mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-21 03:28:31 +00:00
a54b7cbd45
Implement the arbitrary bit-width integer feature. The feature allows integers of any bitwidth (up to 64) to be defined instead of just 1, 8, 16, 32, and 64 bit integers. This change does several things: 1. Introduces a new Derived Type, IntegerType, to represent the number of bits in an integer. The Type classes SubclassData field is used to store the number of bits. This allows 2^23 bits in an integer type. 2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and 64-bit integers. These are replaced with just IntegerType which is not a primitive any more. 3. Adjust the rest of LLVM to account for this change. Note that while this incremental change lays the foundation for arbitrary bit-width integers, LLVM has not yet been converted to actually deal with them in any significant way. Most optimization passes, for example, will still only deal with the byte-width integer types. Future increments will rectify this situation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33113 91177308-0d34-0410-b5e6-96231b3b80d8
1427 lines
61 KiB
C++
1427 lines
61 KiB
C++
//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements folding of constants for LLVM. This implements the
|
|
// (internal) ConstantFolding.h interface, which is used by the
|
|
// ConstantExpr::get* methods to automatically fold constants when possible.
|
|
//
|
|
// The current constant folding implementation is implemented in two pieces: the
|
|
// template-based folder for simple primitive constants like ConstantInt, and
|
|
// the special case hackery that we use to symbolically evaluate expressions
|
|
// that use ConstantExprs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ConstantFolding.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <limits>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantFold*Instruction Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CastConstantPacked - Convert the specified ConstantPacked node to the
|
|
/// specified packed type. At this point, we know that the elements of the
|
|
/// input packed constant are all simple integer or FP values.
|
|
static Constant *CastConstantPacked(ConstantPacked *CP,
|
|
const PackedType *DstTy) {
|
|
unsigned SrcNumElts = CP->getType()->getNumElements();
|
|
unsigned DstNumElts = DstTy->getNumElements();
|
|
const Type *SrcEltTy = CP->getType()->getElementType();
|
|
const Type *DstEltTy = DstTy->getElementType();
|
|
|
|
// If both vectors have the same number of elements (thus, the elements
|
|
// are the same size), perform the conversion now.
|
|
if (SrcNumElts == DstNumElts) {
|
|
std::vector<Constant*> Result;
|
|
|
|
// If the src and dest elements are both integers, or both floats, we can
|
|
// just BitCast each element because the elements are the same size.
|
|
if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
|
|
(SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
|
|
for (unsigned i = 0; i != SrcNumElts; ++i)
|
|
Result.push_back(
|
|
ConstantExpr::getBitCast(CP->getOperand(i), DstEltTy));
|
|
return ConstantPacked::get(Result);
|
|
}
|
|
|
|
// If this is an int-to-fp cast ..
|
|
if (SrcEltTy->isIntegral()) {
|
|
// Ensure that it is int-to-fp cast
|
|
assert(DstEltTy->isFloatingPoint());
|
|
if (DstEltTy->getTypeID() == Type::DoubleTyID) {
|
|
for (unsigned i = 0; i != SrcNumElts; ++i) {
|
|
double V =
|
|
BitsToDouble(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
|
|
Result.push_back(ConstantFP::get(Type::DoubleTy, V));
|
|
}
|
|
return ConstantPacked::get(Result);
|
|
}
|
|
assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
|
|
for (unsigned i = 0; i != SrcNumElts; ++i) {
|
|
float V =
|
|
BitsToFloat(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
|
|
Result.push_back(ConstantFP::get(Type::FloatTy, V));
|
|
}
|
|
return ConstantPacked::get(Result);
|
|
}
|
|
|
|
// Otherwise, this is an fp-to-int cast.
|
|
assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral());
|
|
|
|
if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
|
|
for (unsigned i = 0; i != SrcNumElts; ++i) {
|
|
uint64_t V =
|
|
DoubleToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
|
|
Constant *C = ConstantInt::get(Type::Int64Ty, V);
|
|
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
|
|
}
|
|
return ConstantPacked::get(Result);
|
|
}
|
|
|
|
assert(SrcEltTy->getTypeID() == Type::FloatTyID);
|
|
for (unsigned i = 0; i != SrcNumElts; ++i) {
|
|
uint32_t V = FloatToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
|
|
Constant *C = ConstantInt::get(Type::Int32Ty, V);
|
|
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
|
|
}
|
|
return ConstantPacked::get(Result);
|
|
}
|
|
|
|
// Otherwise, this is a cast that changes element count and size. Handle
|
|
// casts which shrink the elements here.
|
|
|
|
// FIXME: We need to know endianness to do this!
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// This function determines which opcode to use to fold two constant cast
|
|
/// expressions together. It uses CastInst::isEliminableCastPair to determine
|
|
/// the opcode. Consequently its just a wrapper around that function.
|
|
/// @Determine if it is valid to fold a cast of a cast
|
|
static unsigned
|
|
foldConstantCastPair(
|
|
unsigned opc, ///< opcode of the second cast constant expression
|
|
const ConstantExpr*Op, ///< the first cast constant expression
|
|
const Type *DstTy ///< desintation type of the first cast
|
|
) {
|
|
assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
|
|
assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
|
|
assert(CastInst::isCast(opc) && "Invalid cast opcode");
|
|
|
|
// The the types and opcodes for the two Cast constant expressions
|
|
const Type *SrcTy = Op->getOperand(0)->getType();
|
|
const Type *MidTy = Op->getType();
|
|
Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
|
|
Instruction::CastOps secondOp = Instruction::CastOps(opc);
|
|
|
|
// Let CastInst::isEliminableCastPair do the heavy lifting.
|
|
return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
|
|
Type::Int64Ty);
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
|
|
const Type *DestTy) {
|
|
const Type *SrcTy = V->getType();
|
|
|
|
if (isa<UndefValue>(V))
|
|
return UndefValue::get(DestTy);
|
|
|
|
// If the cast operand is a constant expression, there's a few things we can
|
|
// do to try to simplify it.
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (CE->isCast()) {
|
|
// Try hard to fold cast of cast because they are often eliminable.
|
|
if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
|
|
return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
|
|
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
// If all of the indexes in the GEP are null values, there is no pointer
|
|
// adjustment going on. We might as well cast the source pointer.
|
|
bool isAllNull = true;
|
|
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
|
if (!CE->getOperand(i)->isNullValue()) {
|
|
isAllNull = false;
|
|
break;
|
|
}
|
|
if (isAllNull)
|
|
// This is casting one pointer type to another, always BitCast
|
|
return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
|
|
}
|
|
}
|
|
|
|
// We actually have to do a cast now. Perform the cast according to the
|
|
// opcode specified.
|
|
switch (opc) {
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
|
|
return ConstantFP::get(DestTy, FPC->getValue());
|
|
return 0; // Can't fold.
|
|
case Instruction::FPToUI:
|
|
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
|
|
return ConstantInt::get(DestTy,(uint64_t) FPC->getValue());
|
|
return 0; // Can't fold.
|
|
case Instruction::FPToSI:
|
|
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
|
|
return ConstantInt::get(DestTy,(int64_t) FPC->getValue());
|
|
return 0; // Can't fold.
|
|
case Instruction::IntToPtr: //always treated as unsigned
|
|
if (V->isNullValue()) // Is it an integral null value?
|
|
return ConstantPointerNull::get(cast<PointerType>(DestTy));
|
|
return 0; // Other pointer types cannot be casted
|
|
case Instruction::PtrToInt: // always treated as unsigned
|
|
if (V->isNullValue()) // is it a null pointer value?
|
|
return ConstantInt::get(DestTy, 0);
|
|
return 0; // Other pointer types cannot be casted
|
|
case Instruction::UIToFP:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
return ConstantFP::get(DestTy, double(CI->getZExtValue()));
|
|
return 0;
|
|
case Instruction::SIToFP:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
return ConstantFP::get(DestTy, double(CI->getSExtValue()));
|
|
return 0;
|
|
case Instruction::ZExt:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
return ConstantInt::get(DestTy, CI->getZExtValue());
|
|
return 0;
|
|
case Instruction::SExt:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
return ConstantInt::get(DestTy, CI->getSExtValue());
|
|
return 0;
|
|
case Instruction::Trunc:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) // Can't trunc a bool
|
|
return ConstantInt::get(DestTy, CI->getZExtValue());
|
|
return 0;
|
|
case Instruction::BitCast:
|
|
if (SrcTy == DestTy)
|
|
return (Constant*)V; // no-op cast
|
|
|
|
// Check to see if we are casting a pointer to an aggregate to a pointer to
|
|
// the first element. If so, return the appropriate GEP instruction.
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
|
|
if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
|
|
std::vector<Value*> IdxList;
|
|
IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
|
|
const Type *ElTy = PTy->getElementType();
|
|
while (ElTy != DPTy->getElementType()) {
|
|
if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
|
|
if (STy->getNumElements() == 0) break;
|
|
ElTy = STy->getElementType(0);
|
|
IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
|
|
} else if (const SequentialType *STy =
|
|
dyn_cast<SequentialType>(ElTy)) {
|
|
if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
|
|
ElTy = STy->getElementType();
|
|
IdxList.push_back(IdxList[0]);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ElTy == DPTy->getElementType())
|
|
return ConstantExpr::getGetElementPtr(
|
|
const_cast<Constant*>(V),IdxList);
|
|
}
|
|
|
|
// Handle casts from one packed constant to another. We know that the src
|
|
// and dest type have the same size (otherwise its an illegal cast).
|
|
if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
|
|
if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
|
|
assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
|
|
"Not cast between same sized vectors!");
|
|
// First, check for null and undef
|
|
if (isa<ConstantAggregateZero>(V))
|
|
return Constant::getNullValue(DestTy);
|
|
if (isa<UndefValue>(V))
|
|
return UndefValue::get(DestTy);
|
|
|
|
if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
|
|
// This is a cast from a ConstantPacked of one type to a
|
|
// ConstantPacked of another type. Check to see if all elements of
|
|
// the input are simple.
|
|
bool AllSimpleConstants = true;
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
|
|
if (!isa<ConstantInt>(CP->getOperand(i)) &&
|
|
!isa<ConstantFP>(CP->getOperand(i))) {
|
|
AllSimpleConstants = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If all of the elements are simple constants, we can fold this.
|
|
if (AllSimpleConstants)
|
|
return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, implement bitcast folding now. The code below doesn't handle
|
|
// bitcast right.
|
|
if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
|
|
return ConstantPointerNull::get(cast<PointerType>(DestTy));
|
|
|
|
// Handle integral constant input.
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
// Integral -> Integral, must be changing sign.
|
|
if (DestTy->isIntegral())
|
|
return ConstantInt::get(DestTy, CI->getZExtValue());
|
|
|
|
if (DestTy->isFloatingPoint()) {
|
|
if (DestTy == Type::FloatTy)
|
|
return ConstantFP::get(DestTy, BitsToFloat(CI->getZExtValue()));
|
|
assert(DestTy == Type::DoubleTy && "Unknown FP type!");
|
|
return ConstantFP::get(DestTy, BitsToDouble(CI->getZExtValue()));
|
|
}
|
|
// Otherwise, can't fold this (packed?)
|
|
return 0;
|
|
}
|
|
|
|
// Handle ConstantFP input.
|
|
if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
|
|
// FP -> Integral.
|
|
if (DestTy->isIntegral()) {
|
|
if (DestTy == Type::Int32Ty)
|
|
return ConstantInt::get(DestTy, FloatToBits(FP->getValue()));
|
|
assert(DestTy == Type::Int64Ty &&
|
|
"Incorrect integer type for bitcast!");
|
|
return ConstantInt::get(DestTy, DoubleToBits(FP->getValue()));
|
|
}
|
|
}
|
|
return 0;
|
|
default:
|
|
assert(!"Invalid CE CastInst opcode");
|
|
break;
|
|
}
|
|
|
|
assert(0 && "Failed to cast constant expression");
|
|
return 0;
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
|
|
const Constant *V1,
|
|
const Constant *V2) {
|
|
if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
|
|
return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
|
|
|
|
if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
|
|
if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
|
|
if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
|
|
if (V1 == V2) return const_cast<Constant*>(V1);
|
|
return 0;
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
|
|
const Constant *Idx) {
|
|
if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
|
|
return UndefValue::get(cast<PackedType>(Val->getType())->getElementType());
|
|
if (Val->isNullValue()) // ee(zero, x) -> zero
|
|
return Constant::getNullValue(
|
|
cast<PackedType>(Val->getType())->getElementType());
|
|
|
|
if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
|
|
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
|
|
return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
|
|
} else if (isa<UndefValue>(Idx)) {
|
|
// ee({w,x,y,z}, undef) -> w (an arbitrary value).
|
|
return const_cast<Constant*>(CVal->getOperand(0));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
|
|
const Constant *Elt,
|
|
const Constant *Idx) {
|
|
const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
|
|
if (!CIdx) return 0;
|
|
uint64_t idxVal = CIdx->getZExtValue();
|
|
if (isa<UndefValue>(Val)) {
|
|
// Insertion of scalar constant into packed undef
|
|
// Optimize away insertion of undef
|
|
if (isa<UndefValue>(Elt))
|
|
return const_cast<Constant*>(Val);
|
|
// Otherwise break the aggregate undef into multiple undefs and do
|
|
// the insertion
|
|
unsigned numOps =
|
|
cast<PackedType>(Val->getType())->getNumElements();
|
|
std::vector<Constant*> Ops;
|
|
Ops.reserve(numOps);
|
|
for (unsigned i = 0; i < numOps; ++i) {
|
|
const Constant *Op =
|
|
(i == idxVal) ? Elt : UndefValue::get(Elt->getType());
|
|
Ops.push_back(const_cast<Constant*>(Op));
|
|
}
|
|
return ConstantPacked::get(Ops);
|
|
}
|
|
if (isa<ConstantAggregateZero>(Val)) {
|
|
// Insertion of scalar constant into packed aggregate zero
|
|
// Optimize away insertion of zero
|
|
if (Elt->isNullValue())
|
|
return const_cast<Constant*>(Val);
|
|
// Otherwise break the aggregate zero into multiple zeros and do
|
|
// the insertion
|
|
unsigned numOps =
|
|
cast<PackedType>(Val->getType())->getNumElements();
|
|
std::vector<Constant*> Ops;
|
|
Ops.reserve(numOps);
|
|
for (unsigned i = 0; i < numOps; ++i) {
|
|
const Constant *Op =
|
|
(i == idxVal) ? Elt : Constant::getNullValue(Elt->getType());
|
|
Ops.push_back(const_cast<Constant*>(Op));
|
|
}
|
|
return ConstantPacked::get(Ops);
|
|
}
|
|
if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
|
|
// Insertion of scalar constant into packed constant
|
|
std::vector<Constant*> Ops;
|
|
Ops.reserve(CVal->getNumOperands());
|
|
for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
|
|
const Constant *Op =
|
|
(i == idxVal) ? Elt : cast<Constant>(CVal->getOperand(i));
|
|
Ops.push_back(const_cast<Constant*>(Op));
|
|
}
|
|
return ConstantPacked::get(Ops);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
|
|
const Constant *V2,
|
|
const Constant *Mask) {
|
|
// TODO:
|
|
return 0;
|
|
}
|
|
|
|
/// EvalVectorOp - Given two packed constants and a function pointer, apply the
|
|
/// function pointer to each element pair, producing a new ConstantPacked
|
|
/// constant.
|
|
static Constant *EvalVectorOp(const ConstantPacked *V1,
|
|
const ConstantPacked *V2,
|
|
Constant *(*FP)(Constant*, Constant*)) {
|
|
std::vector<Constant*> Res;
|
|
for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
|
|
Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
|
|
const_cast<Constant*>(V2->getOperand(i))));
|
|
return ConstantPacked::get(Res);
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
|
|
const Constant *C1,
|
|
const Constant *C2) {
|
|
// Handle UndefValue up front
|
|
if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Xor:
|
|
return UndefValue::get(C1->getType());
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
return Constant::getNullValue(C1->getType());
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
if (!isa<UndefValue>(C2)) // undef / X -> 0
|
|
return Constant::getNullValue(C1->getType());
|
|
return const_cast<Constant*>(C2); // X / undef -> undef
|
|
case Instruction::Or: // X | undef -> -1
|
|
if (const PackedType *PTy = dyn_cast<PackedType>(C1->getType()))
|
|
return ConstantPacked::getAllOnesValue(PTy);
|
|
return ConstantInt::getAllOnesValue(C1->getType());
|
|
case Instruction::LShr:
|
|
if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
|
|
return const_cast<Constant*>(C1); // undef lshr undef -> undef
|
|
return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
|
|
// undef lshr X -> 0
|
|
case Instruction::AShr:
|
|
if (!isa<UndefValue>(C2))
|
|
return const_cast<Constant*>(C1); // undef ashr X --> undef
|
|
else if (isa<UndefValue>(C1))
|
|
return const_cast<Constant*>(C1); // undef ashr undef -> undef
|
|
else
|
|
return const_cast<Constant*>(C1); // X ashr undef --> X
|
|
case Instruction::Shl:
|
|
// undef << X -> 0 or X << undef -> 0
|
|
return Constant::getNullValue(C1->getType());
|
|
}
|
|
}
|
|
|
|
if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
|
|
if (isa<ConstantExpr>(C2)) {
|
|
// There are many possible foldings we could do here. We should probably
|
|
// at least fold add of a pointer with an integer into the appropriate
|
|
// getelementptr. This will improve alias analysis a bit.
|
|
} else {
|
|
// Just implement a couple of simple identities.
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
if (C2->isNullValue()) return const_cast<Constant*>(C1); // X + 0 == X
|
|
break;
|
|
case Instruction::Sub:
|
|
if (C2->isNullValue()) return const_cast<Constant*>(C1); // X - 0 == X
|
|
break;
|
|
case Instruction::Mul:
|
|
if (C2->isNullValue()) return const_cast<Constant*>(C2); // X * 0 == 0
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
|
|
if (CI->getZExtValue() == 1)
|
|
return const_cast<Constant*>(C1); // X * 1 == X
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
|
|
if (CI->getZExtValue() == 1)
|
|
return const_cast<Constant*>(C1); // X / 1 == X
|
|
break;
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
|
|
if (CI->getZExtValue() == 1)
|
|
return Constant::getNullValue(CI->getType()); // X % 1 == 0
|
|
break;
|
|
case Instruction::And:
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
|
|
if (CI->isAllOnesValue())
|
|
return const_cast<Constant*>(C1); // X & -1 == X
|
|
if (C2->isNullValue()) return const_cast<Constant*>(C2); // X & 0 == 0
|
|
if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
|
|
GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
|
|
|
|
// Functions are at least 4-byte aligned. If and'ing the address of a
|
|
// function with a constant < 4, fold it to zero.
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
|
|
if (CI->getZExtValue() < 4 && isa<Function>(CPR))
|
|
return Constant::getNullValue(CI->getType());
|
|
}
|
|
break;
|
|
case Instruction::Or:
|
|
if (C2->isNullValue()) return const_cast<Constant*>(C1); // X | 0 == X
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
|
|
if (CI->isAllOnesValue())
|
|
return const_cast<Constant*>(C2); // X | -1 == -1
|
|
break;
|
|
case Instruction::Xor:
|
|
if (C2->isNullValue()) return const_cast<Constant*>(C1); // X ^ 0 == X
|
|
break;
|
|
}
|
|
}
|
|
} else if (isa<ConstantExpr>(C2)) {
|
|
// If C2 is a constant expr and C1 isn't, flop them around and fold the
|
|
// other way if possible.
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// No change of opcode required.
|
|
return ConstantFoldBinaryInstruction(Opcode, C2, C1);
|
|
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::Sub:
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
default: // These instructions cannot be flopped around.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// At this point we know neither constant is an UndefValue nor a ConstantExpr
|
|
// so look at directly computing the value.
|
|
if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
|
|
if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
|
|
if (CI1->getType() == Type::Int1Ty && CI2->getType() == Type::Int1Ty) {
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::And:
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
CI1->getZExtValue() & CI2->getZExtValue());
|
|
case Instruction::Or:
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
CI1->getZExtValue() | CI2->getZExtValue());
|
|
case Instruction::Xor:
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
CI1->getZExtValue() ^ CI2->getZExtValue());
|
|
}
|
|
} else {
|
|
uint64_t C1Val = CI1->getZExtValue();
|
|
uint64_t C2Val = CI2->getZExtValue();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::Add:
|
|
return ConstantInt::get(C1->getType(), C1Val + C2Val);
|
|
case Instruction::Sub:
|
|
return ConstantInt::get(C1->getType(), C1Val - C2Val);
|
|
case Instruction::Mul:
|
|
return ConstantInt::get(C1->getType(), C1Val * C2Val);
|
|
case Instruction::UDiv:
|
|
if (CI2->isNullValue()) // X / 0 -> can't fold
|
|
return 0;
|
|
return ConstantInt::get(C1->getType(), C1Val / C2Val);
|
|
case Instruction::SDiv:
|
|
if (CI2->isNullValue()) return 0; // X / 0 -> can't fold
|
|
if (CI2->isAllOnesValue() &&
|
|
(((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
|
|
(CI1->getSExtValue() == INT64_MIN)) ||
|
|
(CI1->getSExtValue() == -CI1->getSExtValue())))
|
|
return 0; // MIN_INT / -1 -> overflow
|
|
return ConstantInt::get(C1->getType(),
|
|
CI1->getSExtValue() / CI2->getSExtValue());
|
|
case Instruction::URem:
|
|
if (C2->isNullValue()) return 0; // X / 0 -> can't fold
|
|
return ConstantInt::get(C1->getType(), C1Val % C2Val);
|
|
case Instruction::SRem:
|
|
if (CI2->isNullValue()) return 0; // X % 0 -> can't fold
|
|
if (CI2->isAllOnesValue() &&
|
|
(((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
|
|
(CI1->getSExtValue() == INT64_MIN)) ||
|
|
(CI1->getSExtValue() == -CI1->getSExtValue())))
|
|
return 0; // MIN_INT % -1 -> overflow
|
|
return ConstantInt::get(C1->getType(),
|
|
CI1->getSExtValue() % CI2->getSExtValue());
|
|
case Instruction::And:
|
|
return ConstantInt::get(C1->getType(), C1Val & C2Val);
|
|
case Instruction::Or:
|
|
return ConstantInt::get(C1->getType(), C1Val | C2Val);
|
|
case Instruction::Xor:
|
|
return ConstantInt::get(C1->getType(), C1Val ^ C2Val);
|
|
case Instruction::Shl:
|
|
return ConstantInt::get(C1->getType(), C1Val << C2Val);
|
|
case Instruction::LShr:
|
|
return ConstantInt::get(C1->getType(), C1Val >> C2Val);
|
|
case Instruction::AShr:
|
|
return ConstantInt::get(C1->getType(),
|
|
CI1->getSExtValue() >> C2Val);
|
|
}
|
|
}
|
|
}
|
|
} else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
|
|
if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
|
|
double C1Val = CFP1->getValue();
|
|
double C2Val = CFP2->getValue();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::Add:
|
|
return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
|
|
case Instruction::Sub:
|
|
return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
|
|
case Instruction::Mul:
|
|
return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
|
|
case Instruction::FDiv:
|
|
if (CFP2->isExactlyValue(0.0))
|
|
return ConstantFP::get(CFP1->getType(),
|
|
std::numeric_limits<double>::infinity());
|
|
if (CFP2->isExactlyValue(-0.0))
|
|
return ConstantFP::get(CFP1->getType(),
|
|
-std::numeric_limits<double>::infinity());
|
|
return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
|
|
case Instruction::FRem:
|
|
if (CFP2->isNullValue())
|
|
return 0;
|
|
return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
|
|
}
|
|
}
|
|
} else if (const ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
|
|
if (const ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::Add:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getAdd);
|
|
case Instruction::Sub:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getSub);
|
|
case Instruction::Mul:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getMul);
|
|
case Instruction::UDiv:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getUDiv);
|
|
case Instruction::SDiv:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getSDiv);
|
|
case Instruction::FDiv:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getFDiv);
|
|
case Instruction::URem:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getURem);
|
|
case Instruction::SRem:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getSRem);
|
|
case Instruction::FRem:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getFRem);
|
|
case Instruction::And:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getAnd);
|
|
case Instruction::Or:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getOr);
|
|
case Instruction::Xor:
|
|
return EvalVectorOp(CP1, CP2, ConstantExpr::getXor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We don't know how to fold this
|
|
return 0;
|
|
}
|
|
|
|
/// isZeroSizedType - This type is zero sized if its an array or structure of
|
|
/// zero sized types. The only leaf zero sized type is an empty structure.
|
|
static bool isMaybeZeroSizedType(const Type *Ty) {
|
|
if (isa<OpaqueType>(Ty)) return true; // Can't say.
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
|
|
// If all of elements have zero size, this does too.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
|
|
return true;
|
|
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
return isMaybeZeroSizedType(ATy->getElementType());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IdxCompare - Compare the two constants as though they were getelementptr
|
|
/// indices. This allows coersion of the types to be the same thing.
|
|
///
|
|
/// If the two constants are the "same" (after coersion), return 0. If the
|
|
/// first is less than the second, return -1, if the second is less than the
|
|
/// first, return 1. If the constants are not integral, return -2.
|
|
///
|
|
static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
|
|
if (C1 == C2) return 0;
|
|
|
|
// Ok, we found a different index. If they are not ConstantInt, we can't do
|
|
// anything with them.
|
|
if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
|
|
return -2; // don't know!
|
|
|
|
// Ok, we have two differing integer indices. Sign extend them to be the same
|
|
// type. Long is always big enough, so we use it.
|
|
if (C1->getType() != Type::Int64Ty)
|
|
C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
|
|
|
|
if (C2->getType() != Type::Int64Ty)
|
|
C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
|
|
|
|
if (C1 == C2) return 0; // They are equal
|
|
|
|
// If the type being indexed over is really just a zero sized type, there is
|
|
// no pointer difference being made here.
|
|
if (isMaybeZeroSizedType(ElTy))
|
|
return -2; // dunno.
|
|
|
|
// If they are really different, now that they are the same type, then we
|
|
// found a difference!
|
|
if (cast<ConstantInt>(C1)->getSExtValue() <
|
|
cast<ConstantInt>(C2)->getSExtValue())
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/// evaluateFCmpRelation - This function determines if there is anything we can
|
|
/// decide about the two constants provided. This doesn't need to handle simple
|
|
/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
|
|
/// If we can determine that the two constants have a particular relation to
|
|
/// each other, we should return the corresponding FCmpInst predicate,
|
|
/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
|
|
/// ConstantFoldCompareInstruction.
|
|
///
|
|
/// To simplify this code we canonicalize the relation so that the first
|
|
/// operand is always the most "complex" of the two. We consider ConstantFP
|
|
/// to be the simplest, and ConstantExprs to be the most complex.
|
|
static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
|
|
const Constant *V2) {
|
|
assert(V1->getType() == V2->getType() &&
|
|
"Cannot compare values of different types!");
|
|
// Handle degenerate case quickly
|
|
if (V1 == V2) return FCmpInst::FCMP_OEQ;
|
|
|
|
if (!isa<ConstantExpr>(V1)) {
|
|
if (!isa<ConstantExpr>(V2)) {
|
|
// We distilled thisUse the standard constant folder for a few cases
|
|
ConstantInt *R = 0;
|
|
Constant *C1 = const_cast<Constant*>(V1);
|
|
Constant *C2 = const_cast<Constant*>(V2);
|
|
R = dyn_cast<ConstantInt>(
|
|
ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
|
|
if (R && R->getZExtValue())
|
|
return FCmpInst::FCMP_OEQ;
|
|
R = dyn_cast<ConstantInt>(
|
|
ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
|
|
if (R && R->getZExtValue())
|
|
return FCmpInst::FCMP_OLT;
|
|
R = dyn_cast<ConstantInt>(
|
|
ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
|
|
if (R && R->getZExtValue())
|
|
return FCmpInst::FCMP_OGT;
|
|
|
|
// Nothing more we can do
|
|
return FCmpInst::BAD_FCMP_PREDICATE;
|
|
}
|
|
|
|
// If the first operand is simple and second is ConstantExpr, swap operands.
|
|
FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
|
|
if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
|
|
return FCmpInst::getSwappedPredicate(SwappedRelation);
|
|
} else {
|
|
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
|
|
// constantexpr or a simple constant.
|
|
const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
|
|
switch (CE1->getOpcode()) {
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
// We might be able to do something with these but we don't right now.
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
// There are MANY other foldings that we could perform here. They will
|
|
// probably be added on demand, as they seem needed.
|
|
return FCmpInst::BAD_FCMP_PREDICATE;
|
|
}
|
|
|
|
/// evaluateICmpRelation - This function determines if there is anything we can
|
|
/// decide about the two constants provided. This doesn't need to handle simple
|
|
/// things like integer comparisons, but should instead handle ConstantExprs
|
|
/// and GlobalValues. If we can determine that the two constants have a
|
|
/// particular relation to each other, we should return the corresponding ICmp
|
|
/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
|
|
///
|
|
/// To simplify this code we canonicalize the relation so that the first
|
|
/// operand is always the most "complex" of the two. We consider simple
|
|
/// constants (like ConstantInt) to be the simplest, followed by
|
|
/// GlobalValues, followed by ConstantExpr's (the most complex).
|
|
///
|
|
static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
|
|
const Constant *V2,
|
|
bool isSigned) {
|
|
assert(V1->getType() == V2->getType() &&
|
|
"Cannot compare different types of values!");
|
|
if (V1 == V2) return ICmpInst::ICMP_EQ;
|
|
|
|
if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
|
|
if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
|
|
// We distilled this down to a simple case, use the standard constant
|
|
// folder.
|
|
ConstantInt *R = 0;
|
|
Constant *C1 = const_cast<Constant*>(V1);
|
|
Constant *C2 = const_cast<Constant*>(V2);
|
|
ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
|
|
R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
|
|
if (R && R->getZExtValue())
|
|
return pred;
|
|
pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
|
|
if (R && R->getZExtValue())
|
|
return pred;
|
|
pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
|
|
if (R && R->getZExtValue())
|
|
return pred;
|
|
|
|
// If we couldn't figure it out, bail.
|
|
return ICmpInst::BAD_ICMP_PREDICATE;
|
|
}
|
|
|
|
// If the first operand is simple, swap operands.
|
|
ICmpInst::Predicate SwappedRelation =
|
|
evaluateICmpRelation(V2, V1, isSigned);
|
|
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
|
|
return ICmpInst::getSwappedPredicate(SwappedRelation);
|
|
|
|
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
|
|
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
|
|
ICmpInst::Predicate SwappedRelation =
|
|
evaluateICmpRelation(V2, V1, isSigned);
|
|
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
|
|
return ICmpInst::getSwappedPredicate(SwappedRelation);
|
|
else
|
|
return ICmpInst::BAD_ICMP_PREDICATE;
|
|
}
|
|
|
|
// Now we know that the RHS is a GlobalValue or simple constant,
|
|
// which (since the types must match) means that it's a ConstantPointerNull.
|
|
if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
|
|
if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
|
|
return ICmpInst::ICMP_NE;
|
|
} else {
|
|
// GlobalVals can never be null.
|
|
assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
|
|
if (!CPR1->hasExternalWeakLinkage())
|
|
return ICmpInst::ICMP_NE;
|
|
}
|
|
} else {
|
|
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
|
|
// constantexpr, a CPR, or a simple constant.
|
|
const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
|
|
const Constant *CE1Op0 = CE1->getOperand(0);
|
|
|
|
switch (CE1->getOpcode()) {
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
break; // We can't evaluate floating point casts or truncations.
|
|
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::PtrToInt:
|
|
// If the cast is not actually changing bits, and the second operand is a
|
|
// null pointer, do the comparison with the pre-casted value.
|
|
if (V2->isNullValue() &&
|
|
(isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral())) {
|
|
bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
|
|
(CE1->getOpcode() == Instruction::SExt ? true :
|
|
(CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
|
|
return evaluateICmpRelation(
|
|
CE1Op0, Constant::getNullValue(CE1Op0->getType()), sgnd);
|
|
}
|
|
|
|
// If the dest type is a pointer type, and the RHS is a constantexpr cast
|
|
// from the same type as the src of the LHS, evaluate the inputs. This is
|
|
// important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
|
|
// which happens a lot in compilers with tagged integers.
|
|
if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
|
|
if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
|
|
CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
|
|
CE1->getOperand(0)->getType()->isIntegral()) {
|
|
bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
|
|
(CE1->getOpcode() == Instruction::SExt ? true :
|
|
(CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
|
|
return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
|
|
sgnd);
|
|
}
|
|
break;
|
|
|
|
case Instruction::GetElementPtr:
|
|
// Ok, since this is a getelementptr, we know that the constant has a
|
|
// pointer type. Check the various cases.
|
|
if (isa<ConstantPointerNull>(V2)) {
|
|
// If we are comparing a GEP to a null pointer, check to see if the base
|
|
// of the GEP equals the null pointer.
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
|
|
if (GV->hasExternalWeakLinkage())
|
|
// Weak linkage GVals could be zero or not. We're comparing that
|
|
// to null pointer so its greater-or-equal
|
|
return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
|
|
else
|
|
// If its not weak linkage, the GVal must have a non-zero address
|
|
// so the result is greater-than
|
|
return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
} else if (isa<ConstantPointerNull>(CE1Op0)) {
|
|
// If we are indexing from a null pointer, check to see if we have any
|
|
// non-zero indices.
|
|
for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
|
|
if (!CE1->getOperand(i)->isNullValue())
|
|
// Offsetting from null, must not be equal.
|
|
return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
// Only zero indexes from null, must still be zero.
|
|
return ICmpInst::ICMP_EQ;
|
|
}
|
|
// Otherwise, we can't really say if the first operand is null or not.
|
|
} else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
|
|
if (isa<ConstantPointerNull>(CE1Op0)) {
|
|
if (CPR2->hasExternalWeakLinkage())
|
|
// Weak linkage GVals could be zero or not. We're comparing it to
|
|
// a null pointer, so its less-or-equal
|
|
return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
|
|
else
|
|
// If its not weak linkage, the GVal must have a non-zero address
|
|
// so the result is less-than
|
|
return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
|
|
if (CPR1 == CPR2) {
|
|
// If this is a getelementptr of the same global, then it must be
|
|
// different. Because the types must match, the getelementptr could
|
|
// only have at most one index, and because we fold getelementptr's
|
|
// with a single zero index, it must be nonzero.
|
|
assert(CE1->getNumOperands() == 2 &&
|
|
!CE1->getOperand(1)->isNullValue() &&
|
|
"Suprising getelementptr!");
|
|
return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
} else {
|
|
// If they are different globals, we don't know what the value is,
|
|
// but they can't be equal.
|
|
return ICmpInst::ICMP_NE;
|
|
}
|
|
}
|
|
} else {
|
|
const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
|
|
const Constant *CE2Op0 = CE2->getOperand(0);
|
|
|
|
// There are MANY other foldings that we could perform here. They will
|
|
// probably be added on demand, as they seem needed.
|
|
switch (CE2->getOpcode()) {
|
|
default: break;
|
|
case Instruction::GetElementPtr:
|
|
// By far the most common case to handle is when the base pointers are
|
|
// obviously to the same or different globals.
|
|
if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
|
|
if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
|
|
return ICmpInst::ICMP_NE;
|
|
// Ok, we know that both getelementptr instructions are based on the
|
|
// same global. From this, we can precisely determine the relative
|
|
// ordering of the resultant pointers.
|
|
unsigned i = 1;
|
|
|
|
// Compare all of the operands the GEP's have in common.
|
|
gep_type_iterator GTI = gep_type_begin(CE1);
|
|
for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
|
|
++i, ++GTI)
|
|
switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
|
|
GTI.getIndexedType())) {
|
|
case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
|
|
case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
|
|
case -2: return ICmpInst::BAD_ICMP_PREDICATE;
|
|
}
|
|
|
|
// Ok, we ran out of things they have in common. If any leftovers
|
|
// are non-zero then we have a difference, otherwise we are equal.
|
|
for (; i < CE1->getNumOperands(); ++i)
|
|
if (!CE1->getOperand(i)->isNullValue())
|
|
if (isa<ConstantInt>(CE1->getOperand(i)))
|
|
return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
else
|
|
return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
|
|
|
|
for (; i < CE2->getNumOperands(); ++i)
|
|
if (!CE2->getOperand(i)->isNullValue())
|
|
if (isa<ConstantInt>(CE2->getOperand(i)))
|
|
return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
else
|
|
return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
|
|
return ICmpInst::ICMP_EQ;
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ICmpInst::BAD_ICMP_PREDICATE;
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
|
|
const Constant *C1,
|
|
const Constant *C2) {
|
|
|
|
// Handle some degenerate cases first
|
|
if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
|
|
return UndefValue::get(Type::Int1Ty);
|
|
|
|
// icmp eq/ne(null,GV) -> false/true
|
|
if (C1->isNullValue()) {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
|
|
if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
|
|
if (pred == ICmpInst::ICMP_EQ)
|
|
return ConstantInt::getFalse();
|
|
else if (pred == ICmpInst::ICMP_NE)
|
|
return ConstantInt::getTrue();
|
|
// icmp eq/ne(GV,null) -> false/true
|
|
} else if (C2->isNullValue()) {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
|
|
if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
|
|
if (pred == ICmpInst::ICMP_EQ)
|
|
return ConstantInt::getFalse();
|
|
else if (pred == ICmpInst::ICMP_NE)
|
|
return ConstantInt::getTrue();
|
|
}
|
|
|
|
if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2) &&
|
|
C1->getType() == Type::Int1Ty && C2->getType() == Type::Int1Ty) {
|
|
bool C1Val = cast<ConstantInt>(C1)->getZExtValue();
|
|
bool C2Val = cast<ConstantInt>(C2)->getZExtValue();
|
|
switch (pred) {
|
|
default: assert(0 && "Invalid ICmp Predicate"); return 0;
|
|
case ICmpInst::ICMP_EQ:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
|
|
case ICmpInst::ICMP_NE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
|
|
case ICmpInst::ICMP_ULT:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
|
|
case ICmpInst::ICMP_UGT:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
|
|
case ICmpInst::ICMP_ULE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
|
|
case ICmpInst::ICMP_UGE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
|
|
case ICmpInst::ICMP_SLT:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
|
|
case ICmpInst::ICMP_SGT:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
|
|
case ICmpInst::ICMP_SLE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
|
|
case ICmpInst::ICMP_SGE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
|
|
}
|
|
} else if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
|
|
if (ICmpInst::isSignedPredicate(ICmpInst::Predicate(pred))) {
|
|
int64_t V1 = cast<ConstantInt>(C1)->getSExtValue();
|
|
int64_t V2 = cast<ConstantInt>(C2)->getSExtValue();
|
|
switch (pred) {
|
|
default: assert(0 && "Invalid ICmp Predicate"); return 0;
|
|
case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1 < V2);
|
|
case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1 > V2);
|
|
case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1 <= V2);
|
|
case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1 >= V2);
|
|
}
|
|
} else {
|
|
uint64_t V1 = cast<ConstantInt>(C1)->getZExtValue();
|
|
uint64_t V2 = cast<ConstantInt>(C2)->getZExtValue();
|
|
switch (pred) {
|
|
default: assert(0 && "Invalid ICmp Predicate"); return 0;
|
|
case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
|
|
case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
|
|
case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1 < V2);
|
|
case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1 > V2);
|
|
case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1 <= V2);
|
|
case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1 >= V2);
|
|
}
|
|
}
|
|
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
|
|
double C1Val = cast<ConstantFP>(C1)->getValue();
|
|
double C2Val = cast<ConstantFP>(C2)->getValue();
|
|
switch (pred) {
|
|
default: assert(0 && "Invalid FCmp Predicate"); return 0;
|
|
case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
|
|
case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
|
|
case FCmpInst::FCMP_UNO:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
|
|
case FCmpInst::FCMP_ORD:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
|
|
case FCmpInst::FCMP_UEQ:
|
|
if (C1Val != C1Val || C2Val != C2Val)
|
|
return ConstantInt::getTrue();
|
|
/* FALL THROUGH */
|
|
case FCmpInst::FCMP_OEQ:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
|
|
case FCmpInst::FCMP_UNE:
|
|
if (C1Val != C1Val || C2Val != C2Val)
|
|
return ConstantInt::getTrue();
|
|
/* FALL THROUGH */
|
|
case FCmpInst::FCMP_ONE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
|
|
case FCmpInst::FCMP_ULT:
|
|
if (C1Val != C1Val || C2Val != C2Val)
|
|
return ConstantInt::getTrue();
|
|
/* FALL THROUGH */
|
|
case FCmpInst::FCMP_OLT:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
|
|
case FCmpInst::FCMP_UGT:
|
|
if (C1Val != C1Val || C2Val != C2Val)
|
|
return ConstantInt::getTrue();
|
|
/* FALL THROUGH */
|
|
case FCmpInst::FCMP_OGT:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
|
|
case FCmpInst::FCMP_ULE:
|
|
if (C1Val != C1Val || C2Val != C2Val)
|
|
return ConstantInt::getTrue();
|
|
/* FALL THROUGH */
|
|
case FCmpInst::FCMP_OLE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
|
|
case FCmpInst::FCMP_UGE:
|
|
if (C1Val != C1Val || C2Val != C2Val)
|
|
return ConstantInt::getTrue();
|
|
/* FALL THROUGH */
|
|
case FCmpInst::FCMP_OGE:
|
|
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
|
|
}
|
|
} else if (const ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
|
|
if (const ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
|
|
if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
|
|
for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
|
|
Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
|
|
const_cast<Constant*>(CP1->getOperand(i)),
|
|
const_cast<Constant*>(CP2->getOperand(i)));
|
|
if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
|
|
return CB;
|
|
}
|
|
// Otherwise, could not decide from any element pairs.
|
|
return 0;
|
|
} else if (pred == ICmpInst::ICMP_EQ) {
|
|
for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
|
|
Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
|
|
const_cast<Constant*>(CP1->getOperand(i)),
|
|
const_cast<Constant*>(CP2->getOperand(i)));
|
|
if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
|
|
return CB;
|
|
}
|
|
// Otherwise, could not decide from any element pairs.
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (C1->getType()->isFloatingPoint()) {
|
|
switch (evaluateFCmpRelation(C1, C2)) {
|
|
default: assert(0 && "Unknown relation!");
|
|
case FCmpInst::FCMP_UNO:
|
|
case FCmpInst::FCMP_ORD:
|
|
case FCmpInst::FCMP_UEQ:
|
|
case FCmpInst::FCMP_UNE:
|
|
case FCmpInst::FCMP_ULT:
|
|
case FCmpInst::FCMP_UGT:
|
|
case FCmpInst::FCMP_ULE:
|
|
case FCmpInst::FCMP_UGE:
|
|
case FCmpInst::FCMP_TRUE:
|
|
case FCmpInst::FCMP_FALSE:
|
|
case FCmpInst::BAD_FCMP_PREDICATE:
|
|
break; // Couldn't determine anything about these constants.
|
|
case FCmpInst::FCMP_OEQ: // We know that C1 == C2
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
|
|
pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
|
|
pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
|
|
case FCmpInst::FCMP_OLT: // We know that C1 < C2
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
|
|
pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
|
|
pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
|
|
case FCmpInst::FCMP_OGT: // We know that C1 > C2
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
|
|
pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
|
|
pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
|
|
case FCmpInst::FCMP_OLE: // We know that C1 <= C2
|
|
// We can only partially decide this relation.
|
|
if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
|
|
return ConstantInt::getFalse();
|
|
if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
|
|
return ConstantInt::getTrue();
|
|
break;
|
|
case FCmpInst::FCMP_OGE: // We known that C1 >= C2
|
|
// We can only partially decide this relation.
|
|
if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
|
|
return ConstantInt::getFalse();
|
|
if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
|
|
return ConstantInt::getTrue();
|
|
break;
|
|
case ICmpInst::ICMP_NE: // We know that C1 != C2
|
|
// We can only partially decide this relation.
|
|
if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
|
|
return ConstantInt::getFalse();
|
|
if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
|
|
return ConstantInt::getTrue();
|
|
break;
|
|
}
|
|
} else {
|
|
// Evaluate the relation between the two constants, per the predicate.
|
|
switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
|
|
default: assert(0 && "Unknown relational!");
|
|
case ICmpInst::BAD_ICMP_PREDICATE:
|
|
break; // Couldn't determine anything about these constants.
|
|
case ICmpInst::ICMP_EQ: // We know the constants are equal!
|
|
// If we know the constants are equal, we can decide the result of this
|
|
// computation precisely.
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == ICmpInst::ICMP_EQ ||
|
|
pred == ICmpInst::ICMP_ULE ||
|
|
pred == ICmpInst::ICMP_SLE ||
|
|
pred == ICmpInst::ICMP_UGE ||
|
|
pred == ICmpInst::ICMP_SGE);
|
|
case ICmpInst::ICMP_ULT:
|
|
// If we know that C1 < C2, we can decide the result of this computation
|
|
// precisely.
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == ICmpInst::ICMP_ULT ||
|
|
pred == ICmpInst::ICMP_NE ||
|
|
pred == ICmpInst::ICMP_ULE);
|
|
case ICmpInst::ICMP_SLT:
|
|
// If we know that C1 < C2, we can decide the result of this computation
|
|
// precisely.
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == ICmpInst::ICMP_SLT ||
|
|
pred == ICmpInst::ICMP_NE ||
|
|
pred == ICmpInst::ICMP_SLE);
|
|
case ICmpInst::ICMP_UGT:
|
|
// If we know that C1 > C2, we can decide the result of this computation
|
|
// precisely.
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == ICmpInst::ICMP_UGT ||
|
|
pred == ICmpInst::ICMP_NE ||
|
|
pred == ICmpInst::ICMP_UGE);
|
|
case ICmpInst::ICMP_SGT:
|
|
// If we know that C1 > C2, we can decide the result of this computation
|
|
// precisely.
|
|
return ConstantInt::get(Type::Int1Ty,
|
|
pred == ICmpInst::ICMP_SGT ||
|
|
pred == ICmpInst::ICMP_NE ||
|
|
pred == ICmpInst::ICMP_SGE);
|
|
case ICmpInst::ICMP_ULE:
|
|
// If we know that C1 <= C2, we can only partially decide this relation.
|
|
if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
|
|
if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
|
|
break;
|
|
case ICmpInst::ICMP_SLE:
|
|
// If we know that C1 <= C2, we can only partially decide this relation.
|
|
if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
|
|
if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGE:
|
|
// If we know that C1 >= C2, we can only partially decide this relation.
|
|
if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
|
|
if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
|
|
break;
|
|
case ICmpInst::ICMP_SGE:
|
|
// If we know that C1 >= C2, we can only partially decide this relation.
|
|
if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
|
|
if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
|
|
break;
|
|
|
|
case ICmpInst::ICMP_NE:
|
|
// If we know that C1 != C2, we can only partially decide this relation.
|
|
if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
|
|
if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
|
|
break;
|
|
}
|
|
|
|
if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
|
|
// If C2 is a constant expr and C1 isn't, flop them around and fold the
|
|
// other way if possible.
|
|
switch (pred) {
|
|
case ICmpInst::ICMP_EQ:
|
|
case ICmpInst::ICMP_NE:
|
|
// No change of predicate required.
|
|
return ConstantFoldCompareInstruction(pred, C2, C1);
|
|
|
|
case ICmpInst::ICMP_ULT:
|
|
case ICmpInst::ICMP_SLT:
|
|
case ICmpInst::ICMP_UGT:
|
|
case ICmpInst::ICMP_SGT:
|
|
case ICmpInst::ICMP_ULE:
|
|
case ICmpInst::ICMP_SLE:
|
|
case ICmpInst::ICMP_UGE:
|
|
case ICmpInst::ICMP_SGE:
|
|
// Change the predicate as necessary to swap the operands.
|
|
pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
|
|
return ConstantFoldCompareInstruction(pred, C2, C1);
|
|
|
|
default: // These predicates cannot be flopped around.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
|
|
const std::vector<Value*> &IdxList) {
|
|
if (IdxList.size() == 0 ||
|
|
(IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
|
|
return const_cast<Constant*>(C);
|
|
|
|
if (isa<UndefValue>(C)) {
|
|
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
|
|
true);
|
|
assert(Ty != 0 && "Invalid indices for GEP!");
|
|
return UndefValue::get(PointerType::get(Ty));
|
|
}
|
|
|
|
Constant *Idx0 = cast<Constant>(IdxList[0]);
|
|
if (C->isNullValue()) {
|
|
bool isNull = true;
|
|
for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
|
|
if (!cast<Constant>(IdxList[i])->isNullValue()) {
|
|
isNull = false;
|
|
break;
|
|
}
|
|
if (isNull) {
|
|
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
|
|
true);
|
|
assert(Ty != 0 && "Invalid indices for GEP!");
|
|
return ConstantPointerNull::get(PointerType::get(Ty));
|
|
}
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
|
|
// Combine Indices - If the source pointer to this getelementptr instruction
|
|
// is a getelementptr instruction, combine the indices of the two
|
|
// getelementptr instructions into a single instruction.
|
|
//
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
const Type *LastTy = 0;
|
|
for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
|
|
I != E; ++I)
|
|
LastTy = *I;
|
|
|
|
if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
|
|
std::vector<Value*> NewIndices;
|
|
NewIndices.reserve(IdxList.size() + CE->getNumOperands());
|
|
for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
|
|
NewIndices.push_back(CE->getOperand(i));
|
|
|
|
// Add the last index of the source with the first index of the new GEP.
|
|
// Make sure to handle the case when they are actually different types.
|
|
Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
|
|
// Otherwise it must be an array.
|
|
if (!Idx0->isNullValue()) {
|
|
const Type *IdxTy = Combined->getType();
|
|
if (IdxTy != Idx0->getType()) {
|
|
Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
|
|
Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
|
|
Type::Int64Ty);
|
|
Combined = ConstantExpr::get(Instruction::Add, C1, C2);
|
|
} else {
|
|
Combined =
|
|
ConstantExpr::get(Instruction::Add, Idx0, Combined);
|
|
}
|
|
}
|
|
|
|
NewIndices.push_back(Combined);
|
|
NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
|
|
return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
|
|
}
|
|
}
|
|
|
|
// Implement folding of:
|
|
// int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
|
|
// long 0, long 0)
|
|
// To: int* getelementptr ([3 x int]* %X, long 0, long 0)
|
|
//
|
|
if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
|
|
if (const PointerType *SPT =
|
|
dyn_cast<PointerType>(CE->getOperand(0)->getType()))
|
|
if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
|
|
if (const ArrayType *CAT =
|
|
dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
|
|
if (CAT->getElementType() == SAT->getElementType())
|
|
return ConstantExpr::getGetElementPtr(
|
|
(Constant*)CE->getOperand(0), IdxList);
|
|
}
|
|
return 0;
|
|
}
|
|
|