mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-12 22:28:22 +00:00
01cfc43fe4
This patch adds the necessary infrastructure to convert instructions that take two register operands to those that take a register and immediate if the necessary operand is produced by a load-immediate. Furthermore, it uses this infrastructure to perform such conversions twice - first at MachineSSA and then pre-emit. There are a number of reasons we may end up with opportunities for this transformation, including but not limited to: - X-Form instructions chosen since the exact offset isn't available at ISEL time - Atomic instructions with constant operands (we will add patterns for this in the future) - Tail duplication may duplicate code where one block contains this redundancy - When emitting compare-free code in PPCDAGToDAGISel, we don't handle constant comparands specially Furthermore, this patch moves the initialization of PPCMIPeepholePass so that it can be used for MIR tests. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@320791 91177308-0d34-0410-b5e6-96231b3b80d8
373 lines
15 KiB
C++
373 lines
15 KiB
C++
//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
|
|
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
|
|
|
|
#include "PPC.h"
|
|
#include "PPCRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
#include "PPCGenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
|
|
/// PPCII - This namespace holds all of the PowerPC target-specific
|
|
/// per-instruction flags. These must match the corresponding definitions in
|
|
/// PPC.td and PPCInstrFormats.td.
|
|
namespace PPCII {
|
|
enum {
|
|
// PPC970 Instruction Flags. These flags describe the characteristics of the
|
|
// PowerPC 970 (aka G5) dispatch groups and how they are formed out of
|
|
// raw machine instructions.
|
|
|
|
/// PPC970_First - This instruction starts a new dispatch group, so it will
|
|
/// always be the first one in the group.
|
|
PPC970_First = 0x1,
|
|
|
|
/// PPC970_Single - This instruction starts a new dispatch group and
|
|
/// terminates it, so it will be the sole instruction in the group.
|
|
PPC970_Single = 0x2,
|
|
|
|
/// PPC970_Cracked - This instruction is cracked into two pieces, requiring
|
|
/// two dispatch pipes to be available to issue.
|
|
PPC970_Cracked = 0x4,
|
|
|
|
/// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
|
|
/// an instruction is issued to.
|
|
PPC970_Shift = 3,
|
|
PPC970_Mask = 0x07 << PPC970_Shift
|
|
};
|
|
enum PPC970_Unit {
|
|
/// These are the various PPC970 execution unit pipelines. Each instruction
|
|
/// is one of these.
|
|
PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
|
|
PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
|
|
PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
|
|
PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
|
|
PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
|
|
PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
|
|
PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
|
|
PPC970_BRU = 7 << PPC970_Shift // Branch Unit
|
|
};
|
|
|
|
enum {
|
|
/// Shift count to bypass PPC970 flags
|
|
NewDef_Shift = 6,
|
|
|
|
/// The VSX instruction that uses VSX register (vs0-vs63), instead of VMX
|
|
/// register (v0-v31).
|
|
UseVSXReg = 0x1 << NewDef_Shift
|
|
};
|
|
} // end namespace PPCII
|
|
|
|
// Instructions that have an immediate form might be convertible to that
|
|
// form if the correct input is a result of a load immediate. In order to
|
|
// know whether the transformation is special, we might need to know some
|
|
// of the details of the two forms.
|
|
struct ImmInstrInfo {
|
|
// Is the immediate field in the immediate form signed or unsigned?
|
|
uint64_t SignedImm : 1;
|
|
// Does the immediate need to be a multiple of some value?
|
|
uint64_t ImmMustBeMultipleOf : 5;
|
|
// Is R0/X0 treated specially by the original r+r instruction?
|
|
// If so, in which operand?
|
|
uint64_t ZeroIsSpecialOrig : 3;
|
|
// Is R0/X0 treated specially by the new r+i instruction?
|
|
// If so, in which operand?
|
|
uint64_t ZeroIsSpecialNew : 3;
|
|
// Is the operation commutative?
|
|
uint64_t IsCommutative : 1;
|
|
// The operand number to check for load immediate.
|
|
uint64_t ConstantOpNo : 3;
|
|
// The operand number for the immediate.
|
|
uint64_t ImmOpNo : 3;
|
|
// The opcode of the new instruction.
|
|
uint64_t ImmOpcode : 16;
|
|
// The size of the immediate.
|
|
uint64_t ImmWidth : 5;
|
|
};
|
|
|
|
// Information required to convert an instruction to just a materialized
|
|
// immediate.
|
|
struct LoadImmediateInfo {
|
|
unsigned Imm : 16;
|
|
unsigned Is64Bit : 1;
|
|
unsigned SetCR : 1;
|
|
};
|
|
|
|
class PPCSubtarget;
|
|
class PPCInstrInfo : public PPCGenInstrInfo {
|
|
PPCSubtarget &Subtarget;
|
|
const PPCRegisterInfo RI;
|
|
|
|
bool StoreRegToStackSlot(MachineFunction &MF,
|
|
unsigned SrcReg, bool isKill, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs,
|
|
bool &NonRI, bool &SpillsVRS) const;
|
|
bool LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs,
|
|
bool &NonRI, bool &SpillsVRS) const;
|
|
bool transformToImmForm(MachineInstr &MI, const ImmInstrInfo &III,
|
|
unsigned ConstantOpNo, int64_t Imm) const;
|
|
MachineInstr *getConstantDefMI(MachineInstr &MI, unsigned &ConstOp,
|
|
bool &SeenIntermediateUse) const;
|
|
virtual void anchor();
|
|
|
|
protected:
|
|
/// Commutes the operands in the given instruction.
|
|
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
|
|
///
|
|
/// Do not call this method for a non-commutable instruction or for
|
|
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
|
|
/// Even though the instruction is commutable, the method may still
|
|
/// fail to commute the operands, null pointer is returned in such cases.
|
|
///
|
|
/// For example, we can commute rlwimi instructions, but only if the
|
|
/// rotate amt is zero. We also have to munge the immediates a bit.
|
|
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned OpIdx1,
|
|
unsigned OpIdx2) const override;
|
|
|
|
public:
|
|
explicit PPCInstrInfo(PPCSubtarget &STI);
|
|
|
|
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
|
|
/// such, whenever a client has an instance of instruction info, it should
|
|
/// always be able to get register info as well (through this method).
|
|
///
|
|
const PPCRegisterInfo &getRegisterInfo() const { return RI; }
|
|
|
|
ScheduleHazardRecognizer *
|
|
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
|
|
const ScheduleDAG *DAG) const override;
|
|
ScheduleHazardRecognizer *
|
|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const override;
|
|
|
|
unsigned getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &MI,
|
|
unsigned *PredCost = nullptr) const override;
|
|
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const override;
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
|
SDNode *DefNode, unsigned DefIdx,
|
|
SDNode *UseNode, unsigned UseIdx) const override {
|
|
return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
|
|
UseNode, UseIdx);
|
|
}
|
|
|
|
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
|
|
const MachineInstr &DefMI,
|
|
unsigned DefIdx) const override {
|
|
// Machine LICM should hoist all instructions in low-register-pressure
|
|
// situations; none are sufficiently free to justify leaving in a loop
|
|
// body.
|
|
return false;
|
|
}
|
|
|
|
bool useMachineCombiner() const override {
|
|
return true;
|
|
}
|
|
|
|
/// Return true when there is potentially a faster code sequence
|
|
/// for an instruction chain ending in <Root>. All potential patterns are
|
|
/// output in the <Pattern> array.
|
|
bool getMachineCombinerPatterns(
|
|
MachineInstr &Root,
|
|
SmallVectorImpl<MachineCombinerPattern> &P) const override;
|
|
|
|
bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
|
|
|
|
bool isCoalescableExtInstr(const MachineInstr &MI,
|
|
unsigned &SrcReg, unsigned &DstReg,
|
|
unsigned &SubIdx) const override;
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AliasAnalysis *AA) const override;
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const override;
|
|
|
|
void insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const override;
|
|
|
|
|
|
// Branch analysis.
|
|
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const override;
|
|
unsigned removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved = nullptr) const override;
|
|
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded = nullptr) const override;
|
|
|
|
// Select analysis.
|
|
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
|
|
unsigned, unsigned, int &, int &, int &) const override;
|
|
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, unsigned DstReg,
|
|
ArrayRef<MachineOperand> Cond, unsigned TrueReg,
|
|
unsigned FalseReg) const override;
|
|
|
|
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const override;
|
|
|
|
void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned SrcReg, bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
bool
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
|
|
|
|
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
|
|
MachineRegisterInfo *MRI) const override;
|
|
|
|
// If conversion by predication (only supported by some branch instructions).
|
|
// All of the profitability checks always return true; it is always
|
|
// profitable to use the predicated branches.
|
|
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCycles, unsigned ExtraPredCycles,
|
|
BranchProbability Probability) const override {
|
|
return true;
|
|
}
|
|
|
|
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumT, unsigned ExtraT,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumF, unsigned ExtraF,
|
|
BranchProbability Probability) const override;
|
|
|
|
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
|
|
BranchProbability Probability) const override {
|
|
return true;
|
|
}
|
|
|
|
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
|
|
MachineBasicBlock &FMBB) const override {
|
|
return false;
|
|
}
|
|
|
|
// Predication support.
|
|
bool isPredicated(const MachineInstr &MI) const override;
|
|
|
|
bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
|
|
|
|
bool PredicateInstruction(MachineInstr &MI,
|
|
ArrayRef<MachineOperand> Pred) const override;
|
|
|
|
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
|
|
ArrayRef<MachineOperand> Pred2) const override;
|
|
|
|
bool DefinesPredicate(MachineInstr &MI,
|
|
std::vector<MachineOperand> &Pred) const override;
|
|
|
|
bool isPredicable(const MachineInstr &MI) const override;
|
|
|
|
// Comparison optimization.
|
|
|
|
bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
|
|
unsigned &SrcReg2, int &Mask, int &Value) const override;
|
|
|
|
bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
|
|
unsigned SrcReg2, int Mask, int Value,
|
|
const MachineRegisterInfo *MRI) const override;
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
///
|
|
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
|
|
|
|
void getNoop(MCInst &NopInst) const override;
|
|
|
|
std::pair<unsigned, unsigned>
|
|
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableDirectMachineOperandTargetFlags() const override;
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableBitmaskMachineOperandTargetFlags() const override;
|
|
|
|
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
|
|
bool expandVSXMemPseudo(MachineInstr &MI) const;
|
|
|
|
// Lower pseudo instructions after register allocation.
|
|
bool expandPostRAPseudo(MachineInstr &MI) const override;
|
|
|
|
static bool isVFRegister(unsigned Reg) {
|
|
return Reg >= PPC::VF0 && Reg <= PPC::VF31;
|
|
}
|
|
static bool isVRRegister(unsigned Reg) {
|
|
return Reg >= PPC::V0 && Reg <= PPC::V31;
|
|
}
|
|
const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
|
|
static int getRecordFormOpcode(unsigned Opcode);
|
|
|
|
bool isTOCSaveMI(const MachineInstr &MI) const;
|
|
|
|
bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
|
|
const unsigned PhiDepth) const;
|
|
|
|
/// Return true if the output of the instruction is always a sign-extended,
|
|
/// i.e. 0 to 31-th bits are same as 32-th bit.
|
|
bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
|
|
return isSignOrZeroExtended(MI, true, depth);
|
|
}
|
|
|
|
/// Return true if the output of the instruction is always zero-extended,
|
|
/// i.e. 0 to 31-th bits are all zeros
|
|
bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
|
|
return isSignOrZeroExtended(MI, false, depth);
|
|
}
|
|
|
|
bool convertToImmediateForm(MachineInstr &MI,
|
|
MachineInstr **KilledDef = nullptr) const;
|
|
void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
|
|
|
|
// This is used to find the "true" source register for n
|
|
// Machine instruction. Returns the original SrcReg unless it is the target
|
|
// of a copy-like operation, in which case we chain backwards through all
|
|
// such operations to the ultimate source register. If a
|
|
// physical register is encountered, we stop the search.
|
|
static unsigned lookThruCopyLike(unsigned SrcReg,
|
|
const MachineRegisterInfo *MRI);
|
|
bool instrHasImmForm(const MachineInstr &MI, ImmInstrInfo &III) const;
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|