mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-05 19:29:54 +00:00
e3e43d9d57
I did this a long time ago with a janky python script, but now clang-format has built-in support for this. I fed clang-format every line with a #include and let it re-sort things according to the precise LLVM rules for include ordering baked into clang-format these days. I've reverted a number of files where the results of sorting includes isn't healthy. Either places where we have legacy code relying on particular include ordering (where possible, I'll fix these separately) or where we have particular formatting around #include lines that I didn't want to disturb in this patch. This patch is *entirely* mechanical. If you get merge conflicts or anything, just ignore the changes in this patch and run clang-format over your #include lines in the files. Sorry for any noise here, but it is important to keep these things stable. I was seeing an increasing number of patches with irrelevant re-ordering of #include lines because clang-format was used. This patch at least isolates that churn, makes it easy to skip when resolving conflicts, and gets us to a clean baseline (again). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
355 lines
14 KiB
C++
355 lines
14 KiB
C++
//===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Convert generic global variables into either .global or .const access based
|
|
// on the variable's "constant" qualifier.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/ValueMap.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
void initializeGenericToNVVMPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
class GenericToNVVM : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
|
|
GenericToNVVM() : ModulePass(ID) {}
|
|
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {}
|
|
|
|
private:
|
|
Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
|
|
IRBuilder<> &Builder);
|
|
Value *remapConstant(Module *M, Function *F, Constant *C,
|
|
IRBuilder<> &Builder);
|
|
Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
|
|
Constant *C,
|
|
IRBuilder<> &Builder);
|
|
Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
|
|
IRBuilder<> &Builder);
|
|
|
|
typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
|
|
typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
|
|
GVMapTy GVMap;
|
|
ConstantToValueMapTy ConstantToValueMap;
|
|
};
|
|
} // end namespace
|
|
|
|
char GenericToNVVM::ID = 0;
|
|
|
|
ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
|
|
|
|
INITIALIZE_PASS(
|
|
GenericToNVVM, "generic-to-nvvm",
|
|
"Ensure that the global variables are in the global address space", false,
|
|
false)
|
|
|
|
bool GenericToNVVM::runOnModule(Module &M) {
|
|
// Create a clone of each global variable that has the default address space.
|
|
// The clone is created with the global address space specifier, and the pair
|
|
// of original global variable and its clone is placed in the GVMap for later
|
|
// use.
|
|
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E;) {
|
|
GlobalVariable *GV = &*I++;
|
|
if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
|
|
!llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
|
|
!llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
|
|
GlobalVariable *NewGV = new GlobalVariable(
|
|
M, GV->getValueType(), GV->isConstant(),
|
|
GV->getLinkage(),
|
|
GV->hasInitializer() ? GV->getInitializer() : nullptr,
|
|
"", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
|
|
NewGV->copyAttributesFrom(GV);
|
|
GVMap[GV] = NewGV;
|
|
}
|
|
}
|
|
|
|
// Return immediately, if every global variable has a specific address space
|
|
// specifier.
|
|
if (GVMap.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// Walk through the instructions in function defitinions, and replace any use
|
|
// of original global variables in GVMap with a use of the corresponding
|
|
// copies in GVMap. If necessary, promote constants to instructions.
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
if (I->isDeclaration()) {
|
|
continue;
|
|
}
|
|
IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
|
|
for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
|
|
++BBI) {
|
|
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
|
|
++II) {
|
|
for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
|
|
Value *Operand = II->getOperand(i);
|
|
if (isa<Constant>(Operand)) {
|
|
II->setOperand(
|
|
i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ConstantToValueMap.clear();
|
|
}
|
|
|
|
// Copy GVMap over to a standard value map.
|
|
ValueToValueMapTy VM;
|
|
for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
|
|
VM[I->first] = I->second;
|
|
|
|
// Walk through the global variable initializers, and replace any use of
|
|
// original global variables in GVMap with a use of the corresponding copies
|
|
// in GVMap. The copies need to be bitcast to the original global variable
|
|
// types, as we cannot use cvta in global variable initializers.
|
|
for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
|
|
GlobalVariable *GV = I->first;
|
|
GlobalVariable *NewGV = I->second;
|
|
|
|
// Remove GV from the map so that it can be RAUWed. Note that
|
|
// DenseMap::erase() won't invalidate any iterators but this one.
|
|
auto Next = std::next(I);
|
|
GVMap.erase(I);
|
|
I = Next;
|
|
|
|
Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
|
|
// At this point, the remaining uses of GV should be found only in global
|
|
// variable initializers, as other uses have been already been removed
|
|
// while walking through the instructions in function definitions.
|
|
GV->replaceAllUsesWith(BitCastNewGV);
|
|
std::string Name = GV->getName();
|
|
GV->eraseFromParent();
|
|
NewGV->setName(Name);
|
|
}
|
|
assert(GVMap.empty() && "Expected it to be empty by now");
|
|
|
|
return true;
|
|
}
|
|
|
|
Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
|
|
GlobalVariable *GV,
|
|
IRBuilder<> &Builder) {
|
|
PointerType *GVType = GV->getType();
|
|
Value *CVTA = nullptr;
|
|
|
|
// See if the address space conversion requires the operand to be bitcast
|
|
// to i8 addrspace(n)* first.
|
|
EVT ExtendedGVType = EVT::getEVT(GV->getValueType(), true);
|
|
if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
|
|
// A bitcast to i8 addrspace(n)* on the operand is needed.
|
|
LLVMContext &Context = M->getContext();
|
|
unsigned int AddrSpace = GVType->getAddressSpace();
|
|
Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
|
|
CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
|
|
// Insert the address space conversion.
|
|
Type *ResultType =
|
|
PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
|
|
Function *CVTAFunction = Intrinsic::getDeclaration(
|
|
M, Intrinsic::nvvm_ptr_global_to_gen, {ResultType, DestTy});
|
|
CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
|
|
// Another bitcast from i8 * to <the element type of GVType> * is
|
|
// required.
|
|
DestTy =
|
|
PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC);
|
|
CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
|
|
} else {
|
|
// A simple CVTA is enough.
|
|
SmallVector<Type *, 2> ParamTypes;
|
|
ParamTypes.push_back(PointerType::get(GV->getValueType(),
|
|
llvm::ADDRESS_SPACE_GENERIC));
|
|
ParamTypes.push_back(GVType);
|
|
Function *CVTAFunction = Intrinsic::getDeclaration(
|
|
M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
|
|
CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
|
|
}
|
|
|
|
return CVTA;
|
|
}
|
|
|
|
Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
|
|
IRBuilder<> &Builder) {
|
|
// If the constant C has been converted already in the given function F, just
|
|
// return the converted value.
|
|
ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
|
|
if (CTII != ConstantToValueMap.end()) {
|
|
return CTII->second;
|
|
}
|
|
|
|
Value *NewValue = C;
|
|
if (isa<GlobalVariable>(C)) {
|
|
// If the constant C is a global variable and is found in GVMap, generate a
|
|
// set set of instructions that convert the clone of C with the global
|
|
// address space specifier to a generic pointer.
|
|
// The constant C cannot be used here, as it will be erased from the
|
|
// module eventually. And the clone of C with the global address space
|
|
// specifier cannot be used here either, as it will affect the types of
|
|
// other instructions in the function. Hence, this address space conversion
|
|
// is required.
|
|
GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
|
|
if (I != GVMap.end()) {
|
|
NewValue = getOrInsertCVTA(M, F, I->second, Builder);
|
|
}
|
|
} else if (isa<ConstantAggregate>(C)) {
|
|
// If any element in the constant vector or aggregate C is or uses a global
|
|
// variable in GVMap, the constant C needs to be reconstructed, using a set
|
|
// of instructions.
|
|
NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
|
|
} else if (isa<ConstantExpr>(C)) {
|
|
// If any operand in the constant expression C is or uses a global variable
|
|
// in GVMap, the constant expression C needs to be reconstructed, using a
|
|
// set of instructions.
|
|
NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
|
|
}
|
|
|
|
ConstantToValueMap[C] = NewValue;
|
|
return NewValue;
|
|
}
|
|
|
|
Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
|
|
Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
|
|
bool OperandChanged = false;
|
|
SmallVector<Value *, 4> NewOperands;
|
|
unsigned NumOperands = C->getNumOperands();
|
|
|
|
// Check if any element is or uses a global variable in GVMap, and thus
|
|
// converted to another value.
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
Value *Operand = C->getOperand(i);
|
|
Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
|
|
OperandChanged |= Operand != NewOperand;
|
|
NewOperands.push_back(NewOperand);
|
|
}
|
|
|
|
// If none of the elements has been modified, return C as it is.
|
|
if (!OperandChanged) {
|
|
return C;
|
|
}
|
|
|
|
// If any of the elements has been modified, construct the equivalent
|
|
// vector or aggregate value with a set instructions and the converted
|
|
// elements.
|
|
Value *NewValue = UndefValue::get(C->getType());
|
|
if (isa<ConstantVector>(C)) {
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
|
|
NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
NewValue =
|
|
Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
|
|
}
|
|
}
|
|
|
|
return NewValue;
|
|
}
|
|
|
|
Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
|
|
IRBuilder<> &Builder) {
|
|
bool OperandChanged = false;
|
|
SmallVector<Value *, 4> NewOperands;
|
|
unsigned NumOperands = C->getNumOperands();
|
|
|
|
// Check if any operand is or uses a global variable in GVMap, and thus
|
|
// converted to another value.
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
Value *Operand = C->getOperand(i);
|
|
Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
|
|
OperandChanged |= Operand != NewOperand;
|
|
NewOperands.push_back(NewOperand);
|
|
}
|
|
|
|
// If none of the operands has been modified, return C as it is.
|
|
if (!OperandChanged) {
|
|
return C;
|
|
}
|
|
|
|
// If any of the operands has been modified, construct the instruction with
|
|
// the converted operands.
|
|
unsigned Opcode = C->getOpcode();
|
|
switch (Opcode) {
|
|
case Instruction::ICmp:
|
|
// CompareConstantExpr (icmp)
|
|
return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
|
|
NewOperands[0], NewOperands[1]);
|
|
case Instruction::FCmp:
|
|
// CompareConstantExpr (fcmp)
|
|
llvm_unreachable("Address space conversion should have no effect "
|
|
"on float point CompareConstantExpr (fcmp)!");
|
|
case Instruction::ExtractElement:
|
|
// ExtractElementConstantExpr
|
|
return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
|
|
case Instruction::InsertElement:
|
|
// InsertElementConstantExpr
|
|
return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
|
|
NewOperands[2]);
|
|
case Instruction::ShuffleVector:
|
|
// ShuffleVector
|
|
return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
|
|
NewOperands[2]);
|
|
case Instruction::ExtractValue:
|
|
// ExtractValueConstantExpr
|
|
return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
|
|
case Instruction::InsertValue:
|
|
// InsertValueConstantExpr
|
|
return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
|
|
C->getIndices());
|
|
case Instruction::GetElementPtr:
|
|
// GetElementPtrConstantExpr
|
|
return cast<GEPOperator>(C)->isInBounds()
|
|
? Builder.CreateGEP(
|
|
cast<GEPOperator>(C)->getSourceElementType(),
|
|
NewOperands[0],
|
|
makeArrayRef(&NewOperands[1], NumOperands - 1))
|
|
: Builder.CreateInBoundsGEP(
|
|
cast<GEPOperator>(C)->getSourceElementType(),
|
|
NewOperands[0],
|
|
makeArrayRef(&NewOperands[1], NumOperands - 1));
|
|
case Instruction::Select:
|
|
// SelectConstantExpr
|
|
return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
|
|
default:
|
|
// BinaryConstantExpr
|
|
if (Instruction::isBinaryOp(Opcode)) {
|
|
return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
|
|
NewOperands[0], NewOperands[1]);
|
|
}
|
|
// UnaryConstantExpr
|
|
if (Instruction::isCast(Opcode)) {
|
|
return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
|
|
NewOperands[0], C->getType());
|
|
}
|
|
llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
|
|
}
|
|
}
|