llvm/utils/TableGen/X86RecognizableInstr.cpp
Kevin Enderby 42deb12738 Add support for the X86 secure guard extensions instructions in assembler (SGX).
This allows assembling the two new instructions, encls and enclu for the
SKX processor model.

Note the diffs are a bigger than what might think, but to fit the new
MRM_CF and MRM_D7 in things in the right places things had to be
renumbered and shuffled down causing a bit more diffs.

rdar://16228228


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214460 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-31 23:57:38 +00:00

1230 lines
44 KiB
C++

//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler Emitter.
// It contains the implementation of a single recognizable instruction.
// Documentation for the disassembler emitter in general can be found in
// X86DisasemblerEmitter.h.
//
//===----------------------------------------------------------------------===//
#include "X86RecognizableInstr.h"
#include "X86DisassemblerShared.h"
#include "X86ModRMFilters.h"
#include "llvm/Support/ErrorHandling.h"
#include <string>
using namespace llvm;
#define MRM_MAPPING \
MAP(C0, 32) \
MAP(C1, 33) \
MAP(C2, 34) \
MAP(C3, 35) \
MAP(C4, 36) \
MAP(C8, 37) \
MAP(C9, 38) \
MAP(CA, 39) \
MAP(CB, 40) \
MAP(CF, 41) \
MAP(D0, 42) \
MAP(D1, 43) \
MAP(D4, 44) \
MAP(D5, 45) \
MAP(D6, 46) \
MAP(D7, 47) \
MAP(D8, 48) \
MAP(D9, 49) \
MAP(DA, 50) \
MAP(DB, 51) \
MAP(DC, 52) \
MAP(DD, 53) \
MAP(DE, 54) \
MAP(DF, 55) \
MAP(E0, 56) \
MAP(E1, 57) \
MAP(E2, 58) \
MAP(E3, 59) \
MAP(E4, 60) \
MAP(E5, 61) \
MAP(E8, 62) \
MAP(E9, 63) \
MAP(EA, 64) \
MAP(EB, 65) \
MAP(EC, 66) \
MAP(ED, 67) \
MAP(EE, 68) \
MAP(F0, 69) \
MAP(F1, 70) \
MAP(F2, 71) \
MAP(F3, 72) \
MAP(F4, 73) \
MAP(F5, 74) \
MAP(F6, 75) \
MAP(F7, 76) \
MAP(F8, 77) \
MAP(F9, 78) \
MAP(FA, 79) \
MAP(FB, 80) \
MAP(FC, 81) \
MAP(FD, 82) \
MAP(FE, 83) \
MAP(FF, 84)
// A clone of X86 since we can't depend on something that is generated.
namespace X86Local {
enum {
Pseudo = 0,
RawFrm = 1,
AddRegFrm = 2,
MRMDestReg = 3,
MRMDestMem = 4,
MRMSrcReg = 5,
MRMSrcMem = 6,
RawFrmMemOffs = 7,
RawFrmSrc = 8,
RawFrmDst = 9,
RawFrmDstSrc = 10,
RawFrmImm8 = 11,
RawFrmImm16 = 12,
MRMXr = 14, MRMXm = 15,
MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
#define MAP(from, to) MRM_##from = to,
MRM_MAPPING
#undef MAP
lastMRM
};
enum {
OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
};
enum {
PS = 1, PD = 2, XS = 3, XD = 4
};
enum {
VEX = 1, XOP = 2, EVEX = 3
};
enum {
OpSize16 = 1, OpSize32 = 2
};
}
using namespace X86Disassembler;
/// isRegFormat - Indicates whether a particular form requires the Mod field of
/// the ModR/M byte to be 0b11.
///
/// @param form - The form of the instruction.
/// @return - true if the form implies that Mod must be 0b11, false
/// otherwise.
static bool isRegFormat(uint8_t form) {
return (form == X86Local::MRMDestReg ||
form == X86Local::MRMSrcReg ||
form == X86Local::MRMXr ||
(form >= X86Local::MRM0r && form <= X86Local::MRM7r));
}
/// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
/// Useful for switch statements and the like.
///
/// @param init - A reference to the BitsInit to be decoded.
/// @return - The field, with the first bit in the BitsInit as the lowest
/// order bit.
static uint8_t byteFromBitsInit(BitsInit &init) {
int width = init.getNumBits();
assert(width <= 8 && "Field is too large for uint8_t!");
int index;
uint8_t mask = 0x01;
uint8_t ret = 0;
for (index = 0; index < width; index++) {
if (static_cast<BitInit*>(init.getBit(index))->getValue())
ret |= mask;
mask <<= 1;
}
return ret;
}
/// byteFromRec - Extract a value at most 8 bits in with from a Record given the
/// name of the field.
///
/// @param rec - The record from which to extract the value.
/// @param name - The name of the field in the record.
/// @return - The field, as translated by byteFromBitsInit().
static uint8_t byteFromRec(const Record* rec, const std::string &name) {
BitsInit* bits = rec->getValueAsBitsInit(name);
return byteFromBitsInit(*bits);
}
RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
const CodeGenInstruction &insn,
InstrUID uid) {
UID = uid;
Rec = insn.TheDef;
Name = Rec->getName();
Spec = &tables.specForUID(UID);
if (!Rec->isSubClassOf("X86Inst")) {
ShouldBeEmitted = false;
return;
}
OpPrefix = byteFromRec(Rec, "OpPrefixBits");
OpMap = byteFromRec(Rec, "OpMapBits");
Opcode = byteFromRec(Rec, "Opcode");
Form = byteFromRec(Rec, "FormBits");
Encoding = byteFromRec(Rec, "OpEncBits");
OpSize = byteFromRec(Rec, "OpSizeBits");
HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix");
HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
HasVEX_4VOp3 = Rec->getValueAsBit("hasVEX_4VOp3");
HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix");
HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix");
IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
CD8_Scale = byteFromRec(Rec, "CD8_Scale");
Name = Rec->getName();
AsmString = Rec->getValueAsString("AsmString");
Operands = &insn.Operands.OperandList;
HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L");
// Check for 64-bit inst which does not require REX
Is32Bit = false;
Is64Bit = false;
// FIXME: Is there some better way to check for In64BitMode?
std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
Predicates[i]->getName().find("In32Bit") != Name.npos) {
Is32Bit = true;
break;
}
if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
Is64Bit = true;
break;
}
}
if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
ShouldBeEmitted = false;
return;
}
// Special case since there is no attribute class for 64-bit and VEX
if (Name == "VMASKMOVDQU64") {
ShouldBeEmitted = false;
return;
}
ShouldBeEmitted = true;
}
void RecognizableInstr::processInstr(DisassemblerTables &tables,
const CodeGenInstruction &insn,
InstrUID uid)
{
// Ignore "asm parser only" instructions.
if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
return;
RecognizableInstr recogInstr(tables, insn, uid);
if (recogInstr.shouldBeEmitted()) {
recogInstr.emitInstructionSpecifier();
recogInstr.emitDecodePath(tables);
}
}
#define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
(HasEVEX_K && HasEVEX_B ? n##_K_B : \
(HasEVEX_KZ ? n##_KZ : \
(HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
InstructionContext RecognizableInstr::insnContext() const {
InstructionContext insnContext;
if (Encoding == X86Local::EVEX) {
if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
}
// VEX_L & VEX_W
if (HasVEX_LPrefix && HasVEX_WPrefix) {
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L_W_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L_W_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L_W);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (HasVEX_LPrefix) {
// VEX_L
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
}
else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
// EVEX_L2 & VEX_W
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L2_W);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (HasEVEX_L2Prefix) {
// EVEX_L2
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L2_XD);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L2_XS);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L2);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
}
else if (HasVEX_WPrefix) {
// VEX_W
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_W_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_W_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_W);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
}
// No L, no W
else if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_OPSIZE);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_XD);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_XS);
else
insnContext = EVEX_KB(IC_EVEX);
/// eof EVEX
} else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
if (HasVEX_LPrefix && HasVEX_WPrefix) {
if (OpPrefix == X86Local::PD)
insnContext = IC_VEX_L_W_OPSIZE;
else if (OpPrefix == X86Local::XS)
insnContext = IC_VEX_L_W_XS;
else if (OpPrefix == X86Local::XD)
insnContext = IC_VEX_L_W_XD;
else if (OpPrefix == X86Local::PS)
insnContext = IC_VEX_L_W;
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
insnContext = IC_VEX_L_OPSIZE;
else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
insnContext = IC_VEX_W_OPSIZE;
else if (OpPrefix == X86Local::PD)
insnContext = IC_VEX_OPSIZE;
else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
insnContext = IC_VEX_L_XS;
else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
insnContext = IC_VEX_L_XD;
else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
insnContext = IC_VEX_W_XS;
else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
insnContext = IC_VEX_W_XD;
else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
insnContext = IC_VEX_W;
else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
insnContext = IC_VEX_L;
else if (OpPrefix == X86Local::XD)
insnContext = IC_VEX_XD;
else if (OpPrefix == X86Local::XS)
insnContext = IC_VEX_XS;
else if (OpPrefix == X86Local::PS)
insnContext = IC_VEX;
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (Is64Bit || HasREX_WPrefix) {
if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
insnContext = IC_64BIT_REXW_OPSIZE;
else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
insnContext = IC_64BIT_XD_OPSIZE;
else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
insnContext = IC_64BIT_XS_OPSIZE;
else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
insnContext = IC_64BIT_OPSIZE;
else if (HasAdSizePrefix)
insnContext = IC_64BIT_ADSIZE;
else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
insnContext = IC_64BIT_REXW_XS;
else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
insnContext = IC_64BIT_REXW_XD;
else if (OpPrefix == X86Local::XD)
insnContext = IC_64BIT_XD;
else if (OpPrefix == X86Local::XS)
insnContext = IC_64BIT_XS;
else if (HasREX_WPrefix)
insnContext = IC_64BIT_REXW;
else
insnContext = IC_64BIT;
} else {
if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
insnContext = IC_XD_OPSIZE;
else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
insnContext = IC_XS_OPSIZE;
else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
insnContext = IC_OPSIZE;
else if (HasAdSizePrefix)
insnContext = IC_ADSIZE;
else if (OpPrefix == X86Local::XD)
insnContext = IC_XD;
else if (OpPrefix == X86Local::XS)
insnContext = IC_XS;
else
insnContext = IC;
}
return insnContext;
}
void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
// The scaling factor for AVX512 compressed displacement encoding is an
// instruction attribute. Adjust the ModRM encoding type to include the
// scale for compressed displacement.
if (encoding != ENCODING_RM || CD8_Scale == 0)
return;
encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling");
}
void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
unsigned &physicalOperandIndex,
unsigned &numPhysicalOperands,
const unsigned *operandMapping,
OperandEncoding (*encodingFromString)
(const std::string&,
uint8_t OpSize)) {
if (optional) {
if (physicalOperandIndex >= numPhysicalOperands)
return;
} else {
assert(physicalOperandIndex < numPhysicalOperands);
}
while (operandMapping[operandIndex] != operandIndex) {
Spec->operands[operandIndex].encoding = ENCODING_DUP;
Spec->operands[operandIndex].type =
(OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
++operandIndex;
}
const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
OperandEncoding encoding = encodingFromString(typeName, OpSize);
// Adjust the encoding type for an operand based on the instruction.
adjustOperandEncoding(encoding);
Spec->operands[operandIndex].encoding = encoding;
Spec->operands[operandIndex].type = typeFromString(typeName,
HasREX_WPrefix, OpSize);
++operandIndex;
++physicalOperandIndex;
}
void RecognizableInstr::emitInstructionSpecifier() {
Spec->name = Name;
Spec->insnContext = insnContext();
const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
unsigned numOperands = OperandList.size();
unsigned numPhysicalOperands = 0;
// operandMapping maps from operands in OperandList to their originals.
// If operandMapping[i] != i, then the entry is a duplicate.
unsigned operandMapping[X86_MAX_OPERANDS];
assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
if (OperandList[operandIndex].Constraints.size()) {
const CGIOperandList::ConstraintInfo &Constraint =
OperandList[operandIndex].Constraints[0];
if (Constraint.isTied()) {
operandMapping[operandIndex] = operandIndex;
operandMapping[Constraint.getTiedOperand()] = operandIndex;
} else {
++numPhysicalOperands;
operandMapping[operandIndex] = operandIndex;
}
} else {
++numPhysicalOperands;
operandMapping[operandIndex] = operandIndex;
}
}
#define HANDLE_OPERAND(class) \
handleOperand(false, \
operandIndex, \
physicalOperandIndex, \
numPhysicalOperands, \
operandMapping, \
class##EncodingFromString);
#define HANDLE_OPTIONAL(class) \
handleOperand(true, \
operandIndex, \
physicalOperandIndex, \
numPhysicalOperands, \
operandMapping, \
class##EncodingFromString);
// operandIndex should always be < numOperands
unsigned operandIndex = 0;
// physicalOperandIndex should always be < numPhysicalOperands
unsigned physicalOperandIndex = 0;
switch (Form) {
default: llvm_unreachable("Unhandled form");
case X86Local::RawFrmSrc:
HANDLE_OPERAND(relocation);
return;
case X86Local::RawFrmDst:
HANDLE_OPERAND(relocation);
return;
case X86Local::RawFrmDstSrc:
HANDLE_OPERAND(relocation);
HANDLE_OPERAND(relocation);
return;
case X86Local::RawFrm:
// Operand 1 (optional) is an address or immediate.
// Operand 2 (optional) is an immediate.
assert(numPhysicalOperands <= 2 &&
"Unexpected number of operands for RawFrm");
HANDLE_OPTIONAL(relocation)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::RawFrmMemOffs:
// Operand 1 is an address.
HANDLE_OPERAND(relocation);
break;
case X86Local::AddRegFrm:
// Operand 1 is added to the opcode.
// Operand 2 (optional) is an address.
assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
"Unexpected number of operands for AddRegFrm");
HANDLE_OPERAND(opcodeModifier)
HANDLE_OPTIONAL(relocation)
break;
case X86Local::MRMDestReg:
// Operand 1 is a register operand in the R/M field.
// Operand 2 is a register operand in the Reg/Opcode field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
if (HasVEX_4V)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
"Unexpected number of operands for MRMDestRegFrm with VEX_4V");
else
assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
"Unexpected number of operands for MRMDestRegFrm");
HANDLE_OPERAND(rmRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(roRegister)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMDestMem:
// Operand 1 is a memory operand (possibly SIB-extended)
// Operand 2 is a register operand in the Reg/Opcode field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
if (HasVEX_4V)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
"Unexpected number of operands for MRMDestMemFrm with VEX_4V");
else
assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
"Unexpected number of operands for MRMDestMemFrm");
HANDLE_OPERAND(memory)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(roRegister)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMSrcReg:
// Operand 1 is a register operand in the Reg/Opcode field.
// Operand 2 is a register operand in the R/M field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
// Operand 4 (optional) is an immediate.
if (HasVEX_4V || HasVEX_4VOp3)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
"Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
else
assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 &&
"Unexpected number of operands for MRMSrcRegFrm");
HANDLE_OPERAND(roRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
if (HasMemOp4Prefix)
HANDLE_OPERAND(immediate)
HANDLE_OPERAND(rmRegister)
if (HasVEX_4VOp3)
HANDLE_OPERAND(vvvvRegister)
if (!HasMemOp4Prefix)
HANDLE_OPTIONAL(immediate)
HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMSrcMem:
// Operand 1 is a register operand in the Reg/Opcode field.
// Operand 2 is a memory operand (possibly SIB-extended)
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
if (HasVEX_4V || HasVEX_4VOp3)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
"Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
else
assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
"Unexpected number of operands for MRMSrcMemFrm");
HANDLE_OPERAND(roRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
if (HasMemOp4Prefix)
HANDLE_OPERAND(immediate)
HANDLE_OPERAND(memory)
if (HasVEX_4VOp3)
HANDLE_OPERAND(vvvvRegister)
if (!HasMemOp4Prefix)
HANDLE_OPTIONAL(immediate)
HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
break;
case X86Local::MRMXr:
case X86Local::MRM0r:
case X86Local::MRM1r:
case X86Local::MRM2r:
case X86Local::MRM3r:
case X86Local::MRM4r:
case X86Local::MRM5r:
case X86Local::MRM6r:
case X86Local::MRM7r:
{
// Operand 1 is a register operand in the R/M field.
// Operand 2 (optional) is an immediate or relocation.
// Operand 3 (optional) is an immediate.
unsigned kOp = (HasEVEX_K) ? 1:0;
unsigned Op4v = (HasVEX_4V) ? 1:0;
if (numPhysicalOperands > 3 + kOp + Op4v)
llvm_unreachable("Unexpected number of operands for MRMnr");
}
if (HasVEX_4V)
HANDLE_OPERAND(vvvvRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
HANDLE_OPTIONAL(rmRegister)
HANDLE_OPTIONAL(relocation)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMXm:
case X86Local::MRM0m:
case X86Local::MRM1m:
case X86Local::MRM2m:
case X86Local::MRM3m:
case X86Local::MRM4m:
case X86Local::MRM5m:
case X86Local::MRM6m:
case X86Local::MRM7m:
{
// Operand 1 is a memory operand (possibly SIB-extended)
// Operand 2 (optional) is an immediate or relocation.
unsigned kOp = (HasEVEX_K) ? 1:0;
unsigned Op4v = (HasVEX_4V) ? 1:0;
if (numPhysicalOperands < 1 + kOp + Op4v ||
numPhysicalOperands > 2 + kOp + Op4v)
llvm_unreachable("Unexpected number of operands for MRMnm");
}
if (HasVEX_4V)
HANDLE_OPERAND(vvvvRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
HANDLE_OPERAND(memory)
HANDLE_OPTIONAL(relocation)
break;
case X86Local::RawFrmImm8:
// operand 1 is a 16-bit immediate
// operand 2 is an 8-bit immediate
assert(numPhysicalOperands == 2 &&
"Unexpected number of operands for X86Local::RawFrmImm8");
HANDLE_OPERAND(immediate)
HANDLE_OPERAND(immediate)
break;
case X86Local::RawFrmImm16:
// operand 1 is a 16-bit immediate
// operand 2 is a 16-bit immediate
HANDLE_OPERAND(immediate)
HANDLE_OPERAND(immediate)
break;
case X86Local::MRM_F8:
if (Opcode == 0xc6) {
assert(numPhysicalOperands == 1 &&
"Unexpected number of operands for X86Local::MRM_F8");
HANDLE_OPERAND(immediate)
} else if (Opcode == 0xc7) {
assert(numPhysicalOperands == 1 &&
"Unexpected number of operands for X86Local::MRM_F8");
HANDLE_OPERAND(relocation)
}
break;
case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1:
case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6:
case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9:
case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC:
case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF:
case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2:
case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5:
case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA:
case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED:
case X86Local::MRM_EE: case X86Local::MRM_F0: case X86Local::MRM_F1:
case X86Local::MRM_F2: case X86Local::MRM_F3: case X86Local::MRM_F4:
case X86Local::MRM_F5: case X86Local::MRM_F6: case X86Local::MRM_F7:
case X86Local::MRM_F9: case X86Local::MRM_FA: case X86Local::MRM_FB:
case X86Local::MRM_FC: case X86Local::MRM_FD: case X86Local::MRM_FE:
case X86Local::MRM_FF:
// Ignored.
break;
}
#undef HANDLE_OPERAND
#undef HANDLE_OPTIONAL
}
void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
// Special cases where the LLVM tables are not complete
#define MAP(from, to) \
case X86Local::MRM_##from: \
filter = new ExactFilter(0x##from); \
break;
OpcodeType opcodeType = (OpcodeType)-1;
ModRMFilter* filter = nullptr;
uint8_t opcodeToSet = 0;
switch (OpMap) {
default: llvm_unreachable("Invalid map!");
case X86Local::OB:
case X86Local::TB:
case X86Local::T8:
case X86Local::TA:
case X86Local::XOP8:
case X86Local::XOP9:
case X86Local::XOPA:
switch (OpMap) {
default: llvm_unreachable("Unexpected map!");
case X86Local::OB: opcodeType = ONEBYTE; break;
case X86Local::TB: opcodeType = TWOBYTE; break;
case X86Local::T8: opcodeType = THREEBYTE_38; break;
case X86Local::TA: opcodeType = THREEBYTE_3A; break;
case X86Local::XOP8: opcodeType = XOP8_MAP; break;
case X86Local::XOP9: opcodeType = XOP9_MAP; break;
case X86Local::XOPA: opcodeType = XOPA_MAP; break;
}
switch (Form) {
default:
filter = new DumbFilter();
break;
case X86Local::MRMDestReg: case X86Local::MRMDestMem:
case X86Local::MRMSrcReg: case X86Local::MRMSrcMem:
case X86Local::MRMXr: case X86Local::MRMXm:
filter = new ModFilter(isRegFormat(Form));
break;
case X86Local::MRM0r: case X86Local::MRM1r:
case X86Local::MRM2r: case X86Local::MRM3r:
case X86Local::MRM4r: case X86Local::MRM5r:
case X86Local::MRM6r: case X86Local::MRM7r:
filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
break;
case X86Local::MRM0m: case X86Local::MRM1m:
case X86Local::MRM2m: case X86Local::MRM3m:
case X86Local::MRM4m: case X86Local::MRM5m:
case X86Local::MRM6m: case X86Local::MRM7m:
filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
break;
MRM_MAPPING
} // switch (Form)
opcodeToSet = Opcode;
break;
} // switch (OpMap)
assert(opcodeType != (OpcodeType)-1 &&
"Opcode type not set");
assert(filter && "Filter not set");
if (Form == X86Local::AddRegFrm) {
assert(((opcodeToSet & 7) == 0) &&
"ADDREG_FRM opcode not aligned");
uint8_t currentOpcode;
for (currentOpcode = opcodeToSet;
currentOpcode < opcodeToSet + 8;
++currentOpcode)
tables.setTableFields(opcodeType,
insnContext(),
currentOpcode,
*filter,
UID, Is32Bit, IgnoresVEX_L);
} else {
tables.setTableFields(opcodeType,
insnContext(),
opcodeToSet,
*filter,
UID, Is32Bit, IgnoresVEX_L);
}
delete filter;
#undef MAP
}
#define TYPE(str, type) if (s == str) return type;
OperandType RecognizableInstr::typeFromString(const std::string &s,
bool hasREX_WPrefix,
uint8_t OpSize) {
if(hasREX_WPrefix) {
// For instructions with a REX_W prefix, a declared 32-bit register encoding
// is special.
TYPE("GR32", TYPE_R32)
}
if(OpSize == X86Local::OpSize16) {
// For OpSize16 instructions, a declared 16-bit register or
// immediate encoding is special.
TYPE("GR16", TYPE_Rv)
TYPE("i16imm", TYPE_IMMv)
} else if(OpSize == X86Local::OpSize32) {
// For OpSize32 instructions, a declared 32-bit register or
// immediate encoding is special.
TYPE("GR32", TYPE_Rv)
}
TYPE("i16mem", TYPE_Mv)
TYPE("i16imm", TYPE_IMM16)
TYPE("i16i8imm", TYPE_IMMv)
TYPE("GR16", TYPE_R16)
TYPE("i32mem", TYPE_Mv)
TYPE("i32imm", TYPE_IMMv)
TYPE("i32i8imm", TYPE_IMM32)
TYPE("u32u8imm", TYPE_IMM32)
TYPE("GR32", TYPE_R32)
TYPE("GR32orGR64", TYPE_R32)
TYPE("i64mem", TYPE_Mv)
TYPE("i64i32imm", TYPE_IMM64)
TYPE("i64i8imm", TYPE_IMM64)
TYPE("GR64", TYPE_R64)
TYPE("i8mem", TYPE_M8)
TYPE("i8imm", TYPE_IMM8)
TYPE("GR8", TYPE_R8)
TYPE("VR128", TYPE_XMM128)
TYPE("VR128X", TYPE_XMM128)
TYPE("f128mem", TYPE_M128)
TYPE("f256mem", TYPE_M256)
TYPE("f512mem", TYPE_M512)
TYPE("FR64", TYPE_XMM64)
TYPE("FR64X", TYPE_XMM64)
TYPE("f64mem", TYPE_M64FP)
TYPE("sdmem", TYPE_M64FP)
TYPE("FR32", TYPE_XMM32)
TYPE("FR32X", TYPE_XMM32)
TYPE("f32mem", TYPE_M32FP)
TYPE("ssmem", TYPE_M32FP)
TYPE("RST", TYPE_ST)
TYPE("i128mem", TYPE_M128)
TYPE("i256mem", TYPE_M256)
TYPE("i512mem", TYPE_M512)
TYPE("i64i32imm_pcrel", TYPE_REL64)
TYPE("i16imm_pcrel", TYPE_REL16)
TYPE("i32imm_pcrel", TYPE_REL32)
TYPE("SSECC", TYPE_IMM3)
TYPE("AVXCC", TYPE_IMM5)
TYPE("AVX512RC", TYPE_IMM32)
TYPE("brtarget", TYPE_RELv)
TYPE("uncondbrtarget", TYPE_RELv)
TYPE("brtarget8", TYPE_REL8)
TYPE("f80mem", TYPE_M80FP)
TYPE("lea32mem", TYPE_LEA)
TYPE("lea64_32mem", TYPE_LEA)
TYPE("lea64mem", TYPE_LEA)
TYPE("VR64", TYPE_MM64)
TYPE("i64imm", TYPE_IMMv)
TYPE("opaque32mem", TYPE_M1616)
TYPE("opaque48mem", TYPE_M1632)
TYPE("opaque80mem", TYPE_M1664)
TYPE("opaque512mem", TYPE_M512)
TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
TYPE("DEBUG_REG", TYPE_DEBUGREG)
TYPE("CONTROL_REG", TYPE_CONTROLREG)
TYPE("srcidx8", TYPE_SRCIDX8)
TYPE("srcidx16", TYPE_SRCIDX16)
TYPE("srcidx32", TYPE_SRCIDX32)
TYPE("srcidx64", TYPE_SRCIDX64)
TYPE("dstidx8", TYPE_DSTIDX8)
TYPE("dstidx16", TYPE_DSTIDX16)
TYPE("dstidx32", TYPE_DSTIDX32)
TYPE("dstidx64", TYPE_DSTIDX64)
TYPE("offset8", TYPE_MOFFS8)
TYPE("offset16", TYPE_MOFFS16)
TYPE("offset32", TYPE_MOFFS32)
TYPE("offset64", TYPE_MOFFS64)
TYPE("VR256", TYPE_XMM256)
TYPE("VR256X", TYPE_XMM256)
TYPE("VR512", TYPE_XMM512)
TYPE("VK1", TYPE_VK1)
TYPE("VK1WM", TYPE_VK1)
TYPE("VK2", TYPE_VK2)
TYPE("VK2WM", TYPE_VK2)
TYPE("VK4", TYPE_VK4)
TYPE("VK4WM", TYPE_VK4)
TYPE("VK8", TYPE_VK8)
TYPE("VK8WM", TYPE_VK8)
TYPE("VK16", TYPE_VK16)
TYPE("VK16WM", TYPE_VK16)
TYPE("VK32", TYPE_VK32)
TYPE("VK32WM", TYPE_VK32)
TYPE("VK64", TYPE_VK64)
TYPE("VK64WM", TYPE_VK64)
TYPE("GR16_NOAX", TYPE_Rv)
TYPE("GR32_NOAX", TYPE_Rv)
TYPE("GR64_NOAX", TYPE_R64)
TYPE("vx32mem", TYPE_M32)
TYPE("vy32mem", TYPE_M32)
TYPE("vz32mem", TYPE_M32)
TYPE("vx64mem", TYPE_M64)
TYPE("vy64mem", TYPE_M64)
TYPE("vy64xmem", TYPE_M64)
TYPE("vz64mem", TYPE_M64)
errs() << "Unhandled type string " << s << "\n";
llvm_unreachable("Unhandled type string");
}
#undef TYPE
#define ENCODING(str, encoding) if (s == str) return encoding;
OperandEncoding
RecognizableInstr::immediateEncodingFromString(const std::string &s,
uint8_t OpSize) {
if(OpSize != X86Local::OpSize16) {
// For instructions without an OpSize prefix, a declared 16-bit register or
// immediate encoding is special.
ENCODING("i16imm", ENCODING_IW)
}
ENCODING("i32i8imm", ENCODING_IB)
ENCODING("u32u8imm", ENCODING_IB)
ENCODING("SSECC", ENCODING_IB)
ENCODING("AVXCC", ENCODING_IB)
ENCODING("AVX512RC", ENCODING_IB)
ENCODING("i16imm", ENCODING_Iv)
ENCODING("i16i8imm", ENCODING_IB)
ENCODING("i32imm", ENCODING_Iv)
ENCODING("i64i32imm", ENCODING_ID)
ENCODING("i64i8imm", ENCODING_IB)
ENCODING("i8imm", ENCODING_IB)
// This is not a typo. Instructions like BLENDVPD put
// register IDs in 8-bit immediates nowadays.
ENCODING("FR32", ENCODING_IB)
ENCODING("FR64", ENCODING_IB)
ENCODING("VR128", ENCODING_IB)
ENCODING("VR256", ENCODING_IB)
ENCODING("FR32X", ENCODING_IB)
ENCODING("FR64X", ENCODING_IB)
ENCODING("VR128X", ENCODING_IB)
ENCODING("VR256X", ENCODING_IB)
ENCODING("VR512", ENCODING_IB)
errs() << "Unhandled immediate encoding " << s << "\n";
llvm_unreachable("Unhandled immediate encoding");
}
OperandEncoding
RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("RST", ENCODING_FP)
ENCODING("GR16", ENCODING_RM)
ENCODING("GR32", ENCODING_RM)
ENCODING("GR32orGR64", ENCODING_RM)
ENCODING("GR64", ENCODING_RM)
ENCODING("GR8", ENCODING_RM)
ENCODING("VR128", ENCODING_RM)
ENCODING("VR128X", ENCODING_RM)
ENCODING("FR64", ENCODING_RM)
ENCODING("FR32", ENCODING_RM)
ENCODING("FR64X", ENCODING_RM)
ENCODING("FR32X", ENCODING_RM)
ENCODING("VR64", ENCODING_RM)
ENCODING("VR256", ENCODING_RM)
ENCODING("VR256X", ENCODING_RM)
ENCODING("VR512", ENCODING_RM)
ENCODING("VK1", ENCODING_RM)
ENCODING("VK8", ENCODING_RM)
ENCODING("VK16", ENCODING_RM)
ENCODING("VK32", ENCODING_RM)
ENCODING("VK64", ENCODING_RM)
errs() << "Unhandled R/M register encoding " << s << "\n";
llvm_unreachable("Unhandled R/M register encoding");
}
OperandEncoding
RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("GR16", ENCODING_REG)
ENCODING("GR32", ENCODING_REG)
ENCODING("GR32orGR64", ENCODING_REG)
ENCODING("GR64", ENCODING_REG)
ENCODING("GR8", ENCODING_REG)
ENCODING("VR128", ENCODING_REG)
ENCODING("FR64", ENCODING_REG)
ENCODING("FR32", ENCODING_REG)
ENCODING("VR64", ENCODING_REG)
ENCODING("SEGMENT_REG", ENCODING_REG)
ENCODING("DEBUG_REG", ENCODING_REG)
ENCODING("CONTROL_REG", ENCODING_REG)
ENCODING("VR256", ENCODING_REG)
ENCODING("VR256X", ENCODING_REG)
ENCODING("VR128X", ENCODING_REG)
ENCODING("FR64X", ENCODING_REG)
ENCODING("FR32X", ENCODING_REG)
ENCODING("VR512", ENCODING_REG)
ENCODING("VK1", ENCODING_REG)
ENCODING("VK8", ENCODING_REG)
ENCODING("VK16", ENCODING_REG)
ENCODING("VK32", ENCODING_REG)
ENCODING("VK64", ENCODING_REG)
ENCODING("VK1WM", ENCODING_REG)
ENCODING("VK8WM", ENCODING_REG)
ENCODING("VK16WM", ENCODING_REG)
errs() << "Unhandled reg/opcode register encoding " << s << "\n";
llvm_unreachable("Unhandled reg/opcode register encoding");
}
OperandEncoding
RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("GR32", ENCODING_VVVV)
ENCODING("GR64", ENCODING_VVVV)
ENCODING("FR32", ENCODING_VVVV)
ENCODING("FR64", ENCODING_VVVV)
ENCODING("VR128", ENCODING_VVVV)
ENCODING("VR256", ENCODING_VVVV)
ENCODING("FR32X", ENCODING_VVVV)
ENCODING("FR64X", ENCODING_VVVV)
ENCODING("VR128X", ENCODING_VVVV)
ENCODING("VR256X", ENCODING_VVVV)
ENCODING("VR512", ENCODING_VVVV)
ENCODING("VK1", ENCODING_VVVV)
ENCODING("VK2", ENCODING_VVVV)
ENCODING("VK4", ENCODING_VVVV)
ENCODING("VK8", ENCODING_VVVV)
ENCODING("VK16", ENCODING_VVVV)
ENCODING("VK32", ENCODING_VVVV)
ENCODING("VK64", ENCODING_VVVV)
errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
llvm_unreachable("Unhandled VEX.vvvv register encoding");
}
OperandEncoding
RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("VK1WM", ENCODING_WRITEMASK)
ENCODING("VK2WM", ENCODING_WRITEMASK)
ENCODING("VK4WM", ENCODING_WRITEMASK)
ENCODING("VK8WM", ENCODING_WRITEMASK)
ENCODING("VK16WM", ENCODING_WRITEMASK)
ENCODING("VK32WM", ENCODING_WRITEMASK)
ENCODING("VK64WM", ENCODING_WRITEMASK)
errs() << "Unhandled mask register encoding " << s << "\n";
llvm_unreachable("Unhandled mask register encoding");
}
OperandEncoding
RecognizableInstr::memoryEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("i16mem", ENCODING_RM)
ENCODING("i32mem", ENCODING_RM)
ENCODING("i64mem", ENCODING_RM)
ENCODING("i8mem", ENCODING_RM)
ENCODING("ssmem", ENCODING_RM)
ENCODING("sdmem", ENCODING_RM)
ENCODING("f128mem", ENCODING_RM)
ENCODING("f256mem", ENCODING_RM)
ENCODING("f512mem", ENCODING_RM)
ENCODING("f64mem", ENCODING_RM)
ENCODING("f32mem", ENCODING_RM)
ENCODING("i128mem", ENCODING_RM)
ENCODING("i256mem", ENCODING_RM)
ENCODING("i512mem", ENCODING_RM)
ENCODING("f80mem", ENCODING_RM)
ENCODING("lea32mem", ENCODING_RM)
ENCODING("lea64_32mem", ENCODING_RM)
ENCODING("lea64mem", ENCODING_RM)
ENCODING("opaque32mem", ENCODING_RM)
ENCODING("opaque48mem", ENCODING_RM)
ENCODING("opaque80mem", ENCODING_RM)
ENCODING("opaque512mem", ENCODING_RM)
ENCODING("vx32mem", ENCODING_RM)
ENCODING("vy32mem", ENCODING_RM)
ENCODING("vz32mem", ENCODING_RM)
ENCODING("vx64mem", ENCODING_RM)
ENCODING("vy64mem", ENCODING_RM)
ENCODING("vy64xmem", ENCODING_RM)
ENCODING("vz64mem", ENCODING_RM)
errs() << "Unhandled memory encoding " << s << "\n";
llvm_unreachable("Unhandled memory encoding");
}
OperandEncoding
RecognizableInstr::relocationEncodingFromString(const std::string &s,
uint8_t OpSize) {
if(OpSize != X86Local::OpSize16) {
// For instructions without an OpSize prefix, a declared 16-bit register or
// immediate encoding is special.
ENCODING("i16imm", ENCODING_IW)
}
ENCODING("i16imm", ENCODING_Iv)
ENCODING("i16i8imm", ENCODING_IB)
ENCODING("i32imm", ENCODING_Iv)
ENCODING("i32i8imm", ENCODING_IB)
ENCODING("i64i32imm", ENCODING_ID)
ENCODING("i64i8imm", ENCODING_IB)
ENCODING("i8imm", ENCODING_IB)
ENCODING("i64i32imm_pcrel", ENCODING_ID)
ENCODING("i16imm_pcrel", ENCODING_IW)
ENCODING("i32imm_pcrel", ENCODING_ID)
ENCODING("brtarget", ENCODING_Iv)
ENCODING("brtarget8", ENCODING_IB)
ENCODING("i64imm", ENCODING_IO)
ENCODING("offset8", ENCODING_Ia)
ENCODING("offset16", ENCODING_Ia)
ENCODING("offset32", ENCODING_Ia)
ENCODING("offset64", ENCODING_Ia)
ENCODING("srcidx8", ENCODING_SI)
ENCODING("srcidx16", ENCODING_SI)
ENCODING("srcidx32", ENCODING_SI)
ENCODING("srcidx64", ENCODING_SI)
ENCODING("dstidx8", ENCODING_DI)
ENCODING("dstidx16", ENCODING_DI)
ENCODING("dstidx32", ENCODING_DI)
ENCODING("dstidx64", ENCODING_DI)
errs() << "Unhandled relocation encoding " << s << "\n";
llvm_unreachable("Unhandled relocation encoding");
}
OperandEncoding
RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("GR32", ENCODING_Rv)
ENCODING("GR64", ENCODING_RO)
ENCODING("GR16", ENCODING_Rv)
ENCODING("GR8", ENCODING_RB)
ENCODING("GR16_NOAX", ENCODING_Rv)
ENCODING("GR32_NOAX", ENCODING_Rv)
ENCODING("GR64_NOAX", ENCODING_RO)
errs() << "Unhandled opcode modifier encoding " << s << "\n";
llvm_unreachable("Unhandled opcode modifier encoding");
}
#undef ENCODING