
fisttpll (%esp)
|
|
movl (%esp), %eax
|
|
addl $20, %esp
|
|
ret
|
|
|
|
This will be solved when we go to a dynamic programming based isel.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should generate min/max for stuff like:
|
|
|
|
void minf(float a, float b, float *X) {
|
|
*X = a <= b ? a : b;
|
|
}
|
|
|
|
Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN
|
|
and ISD::FMAX node types?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The first BB of this code:
|
|
|
|
declare bool %foo()
|
|
int %bar() {
|
|
%V = call bool %foo()
|
|
br bool %V, label %T, label %F
|
|
T:
|
|
ret int 1
|
|
F:
|
|
call bool %foo()
|
|
ret int 12
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
call L_foo$stub
|
|
xorb $1, %al
|
|
testb %al, %al
|
|
jne LBB_bar_2 # F
|
|
|
|
It would be better to emit "cmp %al, 1" than a xor and test.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
|
|
feasible.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach the coalescer to commute 2-addr instructions, allowing us to eliminate
|
|
the reg-reg copy in this example:
|
|
|
|
float foo(int *x, float *y, unsigned c) {
|
|
float res = 0.0;
|
|
unsigned i;
|
|
for (i = 0; i < c; i++) {
|
|
float xx = (float)x[i];
|
|
xx = xx * y[i];
|
|
xx += res;
|
|
res = xx;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
LBB_foo_3: # no_exit
|
|
cvtsi2ss %XMM0, DWORD PTR [%EDX + 4*%ESI]
|
|
mulss %XMM0, DWORD PTR [%EAX + 4*%ESI]
|
|
addss %XMM0, %XMM1
|
|
inc %ESI
|
|
cmp %ESI, %ECX
|
|
**** movaps %XMM1, %XMM0
|
|
jb LBB_foo_3 # no_exit
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Codegen:
|
|
if (copysign(1.0, x) == copysign(1.0, y))
|
|
into:
|
|
if (x^y & mask)
|
|
when using SSE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
|
|
of a v4sf value.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
|
|
Perhaps use pxor / xorp* to clear a XMM register first?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Better codegen for:
|
|
|
|
void f(float a, float b, vector float * out) { *out = (vector float){ a, 0.0, 0.0, b}; }
|
|
void f(float a, float b, vector float * out) { *out = (vector float){ a, b, 0.0, 0}; }
|
|
|
|
For the later we generate:
|
|
|
|
_f:
|
|
pxor %xmm0, %xmm0
|
|
movss 8(%esp), %xmm1
|
|
movaps %xmm0, %xmm2
|
|
unpcklps %xmm1, %xmm2
|
|
movss 4(%esp), %xmm1
|
|
unpcklps %xmm0, %xmm1
|
|
unpcklps %xmm2, %xmm1
|
|
movl 12(%esp), %eax
|
|
movaps %xmm1, (%eax)
|
|
ret
|
|
|
|
This seems like it should use shufps, one for each of a & b.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
How to decide when to use the "floating point version" of logical ops? Here are
|
|
some code fragments:
|
|
|
|
movaps LCPI5_5, %xmm2
|
|
divps %xmm1, %xmm2
|
|
mulps %xmm2, %xmm3
|
|
mulps 8656(%ecx), %xmm3
|
|
addps 8672(%ecx), %xmm3
|
|
andps LCPI5_6, %xmm2
|
|
andps LCPI5_1, %xmm3
|
|
por %xmm2, %xmm3
|
|
movdqa %xmm3, (%edi)
|
|
|
|
movaps LCPI5_5, %xmm1
|
|
divps %xmm0, %xmm1
|
|
mulps %xmm1, %xmm3
|
|
mulps 8656(%ecx), %xmm3
|
|
addps 8672(%ecx), %xmm3
|
|
andps LCPI5_6, %xmm1
|
|
andps LCPI5_1, %xmm3
|
|
orps %xmm1, %xmm3
|
|
movaps %xmm3, 112(%esp)
|
|
movaps %xmm3, (%ebx)
|
|
|
|
Due to some minor source change, the later case ended up using orps and movaps
|
|
instead of por and movdqa. Does it matter?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use movddup to splat a v2f64 directly from a memory source. e.g.
|
|
|
|
#include <emmintrin.h>
|
|
|
|
void test(__m128d *r, double A) {
|
|
*r = _mm_set1_pd(A);
|
|
}
|
|
|
|
llc:
|
|
|
|
_test:
|
|
movsd 8(%esp), %xmm0
|
|
unpcklpd %xmm0, %xmm0
|
|
movl 4(%esp), %eax
|
|
movapd %xmm0, (%eax)
|
|
ret
|
|
|
|
icc:
|
|
|
|
_test:
|
|
movl 4(%esp), %eax
|
|
movddup 8(%esp), %xmm0
|
|
movapd %xmm0, (%eax)
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible
|
|
to choose between movaps, movapd, and movdqa based on types of source and
|
|
destination?
|
|
|
|
How about andps, andpd, and pand? Do we really care about the type of the packed
|
|
elements? If not, why not always use the "ps" variants which are likely to be
|
|
shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are emitting bad code for this:
|
|
|
|
float %test(float* %V, int %I, int %D, float %V) {
|
|
entry:
|
|
%tmp = seteq int %D, 0
|
|
br bool %tmp, label %cond_true, label %cond_false23
|
|
|
|
cond_true:
|
|
%tmp3 = getelementptr float* %V, int %I
|
|
%tmp = load float* %tmp3
|
|
%tmp5 = setgt float %tmp, %V
|
|
%tmp6 = tail call bool %llvm.isunordered.f32( float %tmp, float %V )
|
|
%tmp7 = or bool %tmp5, %tmp6
|
|
br bool %tmp7, label %UnifiedReturnBlock, label %cond_next
|
|
|
|
cond_next:
|
|
%tmp10 = add int %I, 1
|
|
%tmp12 = getelementptr float* %V, int %tmp10
|
|
%tmp13 = load float* %tmp12
|
|
%tmp15 = setle float %tmp13, %V
|
|
%tmp16 = tail call bool %llvm.isunordered.f32( float %tmp13, float %V )
|
|
%tmp17 = or bool %tmp15, %tmp16
|
|
%retval = select bool %tmp17, float 0.000000e+00, float 1.000000e+00
|
|
ret float %retval
|
|
|
|
cond_false23:
|
|
%tmp28 = tail call float %foo( float* %V, int %I, int %D, float %V )
|
|
ret float %tmp28
|
|
|
|
UnifiedReturnBlock: ; preds = %cond_true
|
|
ret float 0.000000e+00
|
|
}
|
|
|
|
declare bool %llvm.isunordered.f32(float, float)
|
|
|
|
declare float %foo(float*, int, int, float)
|
|
|
|
|
|
It exposes a known load folding problem:
|
|
|
|
movss (%edx,%ecx,4), %xmm1
|
|
ucomiss %xmm1, %xmm0
|
|
|
|
As well as this:
|
|
|
|
LBB_test_2: # cond_next
|
|
movss LCPI1_0, %xmm2
|
|
pxor %xmm3, %xmm3
|
|
ucomiss %xmm0, %xmm1
|
|
jbe LBB_test_6 # cond_next
|
|
LBB_test_5: # cond_next
|
|
movaps %xmm2, %xmm3
|
|
LBB_test_6: # cond_next
|
|
movss %xmm3, 40(%esp)
|
|
flds 40(%esp)
|
|
addl $44, %esp
|
|
ret
|
|
|
|
Clearly it's unnecessary to clear %xmm3. It's also not clear why we are emitting
|
|
three moves (movss, movaps, movss).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
External test Nurbs exposed some problems. Look for
|
|
__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
|
|
emits:
|
|
|
|
movaps (%edx), %xmm2 #59.21
|
|
movaps (%edx), %xmm5 #60.21
|
|
movaps (%edx), %xmm4 #61.21
|
|
movaps (%edx), %xmm3 #62.21
|
|
movl 40(%ecx), %ebp #69.49
|
|
shufps $0, %xmm2, %xmm5 #60.21
|
|
movl 100(%esp), %ebx #69.20
|
|
movl (%ebx), %edi #69.20
|
|
imull %ebp, %edi #69.49
|
|
addl (%eax), %edi #70.33
|
|
shufps $85, %xmm2, %xmm4 #61.21
|
|
shufps $170, %xmm2, %xmm3 #62.21
|
|
shufps $255, %xmm2, %xmm2 #63.21
|
|
lea (%ebp,%ebp,2), %ebx #69.49
|
|
negl %ebx #69.49
|
|
lea -3(%edi,%ebx), %ebx #70.33
|
|
shll $4, %ebx #68.37
|
|
addl 32(%ecx), %ebx #68.37
|
|
testb $15, %bl #91.13
|
|
jne L_B1.24 # Prob 5% #91.13
|
|
|
|
This is the llvm code after instruction scheduling:
|
|
|
|
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
|
%reg1078 = MOV32ri -3
|
|
%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
|
|
%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
|
|
%reg1080 = IMUL32rr %reg1079, %reg1037
|
|
%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
|
|
%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
|
|
%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
|
|
%reg1082 = SHL32ri %reg1038, 4
|
|
%reg1039 = ADD32rr %reg1036, %reg1082
|
|
%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
|
|
%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
|
|
%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
|
|
%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
|
|
%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
|
|
%reg1040 = MOV32rr %reg1039
|
|
%reg1084 = AND32ri8 %reg1039, 15
|
|
CMP32ri8 %reg1084, 0
|
|
JE mbb<cond_next204,0xa914d30>
|
|
|
|
Still ok. After register allocation:
|
|
|
|
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
|
%EAX = MOV32ri -3
|
|
%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
|
|
ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
|
|
%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
|
|
%EDX = MOV32rm %EDX, 1, %NOREG, 40
|
|
IMUL32rr %EAX<def&use>, %EDX
|
|
%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
|
|
%ESI = MOV32rm %ESI, 1, %NOREG, 0
|
|
MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
|
|
%EAX = LEA32r %ESI, 1, %EAX, -3
|
|
%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
|
|
%ESI = MOV32rm %ESI, 1, %NOREG, 32
|
|
%EDI = MOV32rr %EAX
|
|
SHL32ri %EDI<def&use>, 4
|
|
ADD32rr %EDI<def&use>, %ESI
|
|
%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
|
|
%XMM1 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM1<def&use>, %XMM1, 170
|
|
%XMM2 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM2<def&use>, %XMM2, 0
|
|
%XMM3 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM3<def&use>, %XMM3, 255
|
|
SHUFPSrr %XMM0<def&use>, %XMM0, 85
|
|
%EBX = MOV32rr %EDI
|
|
AND32ri8 %EBX<def&use>, 15
|
|
CMP32ri8 %EBX, 0
|
|
JE mbb<cond_next204,0xa914d30>
|
|
|
|
This looks really bad. The problem is shufps is a destructive opcode. Since it
|
|
appears as operand two in more than one shufps ops. It resulted in a number of
|
|
copies. Note icc also suffers from the same problem. Either the instruction
|
|
selector should select pshufd or The register allocator can made the two-address
|
|
to three-address transformation.
|
|
|
|
It also exposes some other problems. See MOV32ri -3 and the spills.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500
|
|
|
|
LLVM is producing bad code.
|
|
|
|
LBB_main_4: # cond_true44
|
|
addps %xmm1, %xmm2
|
|
subps %xmm3, %xmm2
|
|
movaps (%ecx), %xmm4
|
|
movaps %xmm2, %xmm1
|
|
addps %xmm4, %xmm1
|
|
addl $16, %ecx
|
|
incl %edx
|
|
cmpl $262144, %edx
|
|
movaps %xmm3, %xmm2
|
|
movaps %xmm4, %xmm3
|
|
jne LBB_main_4 # cond_true44
|
|
|
|
There are two problems. 1) No need to two loop induction variables. We can
|
|
compare against 262144 * 16. 2) Known register coalescer issue. We should
|
|
be able eliminate one of the movaps:
|
|
|
|
addps %xmm2, %xmm1 <=== Commute!
|
|
subps %xmm3, %xmm1
|
|
movaps (%ecx), %xmm4
|
|
movaps %xmm1, %xmm1 <=== Eliminate!
|
|
addps %xmm4, %xmm1
|
|
addl $16, %ecx
|
|
incl %edx
|
|
cmpl $262144, %edx
|
|
movaps %xmm3, %xmm2
|
|
movaps %xmm4, %xmm3
|
|
jne LBB_main_4 # cond_true44
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
|
|
__m128 test(float a) {
|
|
return _mm_set_ps(0.0, 0.0, 0.0, a*a);
|
|
}
|
|
|
|
This compiles into:
|
|
|
|
movss 4(%esp), %xmm1
|
|
mulss %xmm1, %xmm1
|
|
xorps %xmm0, %xmm0
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
Because mulss doesn't modify the top 3 elements, the top elements of
|
|
xmm1 are already zero'd. We could compile this to:
|
|
|
|
movss 4(%esp), %xmm0
|
|
mulss %xmm0, %xmm0
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Here's a sick and twisted idea. Consider code like this:
|
|
|
|
__m128 test(__m128 a) {
|
|
float b = *(float*)&A;
|
|
...
|
|
return _mm_set_ps(0.0, 0.0, 0.0, b);
|
|
}
|
|
|
|
This might compile to this code:
|
|
|
|
movaps c(%esp), %xmm1
|
|
xorps %xmm0, %xmm0
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
Now consider if the ... code caused xmm1 to get spilled. This might produce
|
|
this code:
|
|
|
|
movaps c(%esp), %xmm1
|
|
movaps %xmm1, c2(%esp)
|
|
...
|
|
|
|
xorps %xmm0, %xmm0
|
|
movaps c2(%esp), %xmm1
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
However, since the reload is only used by these instructions, we could
|
|
"fold" it into the uses, producing something like this:
|
|
|
|
movaps c(%esp), %xmm1
|
|
movaps %xmm1, c2(%esp)
|
|
...
|
|
|
|
movss c2(%esp), %xmm0
|
|
ret
|
|
|
|
... saving two instructions.
|
|
|
|
The basic idea is that a reload from a spill slot, can, if only one 4-byte
|
|
chunk is used, bring in 3 zeros the the one element instead of 4 elements.
|
|
This can be used to simplify a variety of shuffle operations, where the
|
|
elements are fixed zeros.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
#include <emmintrin.h>
|
|
void test(__m128d *r, __m128d *A, double B) {
|
|
*r = _mm_loadl_pd(*A, &B);
|
|
}
|
|
|
|
We generates:
|
|
|
|
subl $12, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, (%esp)
|
|
movl 20(%esp), %eax
|
|
movapd (%eax), %xmm0
|
|
movlpd (%esp), %xmm0
|
|
movl 16(%esp), %eax
|
|
movapd %xmm0, (%eax)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
icc generates:
|
|
|
|
movl 4(%esp), %edx #3.6
|
|
movl 8(%esp), %eax #3.6
|
|
movapd (%eax), %xmm0 #4.22
|
|
movlpd 12(%esp), %xmm0 #4.8
|
|
movapd %xmm0, (%edx) #4.3
|
|
ret #5.1
|
|
|
|
So icc is smart enough to know that B is in memory so it doesn't load it and
|
|
store it back to stack.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
__m128d test1( __m128d A, __m128d B) {
|
|
return _mm_shuffle_pd(A, B, 0x3);
|
|
}
|
|
|
|
compiles to
|
|
|
|
shufpd $3, %xmm1, %xmm0
|
|
|
|
Perhaps it's better to use unpckhpd instead?
|
|
|
|
unpckhpd %xmm1, %xmm0
|
|
|
|
Don't know if unpckhpd is faster. But it is shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code generates ugly code, probably due to costs being off or something:
|
|
|
|
void %test(float* %P, <4 x float>* %P2 ) {
|
|
%xFloat0.688 = load float* %P
|
|
%loadVector37.712 = load <4 x float>* %P2
|
|
%inFloat3.713 = insertelement <4 x float> %loadVector37.712, float 0.000000e+00, uint 3
|
|
store <4 x float> %inFloat3.713, <4 x float>* %P2
|
|
ret void
|
|
}
|
|
|
|
Generates:
|
|
|
|
_test:
|
|
pxor %xmm0, %xmm0
|
|
movd %xmm0, %eax ;; EAX = 0!
|
|
movl 8(%esp), %ecx
|
|
movaps (%ecx), %xmm0
|
|
pinsrw $6, %eax, %xmm0
|
|
shrl $16, %eax ;; EAX = 0 again!
|
|
pinsrw $7, %eax, %xmm0
|
|
movaps %xmm0, (%ecx)
|
|
ret
|
|
|
|
It would be better to generate:
|
|
|
|
_test:
|
|
movl 8(%esp), %ecx
|
|
movaps (%ecx), %xmm0
|
|
xor %eax, %eax
|
|
pinsrw $6, %eax, %xmm0
|
|
pinsrw $7, %eax, %xmm0
|
|
movaps %xmm0, (%ecx)
|
|
ret
|
|
|
|
or use pxor (to make a zero vector) and shuffle (to insert it).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some useful information in the Apple Altivec / SSE Migration Guide:
|
|
|
|
http://developer.apple.com/documentation/Performance/Conceptual/
|
|
Accelerate_sse_migration/index.html
|
|
|
|
e.g. SSE select using and, andnot, or. Various SSE compare translations.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add hooks to commute some CMPP operations.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Implement some missing insert/extract element operations without going through
|
|
the stack. Testcase here:
|
|
CodeGen/X86/vec_ins_extract.ll
|
|
corresponds to this C code:
|
|
|
|
typedef float vectorfloat __attribute__((vector_size(16)));
|
|
void test(vectorfloat *F, float f) {
|
|
vectorfloat G = *F + *F;
|
|
*((float*)&G) = f;
|
|
*F = G + G;
|
|
}
|
|
void test2(vectorfloat *F, float f) {
|
|
vectorfloat G = *F + *F;
|
|
((float*)&G)[2] = f;
|
|
*F = G + G;
|
|
}
|
|
void test3(vectorfloat *F, float *f) {
|
|
vectorfloat G = *F + *F;
|
|
*f = ((float*)&G)[2];
|
|
}
|
|
void test4(vectorfloat *F, float *f) {
|
|
vectorfloat G = *F + *F;
|
|
*f = *((float*)&G);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Apply the same transformation that merged four float into a single 128-bit load
|
|
to loads from constant pool.
|