mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-27 06:35:30 +00:00
8dd8d5c2b2
Temporarily back out commits r211749, r211752 and r211754. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211814 91177308-0d34-0410-b5e6-96231b3b80d8
720 lines
27 KiB
C++
720 lines
27 KiB
C++
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass statically checks for common and easily-identified constructs
|
|
// which produce undefined or likely unintended behavior in LLVM IR.
|
|
//
|
|
// It is not a guarantee of correctness, in two ways. First, it isn't
|
|
// comprehensive. There are checks which could be done statically which are
|
|
// not yet implemented. Some of these are indicated by TODO comments, but
|
|
// those aren't comprehensive either. Second, many conditions cannot be
|
|
// checked statically. This pass does no dynamic instrumentation, so it
|
|
// can't check for all possible problems.
|
|
//
|
|
// Another limitation is that it assumes all code will be executed. A store
|
|
// through a null pointer in a basic block which is never reached is harmless,
|
|
// but this pass will warn about it anyway. This is the main reason why most
|
|
// of these checks live here instead of in the Verifier pass.
|
|
//
|
|
// Optimization passes may make conditions that this pass checks for more or
|
|
// less obvious. If an optimization pass appears to be introducing a warning,
|
|
// it may be that the optimization pass is merely exposing an existing
|
|
// condition in the code.
|
|
//
|
|
// This code may be run before instcombine. In many cases, instcombine checks
|
|
// for the same kinds of things and turns instructions with undefined behavior
|
|
// into unreachable (or equivalent). Because of this, this pass makes some
|
|
// effort to look through bitcasts and so on.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Lint.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
namespace MemRef {
|
|
static unsigned Read = 1;
|
|
static unsigned Write = 2;
|
|
static unsigned Callee = 4;
|
|
static unsigned Branchee = 8;
|
|
}
|
|
|
|
class Lint : public FunctionPass, public InstVisitor<Lint> {
|
|
friend class InstVisitor<Lint>;
|
|
|
|
void visitFunction(Function &F);
|
|
|
|
void visitCallSite(CallSite CS);
|
|
void visitMemoryReference(Instruction &I, Value *Ptr,
|
|
uint64_t Size, unsigned Align,
|
|
Type *Ty, unsigned Flags);
|
|
|
|
void visitCallInst(CallInst &I);
|
|
void visitInvokeInst(InvokeInst &I);
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitXor(BinaryOperator &I);
|
|
void visitSub(BinaryOperator &I);
|
|
void visitLShr(BinaryOperator &I);
|
|
void visitAShr(BinaryOperator &I);
|
|
void visitShl(BinaryOperator &I);
|
|
void visitSDiv(BinaryOperator &I);
|
|
void visitUDiv(BinaryOperator &I);
|
|
void visitSRem(BinaryOperator &I);
|
|
void visitURem(BinaryOperator &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
void visitIndirectBrInst(IndirectBrInst &I);
|
|
void visitExtractElementInst(ExtractElementInst &I);
|
|
void visitInsertElementInst(InsertElementInst &I);
|
|
void visitUnreachableInst(UnreachableInst &I);
|
|
|
|
Value *findValue(Value *V, bool OffsetOk) const;
|
|
Value *findValueImpl(Value *V, bool OffsetOk,
|
|
SmallPtrSet<Value *, 4> &Visited) const;
|
|
|
|
public:
|
|
Module *Mod;
|
|
AliasAnalysis *AA;
|
|
DominatorTree *DT;
|
|
const DataLayout *DL;
|
|
TargetLibraryInfo *TLI;
|
|
|
|
std::string Messages;
|
|
raw_string_ostream MessagesStr;
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
Lint() : FunctionPass(ID), MessagesStr(Messages) {
|
|
initializeLintPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<TargetLibraryInfo>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
}
|
|
void print(raw_ostream &O, const Module *M) const override {}
|
|
|
|
void WriteValue(const Value *V) {
|
|
if (!V) return;
|
|
if (isa<Instruction>(V)) {
|
|
MessagesStr << *V << '\n';
|
|
} else {
|
|
V->printAsOperand(MessagesStr, true, Mod);
|
|
MessagesStr << '\n';
|
|
}
|
|
}
|
|
|
|
// CheckFailed - A check failed, so print out the condition and the message
|
|
// that failed. This provides a nice place to put a breakpoint if you want
|
|
// to see why something is not correct.
|
|
void CheckFailed(const Twine &Message,
|
|
const Value *V1 = nullptr, const Value *V2 = nullptr,
|
|
const Value *V3 = nullptr, const Value *V4 = nullptr) {
|
|
MessagesStr << Message.str() << "\n";
|
|
WriteValue(V1);
|
|
WriteValue(V2);
|
|
WriteValue(V3);
|
|
WriteValue(V4);
|
|
}
|
|
};
|
|
}
|
|
|
|
char Lint::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
|
|
false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
|
|
false, true)
|
|
|
|
// Assert - We know that cond should be true, if not print an error message.
|
|
#define Assert(C, M) \
|
|
do { if (!(C)) { CheckFailed(M); return; } } while (0)
|
|
#define Assert1(C, M, V1) \
|
|
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
|
|
#define Assert2(C, M, V1, V2) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
|
|
#define Assert3(C, M, V1, V2, V3) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
|
|
#define Assert4(C, M, V1, V2, V3, V4) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
|
|
|
|
// Lint::run - This is the main Analysis entry point for a
|
|
// function.
|
|
//
|
|
bool Lint::runOnFunction(Function &F) {
|
|
Mod = F.getParent();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
|
TLI = &getAnalysis<TargetLibraryInfo>();
|
|
visit(F);
|
|
dbgs() << MessagesStr.str();
|
|
Messages.clear();
|
|
return false;
|
|
}
|
|
|
|
void Lint::visitFunction(Function &F) {
|
|
// This isn't undefined behavior, it's just a little unusual, and it's a
|
|
// fairly common mistake to neglect to name a function.
|
|
Assert1(F.hasName() || F.hasLocalLinkage(),
|
|
"Unusual: Unnamed function with non-local linkage", &F);
|
|
|
|
// TODO: Check for irreducible control flow.
|
|
}
|
|
|
|
void Lint::visitCallSite(CallSite CS) {
|
|
Instruction &I = *CS.getInstruction();
|
|
Value *Callee = CS.getCalledValue();
|
|
|
|
visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Callee);
|
|
|
|
if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
|
|
Assert1(CS.getCallingConv() == F->getCallingConv(),
|
|
"Undefined behavior: Caller and callee calling convention differ",
|
|
&I);
|
|
|
|
FunctionType *FT = F->getFunctionType();
|
|
unsigned NumActualArgs = CS.arg_size();
|
|
|
|
Assert1(FT->isVarArg() ?
|
|
FT->getNumParams() <= NumActualArgs :
|
|
FT->getNumParams() == NumActualArgs,
|
|
"Undefined behavior: Call argument count mismatches callee "
|
|
"argument count", &I);
|
|
|
|
Assert1(FT->getReturnType() == I.getType(),
|
|
"Undefined behavior: Call return type mismatches "
|
|
"callee return type", &I);
|
|
|
|
// Check argument types (in case the callee was casted) and attributes.
|
|
// TODO: Verify that caller and callee attributes are compatible.
|
|
Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
|
|
CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
for (; AI != AE; ++AI) {
|
|
Value *Actual = *AI;
|
|
if (PI != PE) {
|
|
Argument *Formal = PI++;
|
|
Assert1(Formal->getType() == Actual->getType(),
|
|
"Undefined behavior: Call argument type mismatches "
|
|
"callee parameter type", &I);
|
|
|
|
// Check that noalias arguments don't alias other arguments. This is
|
|
// not fully precise because we don't know the sizes of the dereferenced
|
|
// memory regions.
|
|
if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
|
|
for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
|
|
if (AI != BI && (*BI)->getType()->isPointerTy()) {
|
|
AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
|
|
Assert1(Result != AliasAnalysis::MustAlias &&
|
|
Result != AliasAnalysis::PartialAlias,
|
|
"Unusual: noalias argument aliases another argument", &I);
|
|
}
|
|
|
|
// Check that an sret argument points to valid memory.
|
|
if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
|
|
Type *Ty =
|
|
cast<PointerType>(Formal->getType())->getElementType();
|
|
visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
|
|
DL ? DL->getABITypeAlignment(Ty) : 0,
|
|
Ty, MemRef::Read | MemRef::Write);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
|
|
for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
AI != AE; ++AI) {
|
|
Value *Obj = findValue(*AI, /*OffsetOk=*/true);
|
|
Assert1(!isa<AllocaInst>(Obj),
|
|
"Undefined behavior: Call with \"tail\" keyword references "
|
|
"alloca", &I);
|
|
}
|
|
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
|
|
switch (II->getIntrinsicID()) {
|
|
default: break;
|
|
|
|
// TODO: Check more intrinsics
|
|
|
|
case Intrinsic::memcpy: {
|
|
MemCpyInst *MCI = cast<MemCpyInst>(&I);
|
|
// TODO: If the size is known, use it.
|
|
visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
|
|
MCI->getAlignment(), nullptr,
|
|
MemRef::Write);
|
|
visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
|
|
MCI->getAlignment(), nullptr,
|
|
MemRef::Read);
|
|
|
|
// Check that the memcpy arguments don't overlap. The AliasAnalysis API
|
|
// isn't expressive enough for what we really want to do. Known partial
|
|
// overlap is not distinguished from the case where nothing is known.
|
|
uint64_t Size = 0;
|
|
if (const ConstantInt *Len =
|
|
dyn_cast<ConstantInt>(findValue(MCI->getLength(),
|
|
/*OffsetOk=*/false)))
|
|
if (Len->getValue().isIntN(32))
|
|
Size = Len->getValue().getZExtValue();
|
|
Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
|
|
AliasAnalysis::MustAlias,
|
|
"Undefined behavior: memcpy source and destination overlap", &I);
|
|
break;
|
|
}
|
|
case Intrinsic::memmove: {
|
|
MemMoveInst *MMI = cast<MemMoveInst>(&I);
|
|
// TODO: If the size is known, use it.
|
|
visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
|
|
MMI->getAlignment(), nullptr,
|
|
MemRef::Write);
|
|
visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
|
|
MMI->getAlignment(), nullptr,
|
|
MemRef::Read);
|
|
break;
|
|
}
|
|
case Intrinsic::memset: {
|
|
MemSetInst *MSI = cast<MemSetInst>(&I);
|
|
// TODO: If the size is known, use it.
|
|
visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
|
|
MSI->getAlignment(), nullptr,
|
|
MemRef::Write);
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::vastart:
|
|
Assert1(I.getParent()->getParent()->isVarArg(),
|
|
"Undefined behavior: va_start called in a non-varargs function",
|
|
&I);
|
|
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read | MemRef::Write);
|
|
break;
|
|
case Intrinsic::vacopy:
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Write);
|
|
visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read);
|
|
break;
|
|
case Intrinsic::vaend:
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read | MemRef::Write);
|
|
break;
|
|
|
|
case Intrinsic::stackrestore:
|
|
// Stackrestore doesn't read or write memory, but it sets the
|
|
// stack pointer, which the compiler may read from or write to
|
|
// at any time, so check it for both readability and writeability.
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read | MemRef::Write);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Lint::visitCallInst(CallInst &I) {
|
|
return visitCallSite(&I);
|
|
}
|
|
|
|
void Lint::visitInvokeInst(InvokeInst &I) {
|
|
return visitCallSite(&I);
|
|
}
|
|
|
|
void Lint::visitReturnInst(ReturnInst &I) {
|
|
Function *F = I.getParent()->getParent();
|
|
Assert1(!F->doesNotReturn(),
|
|
"Unusual: Return statement in function with noreturn attribute",
|
|
&I);
|
|
|
|
if (Value *V = I.getReturnValue()) {
|
|
Value *Obj = findValue(V, /*OffsetOk=*/true);
|
|
Assert1(!isa<AllocaInst>(Obj),
|
|
"Unusual: Returning alloca value", &I);
|
|
}
|
|
}
|
|
|
|
// TODO: Check that the reference is in bounds.
|
|
// TODO: Check readnone/readonly function attributes.
|
|
void Lint::visitMemoryReference(Instruction &I,
|
|
Value *Ptr, uint64_t Size, unsigned Align,
|
|
Type *Ty, unsigned Flags) {
|
|
// If no memory is being referenced, it doesn't matter if the pointer
|
|
// is valid.
|
|
if (Size == 0)
|
|
return;
|
|
|
|
Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
|
|
Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
|
|
"Undefined behavior: Null pointer dereference", &I);
|
|
Assert1(!isa<UndefValue>(UnderlyingObject),
|
|
"Undefined behavior: Undef pointer dereference", &I);
|
|
Assert1(!isa<ConstantInt>(UnderlyingObject) ||
|
|
!cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
|
|
"Unusual: All-ones pointer dereference", &I);
|
|
Assert1(!isa<ConstantInt>(UnderlyingObject) ||
|
|
!cast<ConstantInt>(UnderlyingObject)->isOne(),
|
|
"Unusual: Address one pointer dereference", &I);
|
|
|
|
if (Flags & MemRef::Write) {
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
|
|
Assert1(!GV->isConstant(),
|
|
"Undefined behavior: Write to read-only memory", &I);
|
|
Assert1(!isa<Function>(UnderlyingObject) &&
|
|
!isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Write to text section", &I);
|
|
}
|
|
if (Flags & MemRef::Read) {
|
|
Assert1(!isa<Function>(UnderlyingObject),
|
|
"Unusual: Load from function body", &I);
|
|
Assert1(!isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Load from block address", &I);
|
|
}
|
|
if (Flags & MemRef::Callee) {
|
|
Assert1(!isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Call to block address", &I);
|
|
}
|
|
if (Flags & MemRef::Branchee) {
|
|
Assert1(!isa<Constant>(UnderlyingObject) ||
|
|
isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Branch to non-blockaddress", &I);
|
|
}
|
|
|
|
// Check for buffer overflows and misalignment.
|
|
// Only handles memory references that read/write something simple like an
|
|
// alloca instruction or a global variable.
|
|
int64_t Offset = 0;
|
|
if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
|
|
// OK, so the access is to a constant offset from Ptr. Check that Ptr is
|
|
// something we can handle and if so extract the size of this base object
|
|
// along with its alignment.
|
|
uint64_t BaseSize = AliasAnalysis::UnknownSize;
|
|
unsigned BaseAlign = 0;
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
|
|
Type *ATy = AI->getAllocatedType();
|
|
if (DL && !AI->isArrayAllocation() && ATy->isSized())
|
|
BaseSize = DL->getTypeAllocSize(ATy);
|
|
BaseAlign = AI->getAlignment();
|
|
if (DL && BaseAlign == 0 && ATy->isSized())
|
|
BaseAlign = DL->getABITypeAlignment(ATy);
|
|
} else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
|
|
// If the global may be defined differently in another compilation unit
|
|
// then don't warn about funky memory accesses.
|
|
if (GV->hasDefinitiveInitializer()) {
|
|
Type *GTy = GV->getType()->getElementType();
|
|
if (DL && GTy->isSized())
|
|
BaseSize = DL->getTypeAllocSize(GTy);
|
|
BaseAlign = GV->getAlignment();
|
|
if (DL && BaseAlign == 0 && GTy->isSized())
|
|
BaseAlign = DL->getABITypeAlignment(GTy);
|
|
}
|
|
}
|
|
|
|
// Accesses from before the start or after the end of the object are not
|
|
// defined.
|
|
Assert1(Size == AliasAnalysis::UnknownSize ||
|
|
BaseSize == AliasAnalysis::UnknownSize ||
|
|
(Offset >= 0 && Offset + Size <= BaseSize),
|
|
"Undefined behavior: Buffer overflow", &I);
|
|
|
|
// Accesses that say that the memory is more aligned than it is are not
|
|
// defined.
|
|
if (DL && Align == 0 && Ty && Ty->isSized())
|
|
Align = DL->getABITypeAlignment(Ty);
|
|
Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
|
|
"Undefined behavior: Memory reference address is misaligned", &I);
|
|
}
|
|
}
|
|
|
|
void Lint::visitLoadInst(LoadInst &I) {
|
|
visitMemoryReference(I, I.getPointerOperand(),
|
|
AA->getTypeStoreSize(I.getType()), I.getAlignment(),
|
|
I.getType(), MemRef::Read);
|
|
}
|
|
|
|
void Lint::visitStoreInst(StoreInst &I) {
|
|
visitMemoryReference(I, I.getPointerOperand(),
|
|
AA->getTypeStoreSize(I.getOperand(0)->getType()),
|
|
I.getAlignment(),
|
|
I.getOperand(0)->getType(), MemRef::Write);
|
|
}
|
|
|
|
void Lint::visitXor(BinaryOperator &I) {
|
|
Assert1(!isa<UndefValue>(I.getOperand(0)) ||
|
|
!isa<UndefValue>(I.getOperand(1)),
|
|
"Undefined result: xor(undef, undef)", &I);
|
|
}
|
|
|
|
void Lint::visitSub(BinaryOperator &I) {
|
|
Assert1(!isa<UndefValue>(I.getOperand(0)) ||
|
|
!isa<UndefValue>(I.getOperand(1)),
|
|
"Undefined result: sub(undef, undef)", &I);
|
|
}
|
|
|
|
void Lint::visitLShr(BinaryOperator &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
|
|
"Undefined result: Shift count out of range", &I);
|
|
}
|
|
|
|
void Lint::visitAShr(BinaryOperator &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
|
|
"Undefined result: Shift count out of range", &I);
|
|
}
|
|
|
|
void Lint::visitShl(BinaryOperator &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
|
|
"Undefined result: Shift count out of range", &I);
|
|
}
|
|
|
|
static bool isZero(Value *V, const DataLayout *DL) {
|
|
// Assume undef could be zero.
|
|
if (isa<UndefValue>(V))
|
|
return true;
|
|
|
|
VectorType *VecTy = dyn_cast<VectorType>(V->getType());
|
|
if (!VecTy) {
|
|
unsigned BitWidth = V->getType()->getIntegerBitWidth();
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
computeKnownBits(V, KnownZero, KnownOne, DL);
|
|
return KnownZero.isAllOnesValue();
|
|
}
|
|
|
|
// Per-component check doesn't work with zeroinitializer
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return false;
|
|
|
|
if (C->isZeroValue())
|
|
return true;
|
|
|
|
// For a vector, KnownZero will only be true if all values are zero, so check
|
|
// this per component
|
|
unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
|
|
for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
|
|
Constant *Elem = C->getAggregateElement(I);
|
|
if (isa<UndefValue>(Elem))
|
|
return true;
|
|
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
computeKnownBits(Elem, KnownZero, KnownOne, DL);
|
|
if (KnownZero.isAllOnesValue())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Lint::visitSDiv(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitUDiv(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitSRem(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitURem(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitAllocaInst(AllocaInst &I) {
|
|
if (isa<ConstantInt>(I.getArraySize()))
|
|
// This isn't undefined behavior, it's just an obvious pessimization.
|
|
Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
|
|
"Pessimization: Static alloca outside of entry block", &I);
|
|
|
|
// TODO: Check for an unusual size (MSB set?)
|
|
}
|
|
|
|
void Lint::visitVAArgInst(VAArgInst &I) {
|
|
visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
|
|
nullptr, MemRef::Read | MemRef::Write);
|
|
}
|
|
|
|
void Lint::visitIndirectBrInst(IndirectBrInst &I) {
|
|
visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
|
|
nullptr, MemRef::Branchee);
|
|
|
|
Assert1(I.getNumDestinations() != 0,
|
|
"Undefined behavior: indirectbr with no destinations", &I);
|
|
}
|
|
|
|
void Lint::visitExtractElementInst(ExtractElementInst &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
|
|
/*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
|
|
"Undefined result: extractelement index out of range", &I);
|
|
}
|
|
|
|
void Lint::visitInsertElementInst(InsertElementInst &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(2),
|
|
/*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(I.getType()->getNumElements()),
|
|
"Undefined result: insertelement index out of range", &I);
|
|
}
|
|
|
|
void Lint::visitUnreachableInst(UnreachableInst &I) {
|
|
// This isn't undefined behavior, it's merely suspicious.
|
|
Assert1(&I == I.getParent()->begin() ||
|
|
std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
|
|
"Unusual: unreachable immediately preceded by instruction without "
|
|
"side effects", &I);
|
|
}
|
|
|
|
/// findValue - Look through bitcasts and simple memory reference patterns
|
|
/// to identify an equivalent, but more informative, value. If OffsetOk
|
|
/// is true, look through getelementptrs with non-zero offsets too.
|
|
///
|
|
/// Most analysis passes don't require this logic, because instcombine
|
|
/// will simplify most of these kinds of things away. But it's a goal of
|
|
/// this Lint pass to be useful even on non-optimized IR.
|
|
Value *Lint::findValue(Value *V, bool OffsetOk) const {
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
return findValueImpl(V, OffsetOk, Visited);
|
|
}
|
|
|
|
/// findValueImpl - Implementation helper for findValue.
|
|
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
|
|
SmallPtrSet<Value *, 4> &Visited) const {
|
|
// Detect self-referential values.
|
|
if (!Visited.insert(V))
|
|
return UndefValue::get(V->getType());
|
|
|
|
// TODO: Look through sext or zext cast, when the result is known to
|
|
// be interpreted as signed or unsigned, respectively.
|
|
// TODO: Look through eliminable cast pairs.
|
|
// TODO: Look through calls with unique return values.
|
|
// TODO: Look through vector insert/extract/shuffle.
|
|
V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
|
|
if (LoadInst *L = dyn_cast<LoadInst>(V)) {
|
|
BasicBlock::iterator BBI = L;
|
|
BasicBlock *BB = L->getParent();
|
|
SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
|
|
for (;;) {
|
|
if (!VisitedBlocks.insert(BB)) break;
|
|
if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
|
|
BB, BBI, 6, AA))
|
|
return findValueImpl(U, OffsetOk, Visited);
|
|
if (BBI != BB->begin()) break;
|
|
BB = BB->getUniquePredecessor();
|
|
if (!BB) break;
|
|
BBI = BB->end();
|
|
}
|
|
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
if (Value *W = PN->hasConstantValue())
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
|
|
if (CI->isNoopCast(DL))
|
|
return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
|
|
} else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
|
|
if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
|
|
Ex->getIndices()))
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
// Same as above, but for ConstantExpr instead of Instruction.
|
|
if (Instruction::isCast(CE->getOpcode())) {
|
|
if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
|
|
CE->getOperand(0)->getType(),
|
|
CE->getType(),
|
|
DL ? DL->getIntPtrType(V->getType()) :
|
|
Type::getInt64Ty(V->getContext())))
|
|
return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
|
|
} else if (CE->getOpcode() == Instruction::ExtractValue) {
|
|
ArrayRef<unsigned> Indices = CE->getIndices();
|
|
if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
}
|
|
}
|
|
|
|
// As a last resort, try SimplifyInstruction or constant folding.
|
|
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
|
|
if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT))
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createLintPass() {
|
|
return new Lint();
|
|
}
|
|
|
|
/// lintFunction - Check a function for errors, printing messages on stderr.
|
|
///
|
|
void llvm::lintFunction(const Function &f) {
|
|
Function &F = const_cast<Function&>(f);
|
|
assert(!F.isDeclaration() && "Cannot lint external functions");
|
|
|
|
FunctionPassManager FPM(F.getParent());
|
|
Lint *V = new Lint();
|
|
FPM.add(V);
|
|
FPM.run(F);
|
|
}
|
|
|
|
/// lintModule - Check a module for errors, printing messages on stderr.
|
|
///
|
|
void llvm::lintModule(const Module &M) {
|
|
PassManager PM;
|
|
Lint *V = new Lint();
|
|
PM.add(V);
|
|
PM.run(const_cast<Module&>(M));
|
|
}
|