llvm/lib/Analysis/BranchProbabilityInfo.cpp
Geoff Berry 4bf7c62ec4 [BranchProbabilityInfo] Handle irreducible loops.
Summary:
Compute the strongly connected components of the CFG and fall back to
use these for blocks that are in loops that are not detected by
LoopInfo when computing loop back-edge and exit branch probabilities.

Reviewers: dexonsmith, davidxl

Subscribers: mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D39385

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317094 91177308-0d34-0410-b5e6-96231b3b80d8
2017-11-01 15:16:50 +00:00

917 lines
31 KiB
C++

//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "branch-prob"
static cl::opt<bool> PrintBranchProb(
"print-bpi", cl::init(false), cl::Hidden,
cl::desc("Print the branch probability info."));
cl::opt<std::string> PrintBranchProbFuncName(
"print-bpi-func-name", cl::Hidden,
cl::desc("The option to specify the name of the function "
"whose branch probability info is printed."));
INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
"Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
"Branch Probability Analysis", false, true)
char BranchProbabilityInfoWrapperPass::ID = 0;
// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
// ...
// |
// V
// BB1<-+
// | |
// | | (Weight = 124)
// V |
// BB2--+
// |
// | (Weight = 4)
// V
// BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
/// \brief Unreachable-terminating branch taken probability.
///
/// This is the probability for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
/// All reachable probability will equally share the remaining part.
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
/// \brief Weight for a branch taken going into a cold block.
///
/// This is the weight for a branch taken toward a block marked
/// cold. A block is marked cold if it's postdominated by a
/// block containing a call to a cold function. Cold functions
/// are those marked with attribute 'cold'.
static const uint32_t CC_TAKEN_WEIGHT = 4;
/// \brief Weight for a branch not-taken into a cold block.
///
/// This is the weight for a branch not taken toward a block marked
/// cold.
static const uint32_t CC_NONTAKEN_WEIGHT = 64;
static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
static const uint32_t FPH_TAKEN_WEIGHT = 20;
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
/// \brief Invoke-terminating normal branch taken weight
///
/// This is the weight for branching to the normal destination of an invoke
/// instruction. We expect this to happen most of the time. Set the weight to an
/// absurdly high value so that nested loops subsume it.
static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
/// \brief Invoke-terminating normal branch not-taken weight.
///
/// This is the weight for branching to the unwind destination of an invoke
/// instruction. This is essentially never taken.
static const uint32_t IH_NONTAKEN_WEIGHT = 1;
/// \brief Add \p BB to PostDominatedByUnreachable set if applicable.
void
BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
if (isa<UnreachableInst>(TI) ||
// If this block is terminated by a call to
// @llvm.experimental.deoptimize then treat it like an unreachable since
// the @llvm.experimental.deoptimize call is expected to practically
// never execute.
BB->getTerminatingDeoptimizeCall())
PostDominatedByUnreachable.insert(BB);
return;
}
// If the terminator is an InvokeInst, check only the normal destination block
// as the unwind edge of InvokeInst is also very unlikely taken.
if (auto *II = dyn_cast<InvokeInst>(TI)) {
if (PostDominatedByUnreachable.count(II->getNormalDest()))
PostDominatedByUnreachable.insert(BB);
return;
}
for (auto *I : successors(BB))
// If any of successor is not post dominated then BB is also not.
if (!PostDominatedByUnreachable.count(I))
return;
PostDominatedByUnreachable.insert(BB);
}
/// \brief Add \p BB to PostDominatedByColdCall set if applicable.
void
BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
assert(!PostDominatedByColdCall.count(BB));
const TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0)
return;
// If all of successor are post dominated then BB is also done.
if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
return PostDominatedByColdCall.count(SuccBB);
})) {
PostDominatedByColdCall.insert(BB);
return;
}
// If the terminator is an InvokeInst, check only the normal destination
// block as the unwind edge of InvokeInst is also very unlikely taken.
if (auto *II = dyn_cast<InvokeInst>(TI))
if (PostDominatedByColdCall.count(II->getNormalDest())) {
PostDominatedByColdCall.insert(BB);
return;
}
// Otherwise, if the block itself contains a cold function, add it to the
// set of blocks post-dominated by a cold call.
for (auto &I : *BB)
if (const CallInst *CI = dyn_cast<CallInst>(&I))
if (CI->hasFnAttr(Attribute::Cold)) {
PostDominatedByColdCall.insert(BB);
return;
}
}
/// \brief Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
// Return false here so that edge weights for InvokeInst could be decided
// in calcInvokeHeuristics().
if (isa<InvokeInst>(TI))
return false;
SmallVector<unsigned, 4> UnreachableEdges;
SmallVector<unsigned, 4> ReachableEdges;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
if (PostDominatedByUnreachable.count(*I))
UnreachableEdges.push_back(I.getSuccessorIndex());
else
ReachableEdges.push_back(I.getSuccessorIndex());
// Skip probabilities if all were reachable.
if (UnreachableEdges.empty())
return false;
if (ReachableEdges.empty()) {
BranchProbability Prob(1, UnreachableEdges.size());
for (unsigned SuccIdx : UnreachableEdges)
setEdgeProbability(BB, SuccIdx, Prob);
return true;
}
auto UnreachableProb = UR_TAKEN_PROB;
auto ReachableProb =
(BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
ReachableEdges.size();
for (unsigned SuccIdx : UnreachableEdges)
setEdgeProbability(BB, SuccIdx, UnreachableProb);
for (unsigned SuccIdx : ReachableEdges)
setEdgeProbability(BB, SuccIdx, ReachableProb);
return true;
}
// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing. Examine metadata against unreachable
// heuristic. The probability of the edge coming to unreachable block is
// set to min of metadata and unreachable heuristic.
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
return false;
MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
if (!WeightsNode)
return false;
// Check that the number of successors is manageable.
assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
// Ensure there are weights for all of the successors. Note that the first
// operand to the metadata node is a name, not a weight.
if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
return false;
// Build up the final weights that will be used in a temporary buffer.
// Compute the sum of all weights to later decide whether they need to
// be scaled to fit in 32 bits.
uint64_t WeightSum = 0;
SmallVector<uint32_t, 2> Weights;
SmallVector<unsigned, 2> UnreachableIdxs;
SmallVector<unsigned, 2> ReachableIdxs;
Weights.reserve(TI->getNumSuccessors());
for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
ConstantInt *Weight =
mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
if (!Weight)
return false;
assert(Weight->getValue().getActiveBits() <= 32 &&
"Too many bits for uint32_t");
Weights.push_back(Weight->getZExtValue());
WeightSum += Weights.back();
if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
UnreachableIdxs.push_back(i - 1);
else
ReachableIdxs.push_back(i - 1);
}
assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
// If the sum of weights does not fit in 32 bits, scale every weight down
// accordingly.
uint64_t ScalingFactor =
(WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
if (ScalingFactor > 1) {
WeightSum = 0;
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
Weights[i] /= ScalingFactor;
WeightSum += Weights[i];
}
}
assert(WeightSum <= UINT32_MAX &&
"Expected weights to scale down to 32 bits");
if (WeightSum == 0 || ReachableIdxs.size() == 0) {
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Weights[i] = 1;
WeightSum = TI->getNumSuccessors();
}
// Set the probability.
SmallVector<BranchProbability, 2> BP;
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
// Examine the metadata against unreachable heuristic.
// If the unreachable heuristic is more strong then we use it for this edge.
if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
auto ToDistribute = BranchProbability::getZero();
auto UnreachableProb = UR_TAKEN_PROB;
for (auto i : UnreachableIdxs)
if (UnreachableProb < BP[i]) {
ToDistribute += BP[i] - UnreachableProb;
BP[i] = UnreachableProb;
}
// If we modified the probability of some edges then we must distribute
// the difference between reachable blocks.
if (ToDistribute > BranchProbability::getZero()) {
BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
for (auto i : ReachableIdxs)
BP[i] += PerEdge;
}
}
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
setEdgeProbability(BB, i, BP[i]);
return true;
}
/// \brief Calculate edge weights for edges leading to cold blocks.
///
/// A cold block is one post-dominated by a block with a call to a
/// cold function. Those edges are unlikely to be taken, so we give
/// them relatively low weight.
///
/// Return true if we could compute the weights for cold edges.
/// Return false, otherwise.
bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
const TerminatorInst *TI = BB->getTerminator();
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
// Return false here so that edge weights for InvokeInst could be decided
// in calcInvokeHeuristics().
if (isa<InvokeInst>(TI))
return false;
// Determine which successors are post-dominated by a cold block.
SmallVector<unsigned, 4> ColdEdges;
SmallVector<unsigned, 4> NormalEdges;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
if (PostDominatedByColdCall.count(*I))
ColdEdges.push_back(I.getSuccessorIndex());
else
NormalEdges.push_back(I.getSuccessorIndex());
// Skip probabilities if no cold edges.
if (ColdEdges.empty())
return false;
if (NormalEdges.empty()) {
BranchProbability Prob(1, ColdEdges.size());
for (unsigned SuccIdx : ColdEdges)
setEdgeProbability(BB, SuccIdx, Prob);
return true;
}
auto ColdProb = BranchProbability::getBranchProbability(
CC_TAKEN_WEIGHT,
(CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
auto NormalProb = BranchProbability::getBranchProbability(
CC_NONTAKEN_WEIGHT,
(CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
for (unsigned SuccIdx : ColdEdges)
setEdgeProbability(BB, SuccIdx, ColdProb);
for (unsigned SuccIdx : NormalEdges)
setEdgeProbability(BB, SuccIdx, NormalProb);
return true;
}
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI || !CI->isEquality())
return false;
Value *LHS = CI->getOperand(0);
if (!LHS->getType()->isPointerTy())
return false;
assert(CI->getOperand(1)->getType()->isPointerTy());
// p != 0 -> isProb = true
// p == 0 -> isProb = false
// p != q -> isProb = true
// p == q -> isProb = false;
unsigned TakenIdx = 0, NonTakenIdx = 1;
bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(PH_TAKEN_WEIGHT,
PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
return true;
}
static int getSCCNum(const BasicBlock *BB,
const BranchProbabilityInfo::SccInfo &SccI) {
auto SccIt = SccI.SccNums.find(BB);
if (SccIt == SccI.SccNums.end())
return -1;
return SccIt->second;
}
// Consider any block that is an entry point to the SCC as a header.
static bool isSCCHeader(const BasicBlock *BB, int SccNum,
BranchProbabilityInfo::SccInfo &SccI) {
assert(getSCCNum(BB, SccI) == SccNum);
// Lazily compute the set of headers for a given SCC and cache the results
// in the SccHeaderMap.
if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
SccI.SccHeaders.resize(SccNum + 1);
auto &HeaderMap = SccI.SccHeaders[SccNum];
bool Inserted;
BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
if (Inserted) {
bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
[&](const BasicBlock *Pred) {
return getSCCNum(Pred, SccI) != SccNum;
});
HeaderMapIt->second = IsHeader;
return IsHeader;
} else
return HeaderMapIt->second;
}
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
const LoopInfo &LI,
SccInfo &SccI) {
int SccNum;
Loop *L = LI.getLoopFor(BB);
if (!L) {
SccNum = getSCCNum(BB, SccI);
if (SccNum < 0)
return false;
}
SmallVector<unsigned, 8> BackEdges;
SmallVector<unsigned, 8> ExitingEdges;
SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
// Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
// irreducible loops.
if (L) {
if (!L->contains(*I))
ExitingEdges.push_back(I.getSuccessorIndex());
else if (L->getHeader() == *I)
BackEdges.push_back(I.getSuccessorIndex());
else
InEdges.push_back(I.getSuccessorIndex());
} else {
if (getSCCNum(*I, SccI) != SccNum)
ExitingEdges.push_back(I.getSuccessorIndex());
else if (isSCCHeader(*I, SccNum, SccI))
BackEdges.push_back(I.getSuccessorIndex());
else
InEdges.push_back(I.getSuccessorIndex());
}
}
if (BackEdges.empty() && ExitingEdges.empty())
return false;
// Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
// normalize them so that they sum up to one.
BranchProbability Probs[] = {BranchProbability::getZero(),
BranchProbability::getZero(),
BranchProbability::getZero()};
unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
(InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
(ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
if (!BackEdges.empty())
Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
if (!InEdges.empty())
Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
if (!ExitingEdges.empty())
Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom);
if (uint32_t numBackEdges = BackEdges.size()) {
auto Prob = Probs[0] / numBackEdges;
for (unsigned SuccIdx : BackEdges)
setEdgeProbability(BB, SuccIdx, Prob);
}
if (uint32_t numInEdges = InEdges.size()) {
auto Prob = Probs[1] / numInEdges;
for (unsigned SuccIdx : InEdges)
setEdgeProbability(BB, SuccIdx, Prob);
}
if (uint32_t numExitingEdges = ExitingEdges.size()) {
auto Prob = Probs[2] / numExitingEdges;
for (unsigned SuccIdx : ExitingEdges)
setEdgeProbability(BB, SuccIdx, Prob);
}
return true;
}
bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
const TargetLibraryInfo *TLI) {
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI)
return false;
Value *RHS = CI->getOperand(1);
ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
if (!CV)
return false;
// If the LHS is the result of AND'ing a value with a single bit bitmask,
// we don't have information about probabilities.
if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
if (LHS->getOpcode() == Instruction::And)
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
if (AndRHS->getValue().isPowerOf2())
return false;
// Check if the LHS is the return value of a library function
LibFunc Func = NumLibFuncs;
if (TLI)
if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
if (Function *CalledFn = Call->getCalledFunction())
TLI->getLibFunc(*CalledFn, Func);
bool isProb;
if (Func == LibFunc_strcasecmp ||
Func == LibFunc_strcmp ||
Func == LibFunc_strncasecmp ||
Func == LibFunc_strncmp ||
Func == LibFunc_memcmp) {
// strcmp and similar functions return zero, negative, or positive, if the
// first string is equal, less, or greater than the second. We consider it
// likely that the strings are not equal, so a comparison with zero is
// probably false, but also a comparison with any other number is also
// probably false given that what exactly is returned for nonzero values is
// not specified. Any kind of comparison other than equality we know
// nothing about.
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
isProb = false;
break;
case CmpInst::ICMP_NE:
isProb = true;
break;
default:
return false;
}
} else if (CV->isZero()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != 0 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SLT:
// X < 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_SGT:
// X > 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
// InstCombine canonicalizes X <= 0 into X < 1.
// X <= 0 -> Unlikely
isProb = false;
} else if (CV->isMinusOne()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == -1 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != -1 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SGT:
// InstCombine canonicalizes X >= 0 into X > -1.
// X >= 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
return true;
}
bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
if (!FCmp)
return false;
bool isProb;
if (FCmp->isEquality()) {
// f1 == f2 -> Unlikely
// f1 != f2 -> Likely
isProb = !FCmp->isTrueWhenEqual();
} else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
// !isnan -> Likely
isProb = true;
} else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
// isnan -> Unlikely
isProb = false;
} else {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
return true;
}
bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
if (!II)
return false;
BranchProbability TakenProb(IH_TAKEN_WEIGHT,
IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
return true;
}
void BranchProbabilityInfo::releaseMemory() {
Probs.clear();
}
void BranchProbabilityInfo::print(raw_ostream &OS) const {
OS << "---- Branch Probabilities ----\n";
// We print the probabilities from the last function the analysis ran over,
// or the function it is currently running over.
assert(LastF && "Cannot print prior to running over a function");
for (const auto &BI : *LastF) {
for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
++SI) {
printEdgeProbability(OS << " ", &BI, *SI);
}
}
}
bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
// Hot probability is at least 4/5 = 80%
// FIXME: Compare against a static "hot" BranchProbability.
return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
}
const BasicBlock *
BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
auto MaxProb = BranchProbability::getZero();
const BasicBlock *MaxSucc = nullptr;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
const BasicBlock *Succ = *I;
auto Prob = getEdgeProbability(BB, Succ);
if (Prob > MaxProb) {
MaxProb = Prob;
MaxSucc = Succ;
}
}
// Hot probability is at least 4/5 = 80%
if (MaxProb > BranchProbability(4, 5))
return MaxSucc;
return nullptr;
}
/// Get the raw edge probability for the edge. If can't find it, return a
/// default probability 1/N where N is the number of successors. Here an edge is
/// specified using PredBlock and an
/// index to the successors.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
unsigned IndexInSuccessors) const {
auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
if (I != Probs.end())
return I->second;
return {1,
static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))};
}
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
succ_const_iterator Dst) const {
return getEdgeProbability(Src, Dst.getSuccessorIndex());
}
/// Get the raw edge probability calculated for the block pair. This returns the
/// sum of all raw edge probabilities from Src to Dst.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
const BasicBlock *Dst) const {
auto Prob = BranchProbability::getZero();
bool FoundProb = false;
for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
if (*I == Dst) {
auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
if (MapI != Probs.end()) {
FoundProb = true;
Prob += MapI->second;
}
}
uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
return FoundProb ? Prob : BranchProbability(1, succ_num);
}
/// Set the edge probability for a given edge specified by PredBlock and an
/// index to the successors.
void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
unsigned IndexInSuccessors,
BranchProbability Prob) {
Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
Handles.insert(BasicBlockCallbackVH(Src, this));
DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors
<< " successor probability to " << Prob << "\n");
}
raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
const BasicBlock *Src,
const BasicBlock *Dst) const {
const BranchProbability Prob = getEdgeProbability(Src, Dst);
OS << "edge " << Src->getName() << " -> " << Dst->getName()
<< " probability is " << Prob
<< (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
return OS;
}
void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
auto Key = I->first;
if (Key.first == BB)
Probs.erase(Key);
}
}
void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
const TargetLibraryInfo *TLI) {
DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
<< " ----\n\n");
LastF = &F; // Store the last function we ran on for printing.
assert(PostDominatedByUnreachable.empty());
assert(PostDominatedByColdCall.empty());
// Record SCC numbers of blocks in the CFG to identify irreducible loops.
// FIXME: We could only calculate this if the CFG is known to be irreducible
// (perhaps cache this info in LoopInfo if we can easily calculate it there?).
int SccNum = 0;
SccInfo SccI;
for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
++It, ++SccNum) {
// Ignore single-block SCCs since they either aren't loops or LoopInfo will
// catch them.
const std::vector<const BasicBlock *> &Scc = *It;
if (Scc.size() == 1)
continue;
DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
for (auto *BB : Scc) {
DEBUG(dbgs() << " " << BB->getName());
SccI.SccNums[BB] = SccNum;
}
DEBUG(dbgs() << "\n");
}
// Walk the basic blocks in post-order so that we can build up state about
// the successors of a block iteratively.
for (auto BB : post_order(&F.getEntryBlock())) {
DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
updatePostDominatedByUnreachable(BB);
updatePostDominatedByColdCall(BB);
// If there is no at least two successors, no sense to set probability.
if (BB->getTerminator()->getNumSuccessors() < 2)
continue;
if (calcMetadataWeights(BB))
continue;
if (calcUnreachableHeuristics(BB))
continue;
if (calcColdCallHeuristics(BB))
continue;
if (calcLoopBranchHeuristics(BB, LI, SccI))
continue;
if (calcPointerHeuristics(BB))
continue;
if (calcZeroHeuristics(BB, TLI))
continue;
if (calcFloatingPointHeuristics(BB))
continue;
calcInvokeHeuristics(BB);
}
PostDominatedByUnreachable.clear();
PostDominatedByColdCall.clear();
if (PrintBranchProb &&
(PrintBranchProbFuncName.empty() ||
F.getName().equals(PrintBranchProbFuncName))) {
print(dbgs());
}
}
void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
AnalysisUsage &AU) const {
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.setPreservesAll();
}
bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
BPI.calculate(F, LI, &TLI);
return false;
}
void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
const Module *) const {
BPI.print(OS);
}
AnalysisKey BranchProbabilityAnalysis::Key;
BranchProbabilityInfo
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
BranchProbabilityInfo BPI;
BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
return BPI;
}
PreservedAnalyses
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
OS << "Printing analysis results of BPI for function "
<< "'" << F.getName() << "':"
<< "\n";
AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}