mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-24 19:44:49 +00:00
aab87fe0ec
Now that DataLayout is not a pass, store one in Module. Since the C API expects to be able to get a char* to the datalayout description, we have to keep a std::string somewhere. This patch keeps it in Module and also uses it to represent modules without a DataLayout. Once DataLayout is mandatory, we should probably move the string to DataLayout itself since it won't be necessary anymore to represent the special case of a module without a DataLayout. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202190 91177308-0d34-0410-b5e6-96231b3b80d8
2229 lines
72 KiB
C++
2229 lines
72 KiB
C++
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This library implements the functionality defined in llvm/IR/Writer.h
|
|
//
|
|
// Note that these routines must be extremely tolerant of various errors in the
|
|
// LLVM code, because it can be used for debugging transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AsmWriter.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/DebugInfo.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/TypeFinder.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
// Make virtual table appear in this compilation unit.
|
|
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const Module *getModuleFromVal(const Value *V) {
|
|
if (const Argument *MA = dyn_cast<Argument>(V))
|
|
return MA->getParent() ? MA->getParent()->getParent() : 0;
|
|
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return BB->getParent() ? BB->getParent()->getParent() : 0;
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
|
|
return M ? M->getParent() : 0;
|
|
}
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
|
return GV->getParent();
|
|
return 0;
|
|
}
|
|
|
|
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
|
|
switch (cc) {
|
|
default: Out << "cc" << cc; break;
|
|
case CallingConv::Fast: Out << "fastcc"; break;
|
|
case CallingConv::Cold: Out << "coldcc"; break;
|
|
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
|
|
case CallingConv::AnyReg: Out << "anyregcc"; break;
|
|
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
|
|
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
|
|
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
|
|
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
|
|
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
|
|
case CallingConv::X86_CDeclMethod:Out << "x86_cdeclmethodcc"; break;
|
|
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
|
|
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
|
|
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
|
|
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
|
|
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
|
|
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
|
|
case CallingConv::PTX_Device: Out << "ptx_device"; break;
|
|
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
|
|
case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
|
|
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
|
|
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
|
|
}
|
|
}
|
|
|
|
// PrintEscapedString - Print each character of the specified string, escaping
|
|
// it if it is not printable or if it is an escape char.
|
|
static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
|
|
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
|
|
unsigned char C = Name[i];
|
|
if (isprint(C) && C != '\\' && C != '"')
|
|
Out << C;
|
|
else
|
|
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
|
|
}
|
|
}
|
|
|
|
enum PrefixType {
|
|
GlobalPrefix,
|
|
LabelPrefix,
|
|
LocalPrefix,
|
|
NoPrefix
|
|
};
|
|
|
|
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
|
|
/// prefixed with % (if the string only contains simple characters) or is
|
|
/// surrounded with ""'s (if it has special chars in it). Print it out.
|
|
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
|
|
assert(!Name.empty() && "Cannot get empty name!");
|
|
switch (Prefix) {
|
|
case NoPrefix: break;
|
|
case GlobalPrefix: OS << '@'; break;
|
|
case LabelPrefix: break;
|
|
case LocalPrefix: OS << '%'; break;
|
|
}
|
|
|
|
// Scan the name to see if it needs quotes first.
|
|
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
|
|
if (!NeedsQuotes) {
|
|
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
|
|
// By making this unsigned, the value passed in to isalnum will always be
|
|
// in the range 0-255. This is important when building with MSVC because
|
|
// its implementation will assert. This situation can arise when dealing
|
|
// with UTF-8 multibyte characters.
|
|
unsigned char C = Name[i];
|
|
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
|
|
C != '_') {
|
|
NeedsQuotes = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't need any quotes, just write out the name in one blast.
|
|
if (!NeedsQuotes) {
|
|
OS << Name;
|
|
return;
|
|
}
|
|
|
|
// Okay, we need quotes. Output the quotes and escape any scary characters as
|
|
// needed.
|
|
OS << '"';
|
|
PrintEscapedString(Name, OS);
|
|
OS << '"';
|
|
}
|
|
|
|
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
|
|
/// prefixed with % (if the string only contains simple characters) or is
|
|
/// surrounded with ""'s (if it has special chars in it). Print it out.
|
|
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
|
|
PrintLLVMName(OS, V->getName(),
|
|
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
|
|
}
|
|
|
|
|
|
namespace llvm {
|
|
|
|
void TypePrinting::incorporateTypes(const Module &M) {
|
|
NamedTypes.run(M, false);
|
|
|
|
// The list of struct types we got back includes all the struct types, split
|
|
// the unnamed ones out to a numbering and remove the anonymous structs.
|
|
unsigned NextNumber = 0;
|
|
|
|
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
|
|
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
|
|
StructType *STy = *I;
|
|
|
|
// Ignore anonymous types.
|
|
if (STy->isLiteral())
|
|
continue;
|
|
|
|
if (STy->getName().empty())
|
|
NumberedTypes[STy] = NextNumber++;
|
|
else
|
|
*NextToUse++ = STy;
|
|
}
|
|
|
|
NamedTypes.erase(NextToUse, NamedTypes.end());
|
|
}
|
|
|
|
|
|
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
|
|
/// use of type names or up references to shorten the type name where possible.
|
|
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: OS << "void"; return;
|
|
case Type::HalfTyID: OS << "half"; return;
|
|
case Type::FloatTyID: OS << "float"; return;
|
|
case Type::DoubleTyID: OS << "double"; return;
|
|
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
|
|
case Type::FP128TyID: OS << "fp128"; return;
|
|
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
|
|
case Type::LabelTyID: OS << "label"; return;
|
|
case Type::MetadataTyID: OS << "metadata"; return;
|
|
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
|
|
case Type::IntegerTyID:
|
|
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
|
|
return;
|
|
|
|
case Type::FunctionTyID: {
|
|
FunctionType *FTy = cast<FunctionType>(Ty);
|
|
print(FTy->getReturnType(), OS);
|
|
OS << " (";
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I) {
|
|
if (I != FTy->param_begin())
|
|
OS << ", ";
|
|
print(*I, OS);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (FTy->getNumParams()) OS << ", ";
|
|
OS << "...";
|
|
}
|
|
OS << ')';
|
|
return;
|
|
}
|
|
case Type::StructTyID: {
|
|
StructType *STy = cast<StructType>(Ty);
|
|
|
|
if (STy->isLiteral())
|
|
return printStructBody(STy, OS);
|
|
|
|
if (!STy->getName().empty())
|
|
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
|
|
|
|
DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
|
|
if (I != NumberedTypes.end())
|
|
OS << '%' << I->second;
|
|
else // Not enumerated, print the hex address.
|
|
OS << "%\"type " << STy << '\"';
|
|
return;
|
|
}
|
|
case Type::PointerTyID: {
|
|
PointerType *PTy = cast<PointerType>(Ty);
|
|
print(PTy->getElementType(), OS);
|
|
if (unsigned AddressSpace = PTy->getAddressSpace())
|
|
OS << " addrspace(" << AddressSpace << ')';
|
|
OS << '*';
|
|
return;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
ArrayType *ATy = cast<ArrayType>(Ty);
|
|
OS << '[' << ATy->getNumElements() << " x ";
|
|
print(ATy->getElementType(), OS);
|
|
OS << ']';
|
|
return;
|
|
}
|
|
case Type::VectorTyID: {
|
|
VectorType *PTy = cast<VectorType>(Ty);
|
|
OS << "<" << PTy->getNumElements() << " x ";
|
|
print(PTy->getElementType(), OS);
|
|
OS << '>';
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid TypeID");
|
|
}
|
|
|
|
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
|
|
if (STy->isOpaque()) {
|
|
OS << "opaque";
|
|
return;
|
|
}
|
|
|
|
if (STy->isPacked())
|
|
OS << '<';
|
|
|
|
if (STy->getNumElements() == 0) {
|
|
OS << "{}";
|
|
} else {
|
|
StructType::element_iterator I = STy->element_begin();
|
|
OS << "{ ";
|
|
print(*I++, OS);
|
|
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
|
|
OS << ", ";
|
|
print(*I, OS);
|
|
}
|
|
|
|
OS << " }";
|
|
}
|
|
if (STy->isPacked())
|
|
OS << '>';
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SlotTracker Class: Enumerate slot numbers for unnamed values
|
|
//===----------------------------------------------------------------------===//
|
|
/// This class provides computation of slot numbers for LLVM Assembly writing.
|
|
///
|
|
class SlotTracker {
|
|
public:
|
|
/// ValueMap - A mapping of Values to slot numbers.
|
|
typedef DenseMap<const Value*, unsigned> ValueMap;
|
|
|
|
private:
|
|
/// TheModule - The module for which we are holding slot numbers.
|
|
const Module* TheModule;
|
|
|
|
/// TheFunction - The function for which we are holding slot numbers.
|
|
const Function* TheFunction;
|
|
bool FunctionProcessed;
|
|
|
|
/// mMap - The slot map for the module level data.
|
|
ValueMap mMap;
|
|
unsigned mNext;
|
|
|
|
/// fMap - The slot map for the function level data.
|
|
ValueMap fMap;
|
|
unsigned fNext;
|
|
|
|
/// mdnMap - Map for MDNodes.
|
|
DenseMap<const MDNode*, unsigned> mdnMap;
|
|
unsigned mdnNext;
|
|
|
|
/// asMap - The slot map for attribute sets.
|
|
DenseMap<AttributeSet, unsigned> asMap;
|
|
unsigned asNext;
|
|
public:
|
|
/// Construct from a module
|
|
explicit SlotTracker(const Module *M);
|
|
/// Construct from a function, starting out in incorp state.
|
|
explicit SlotTracker(const Function *F);
|
|
|
|
/// Return the slot number of the specified value in it's type
|
|
/// plane. If something is not in the SlotTracker, return -1.
|
|
int getLocalSlot(const Value *V);
|
|
int getGlobalSlot(const GlobalValue *V);
|
|
int getMetadataSlot(const MDNode *N);
|
|
int getAttributeGroupSlot(AttributeSet AS);
|
|
|
|
/// If you'd like to deal with a function instead of just a module, use
|
|
/// this method to get its data into the SlotTracker.
|
|
void incorporateFunction(const Function *F) {
|
|
TheFunction = F;
|
|
FunctionProcessed = false;
|
|
}
|
|
|
|
/// After calling incorporateFunction, use this method to remove the
|
|
/// most recently incorporated function from the SlotTracker. This
|
|
/// will reset the state of the machine back to just the module contents.
|
|
void purgeFunction();
|
|
|
|
/// MDNode map iterators.
|
|
typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
|
|
mdn_iterator mdn_begin() { return mdnMap.begin(); }
|
|
mdn_iterator mdn_end() { return mdnMap.end(); }
|
|
unsigned mdn_size() const { return mdnMap.size(); }
|
|
bool mdn_empty() const { return mdnMap.empty(); }
|
|
|
|
/// AttributeSet map iterators.
|
|
typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
|
|
as_iterator as_begin() { return asMap.begin(); }
|
|
as_iterator as_end() { return asMap.end(); }
|
|
unsigned as_size() const { return asMap.size(); }
|
|
bool as_empty() const { return asMap.empty(); }
|
|
|
|
/// This function does the actual initialization.
|
|
inline void initialize();
|
|
|
|
// Implementation Details
|
|
private:
|
|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
|
|
void CreateModuleSlot(const GlobalValue *V);
|
|
|
|
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
|
|
void CreateMetadataSlot(const MDNode *N);
|
|
|
|
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
|
|
void CreateFunctionSlot(const Value *V);
|
|
|
|
/// \brief Insert the specified AttributeSet into the slot table.
|
|
void CreateAttributeSetSlot(AttributeSet AS);
|
|
|
|
/// Add all of the module level global variables (and their initializers)
|
|
/// and function declarations, but not the contents of those functions.
|
|
void processModule();
|
|
|
|
/// Add all of the functions arguments, basic blocks, and instructions.
|
|
void processFunction();
|
|
|
|
SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
|
|
void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
|
|
};
|
|
|
|
SlotTracker *createSlotTracker(const Module *M) {
|
|
return new SlotTracker(M);
|
|
}
|
|
|
|
static SlotTracker *createSlotTracker(const Value *V) {
|
|
if (const Argument *FA = dyn_cast<Argument>(V))
|
|
return new SlotTracker(FA->getParent());
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getParent())
|
|
return new SlotTracker(I->getParent()->getParent());
|
|
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return new SlotTracker(BB->getParent());
|
|
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return new SlotTracker(GV->getParent());
|
|
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return new SlotTracker(GA->getParent());
|
|
|
|
if (const Function *Func = dyn_cast<Function>(V))
|
|
return new SlotTracker(Func);
|
|
|
|
if (const MDNode *MD = dyn_cast<MDNode>(V)) {
|
|
if (!MD->isFunctionLocal())
|
|
return new SlotTracker(MD->getFunction());
|
|
|
|
return new SlotTracker((Function *)0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
#define ST_DEBUG(X) dbgs() << X
|
|
#else
|
|
#define ST_DEBUG(X)
|
|
#endif
|
|
|
|
// Module level constructor. Causes the contents of the Module (sans functions)
|
|
// to be added to the slot table.
|
|
SlotTracker::SlotTracker(const Module *M)
|
|
: TheModule(M), TheFunction(0), FunctionProcessed(false),
|
|
mNext(0), fNext(0), mdnNext(0), asNext(0) {
|
|
}
|
|
|
|
// Function level constructor. Causes the contents of the Module and the one
|
|
// function provided to be added to the slot table.
|
|
SlotTracker::SlotTracker(const Function *F)
|
|
: TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
|
|
mNext(0), fNext(0), mdnNext(0), asNext(0) {
|
|
}
|
|
|
|
inline void SlotTracker::initialize() {
|
|
if (TheModule) {
|
|
processModule();
|
|
TheModule = 0; ///< Prevent re-processing next time we're called.
|
|
}
|
|
|
|
if (TheFunction && !FunctionProcessed)
|
|
processFunction();
|
|
}
|
|
|
|
// Iterate through all the global variables, functions, and global
|
|
// variable initializers and create slots for them.
|
|
void SlotTracker::processModule() {
|
|
ST_DEBUG("begin processModule!\n");
|
|
|
|
// Add all of the unnamed global variables to the value table.
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I) {
|
|
if (!I->hasName())
|
|
CreateModuleSlot(I);
|
|
}
|
|
|
|
// Add metadata used by named metadata.
|
|
for (Module::const_named_metadata_iterator
|
|
I = TheModule->named_metadata_begin(),
|
|
E = TheModule->named_metadata_end(); I != E; ++I) {
|
|
const NamedMDNode *NMD = I;
|
|
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
|
|
CreateMetadataSlot(NMD->getOperand(i));
|
|
}
|
|
|
|
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
|
|
I != E; ++I) {
|
|
if (!I->hasName())
|
|
// Add all the unnamed functions to the table.
|
|
CreateModuleSlot(I);
|
|
|
|
// Add all the function attributes to the table.
|
|
// FIXME: Add attributes of other objects?
|
|
AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
|
|
if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
CreateAttributeSetSlot(FnAttrs);
|
|
}
|
|
|
|
ST_DEBUG("end processModule!\n");
|
|
}
|
|
|
|
// Process the arguments, basic blocks, and instructions of a function.
|
|
void SlotTracker::processFunction() {
|
|
ST_DEBUG("begin processFunction!\n");
|
|
fNext = 0;
|
|
|
|
// Add all the function arguments with no names.
|
|
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
|
|
AE = TheFunction->arg_end(); AI != AE; ++AI)
|
|
if (!AI->hasName())
|
|
CreateFunctionSlot(AI);
|
|
|
|
ST_DEBUG("Inserting Instructions:\n");
|
|
|
|
SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
|
|
|
|
// Add all of the basic blocks and instructions with no names.
|
|
for (Function::const_iterator BB = TheFunction->begin(),
|
|
E = TheFunction->end(); BB != E; ++BB) {
|
|
if (!BB->hasName())
|
|
CreateFunctionSlot(BB);
|
|
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
|
|
++I) {
|
|
if (!I->getType()->isVoidTy() && !I->hasName())
|
|
CreateFunctionSlot(I);
|
|
|
|
// Intrinsics can directly use metadata. We allow direct calls to any
|
|
// llvm.foo function here, because the target may not be linked into the
|
|
// optimizer.
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->isIntrinsic())
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
|
|
CreateMetadataSlot(N);
|
|
|
|
// Add all the call attributes to the table.
|
|
AttributeSet Attrs = CI->getAttributes().getFnAttributes();
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
CreateAttributeSetSlot(Attrs);
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
|
|
// Add all the call attributes to the table.
|
|
AttributeSet Attrs = II->getAttributes().getFnAttributes();
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
CreateAttributeSetSlot(Attrs);
|
|
}
|
|
|
|
// Process metadata attached with this instruction.
|
|
I->getAllMetadata(MDForInst);
|
|
for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
|
|
CreateMetadataSlot(MDForInst[i].second);
|
|
MDForInst.clear();
|
|
}
|
|
}
|
|
|
|
FunctionProcessed = true;
|
|
|
|
ST_DEBUG("end processFunction!\n");
|
|
}
|
|
|
|
/// Clean up after incorporating a function. This is the only way to get out of
|
|
/// the function incorporation state that affects get*Slot/Create*Slot. Function
|
|
/// incorporation state is indicated by TheFunction != 0.
|
|
void SlotTracker::purgeFunction() {
|
|
ST_DEBUG("begin purgeFunction!\n");
|
|
fMap.clear(); // Simply discard the function level map
|
|
TheFunction = 0;
|
|
FunctionProcessed = false;
|
|
ST_DEBUG("end purgeFunction!\n");
|
|
}
|
|
|
|
/// getGlobalSlot - Get the slot number of a global value.
|
|
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
// Find the value in the module map
|
|
ValueMap::iterator MI = mMap.find(V);
|
|
return MI == mMap.end() ? -1 : (int)MI->second;
|
|
}
|
|
|
|
/// getMetadataSlot - Get the slot number of a MDNode.
|
|
int SlotTracker::getMetadataSlot(const MDNode *N) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
// Find the MDNode in the module map
|
|
mdn_iterator MI = mdnMap.find(N);
|
|
return MI == mdnMap.end() ? -1 : (int)MI->second;
|
|
}
|
|
|
|
|
|
/// getLocalSlot - Get the slot number for a value that is local to a function.
|
|
int SlotTracker::getLocalSlot(const Value *V) {
|
|
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
|
|
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
ValueMap::iterator FI = fMap.find(V);
|
|
return FI == fMap.end() ? -1 : (int)FI->second;
|
|
}
|
|
|
|
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
// Find the AttributeSet in the module map.
|
|
as_iterator AI = asMap.find(AS);
|
|
return AI == asMap.end() ? -1 : (int)AI->second;
|
|
}
|
|
|
|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
|
|
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
|
|
assert(V && "Can't insert a null Value into SlotTracker!");
|
|
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
|
|
assert(!V->hasName() && "Doesn't need a slot!");
|
|
|
|
unsigned DestSlot = mNext++;
|
|
mMap[V] = DestSlot;
|
|
|
|
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
|
|
DestSlot << " [");
|
|
// G = Global, F = Function, A = Alias, o = other
|
|
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
|
|
(isa<Function>(V) ? 'F' :
|
|
(isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
|
|
}
|
|
|
|
/// CreateSlot - Create a new slot for the specified value if it has no name.
|
|
void SlotTracker::CreateFunctionSlot(const Value *V) {
|
|
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
|
|
|
|
unsigned DestSlot = fNext++;
|
|
fMap[V] = DestSlot;
|
|
|
|
// G = Global, F = Function, o = other
|
|
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
|
|
DestSlot << " [o]\n");
|
|
}
|
|
|
|
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
|
|
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
|
|
assert(N && "Can't insert a null Value into SlotTracker!");
|
|
|
|
// Don't insert if N is a function-local metadata, these are always printed
|
|
// inline.
|
|
if (!N->isFunctionLocal()) {
|
|
mdn_iterator I = mdnMap.find(N);
|
|
if (I != mdnMap.end())
|
|
return;
|
|
|
|
unsigned DestSlot = mdnNext++;
|
|
mdnMap[N] = DestSlot;
|
|
}
|
|
|
|
// Recursively add any MDNodes referenced by operands.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
|
|
CreateMetadataSlot(Op);
|
|
}
|
|
|
|
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
|
|
assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
|
|
"Doesn't need a slot!");
|
|
|
|
as_iterator I = asMap.find(AS);
|
|
if (I != asMap.end())
|
|
return;
|
|
|
|
unsigned DestSlot = asNext++;
|
|
asMap[AS] = DestSlot;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AsmWriter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context);
|
|
|
|
static const char *getPredicateText(unsigned predicate) {
|
|
const char * pred = "unknown";
|
|
switch (predicate) {
|
|
case FCmpInst::FCMP_FALSE: pred = "false"; break;
|
|
case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
|
|
case FCmpInst::FCMP_OGT: pred = "ogt"; break;
|
|
case FCmpInst::FCMP_OGE: pred = "oge"; break;
|
|
case FCmpInst::FCMP_OLT: pred = "olt"; break;
|
|
case FCmpInst::FCMP_OLE: pred = "ole"; break;
|
|
case FCmpInst::FCMP_ONE: pred = "one"; break;
|
|
case FCmpInst::FCMP_ORD: pred = "ord"; break;
|
|
case FCmpInst::FCMP_UNO: pred = "uno"; break;
|
|
case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
|
|
case FCmpInst::FCMP_UGT: pred = "ugt"; break;
|
|
case FCmpInst::FCMP_UGE: pred = "uge"; break;
|
|
case FCmpInst::FCMP_ULT: pred = "ult"; break;
|
|
case FCmpInst::FCMP_ULE: pred = "ule"; break;
|
|
case FCmpInst::FCMP_UNE: pred = "une"; break;
|
|
case FCmpInst::FCMP_TRUE: pred = "true"; break;
|
|
case ICmpInst::ICMP_EQ: pred = "eq"; break;
|
|
case ICmpInst::ICMP_NE: pred = "ne"; break;
|
|
case ICmpInst::ICMP_SGT: pred = "sgt"; break;
|
|
case ICmpInst::ICMP_SGE: pred = "sge"; break;
|
|
case ICmpInst::ICMP_SLT: pred = "slt"; break;
|
|
case ICmpInst::ICMP_SLE: pred = "sle"; break;
|
|
case ICmpInst::ICMP_UGT: pred = "ugt"; break;
|
|
case ICmpInst::ICMP_UGE: pred = "uge"; break;
|
|
case ICmpInst::ICMP_ULT: pred = "ult"; break;
|
|
case ICmpInst::ICMP_ULE: pred = "ule"; break;
|
|
}
|
|
return pred;
|
|
}
|
|
|
|
static void writeAtomicRMWOperation(raw_ostream &Out,
|
|
AtomicRMWInst::BinOp Op) {
|
|
switch (Op) {
|
|
default: Out << " <unknown operation " << Op << ">"; break;
|
|
case AtomicRMWInst::Xchg: Out << " xchg"; break;
|
|
case AtomicRMWInst::Add: Out << " add"; break;
|
|
case AtomicRMWInst::Sub: Out << " sub"; break;
|
|
case AtomicRMWInst::And: Out << " and"; break;
|
|
case AtomicRMWInst::Nand: Out << " nand"; break;
|
|
case AtomicRMWInst::Or: Out << " or"; break;
|
|
case AtomicRMWInst::Xor: Out << " xor"; break;
|
|
case AtomicRMWInst::Max: Out << " max"; break;
|
|
case AtomicRMWInst::Min: Out << " min"; break;
|
|
case AtomicRMWInst::UMax: Out << " umax"; break;
|
|
case AtomicRMWInst::UMin: Out << " umin"; break;
|
|
}
|
|
}
|
|
|
|
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
|
|
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
|
|
// Unsafe algebra implies all the others, no need to write them all out
|
|
if (FPO->hasUnsafeAlgebra())
|
|
Out << " fast";
|
|
else {
|
|
if (FPO->hasNoNaNs())
|
|
Out << " nnan";
|
|
if (FPO->hasNoInfs())
|
|
Out << " ninf";
|
|
if (FPO->hasNoSignedZeros())
|
|
Out << " nsz";
|
|
if (FPO->hasAllowReciprocal())
|
|
Out << " arcp";
|
|
}
|
|
}
|
|
|
|
if (const OverflowingBinaryOperator *OBO =
|
|
dyn_cast<OverflowingBinaryOperator>(U)) {
|
|
if (OBO->hasNoUnsignedWrap())
|
|
Out << " nuw";
|
|
if (OBO->hasNoSignedWrap())
|
|
Out << " nsw";
|
|
} else if (const PossiblyExactOperator *Div =
|
|
dyn_cast<PossiblyExactOperator>(U)) {
|
|
if (Div->isExact())
|
|
Out << " exact";
|
|
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
|
|
if (GEP->isInBounds())
|
|
Out << " inbounds";
|
|
}
|
|
}
|
|
|
|
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
|
|
TypePrinting &TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
if (CI->getType()->isIntegerTy(1)) {
|
|
Out << (CI->getZExtValue() ? "true" : "false");
|
|
return;
|
|
}
|
|
Out << CI->getValue();
|
|
return;
|
|
}
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
|
|
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
|
|
// We would like to output the FP constant value in exponential notation,
|
|
// but we cannot do this if doing so will lose precision. Check here to
|
|
// make sure that we only output it in exponential format if we can parse
|
|
// the value back and get the same value.
|
|
//
|
|
bool ignored;
|
|
bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
|
|
bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
|
|
bool isInf = CFP->getValueAPF().isInfinity();
|
|
bool isNaN = CFP->getValueAPF().isNaN();
|
|
if (!isHalf && !isInf && !isNaN) {
|
|
double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
|
|
CFP->getValueAPF().convertToFloat();
|
|
SmallString<128> StrVal;
|
|
raw_svector_ostream(StrVal) << Val;
|
|
|
|
// Check to make sure that the stringized number is not some string like
|
|
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
|
|
// that the string matches the "[-+]?[0-9]" regex.
|
|
//
|
|
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
|
|
// Reparse stringized version!
|
|
if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
|
|
Out << StrVal.str();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// Otherwise we could not reparse it to exactly the same value, so we must
|
|
// output the string in hexadecimal format! Note that loading and storing
|
|
// floating point types changes the bits of NaNs on some hosts, notably
|
|
// x86, so we must not use these types.
|
|
assert(sizeof(double) == sizeof(uint64_t) &&
|
|
"assuming that double is 64 bits!");
|
|
char Buffer[40];
|
|
APFloat apf = CFP->getValueAPF();
|
|
// Halves and floats are represented in ASCII IR as double, convert.
|
|
if (!isDouble)
|
|
apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
Out << "0x" <<
|
|
utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
|
|
Buffer+40);
|
|
return;
|
|
}
|
|
|
|
// Either half, or some form of long double.
|
|
// These appear as a magic letter identifying the type, then a
|
|
// fixed number of hex digits.
|
|
Out << "0x";
|
|
// Bit position, in the current word, of the next nibble to print.
|
|
int shiftcount;
|
|
|
|
if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
|
|
Out << 'K';
|
|
// api needed to prevent premature destruction
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t* p = api.getRawData();
|
|
uint64_t word = p[1];
|
|
shiftcount = 12;
|
|
int width = api.getBitWidth();
|
|
for (int j=0; j<width; j+=4, shiftcount-=4) {
|
|
unsigned int nibble = (word>>shiftcount) & 15;
|
|
if (nibble < 10)
|
|
Out << (unsigned char)(nibble + '0');
|
|
else
|
|
Out << (unsigned char)(nibble - 10 + 'A');
|
|
if (shiftcount == 0 && j+4 < width) {
|
|
word = *p;
|
|
shiftcount = 64;
|
|
if (width-j-4 < 64)
|
|
shiftcount = width-j-4;
|
|
}
|
|
}
|
|
return;
|
|
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
|
|
shiftcount = 60;
|
|
Out << 'L';
|
|
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
|
|
shiftcount = 60;
|
|
Out << 'M';
|
|
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
|
|
shiftcount = 12;
|
|
Out << 'H';
|
|
} else
|
|
llvm_unreachable("Unsupported floating point type");
|
|
// api needed to prevent premature destruction
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t* p = api.getRawData();
|
|
uint64_t word = *p;
|
|
int width = api.getBitWidth();
|
|
for (int j=0; j<width; j+=4, shiftcount-=4) {
|
|
unsigned int nibble = (word>>shiftcount) & 15;
|
|
if (nibble < 10)
|
|
Out << (unsigned char)(nibble + '0');
|
|
else
|
|
Out << (unsigned char)(nibble - 10 + 'A');
|
|
if (shiftcount == 0 && j+4 < width) {
|
|
word = *(++p);
|
|
shiftcount = 64;
|
|
if (width-j-4 < 64)
|
|
shiftcount = width-j-4;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantAggregateZero>(CV)) {
|
|
Out << "zeroinitializer";
|
|
return;
|
|
}
|
|
|
|
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
|
|
Out << "blockaddress(";
|
|
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
|
|
Context);
|
|
Out << ", ";
|
|
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
|
|
Context);
|
|
Out << ")";
|
|
return;
|
|
}
|
|
|
|
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
|
|
Type *ETy = CA->getType()->getElementType();
|
|
Out << '[';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getOperand(0),
|
|
&TypePrinter, Machine,
|
|
Context);
|
|
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
|
|
Context);
|
|
}
|
|
Out << ']';
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
|
|
// As a special case, print the array as a string if it is an array of
|
|
// i8 with ConstantInt values.
|
|
if (CA->isString()) {
|
|
Out << "c\"";
|
|
PrintEscapedString(CA->getAsString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
Type *ETy = CA->getType()->getElementType();
|
|
Out << '[';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
|
|
&TypePrinter, Machine,
|
|
Context);
|
|
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
|
|
Machine, Context);
|
|
}
|
|
Out << ']';
|
|
return;
|
|
}
|
|
|
|
|
|
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
|
|
if (CS->getType()->isPacked())
|
|
Out << '<';
|
|
Out << '{';
|
|
unsigned N = CS->getNumOperands();
|
|
if (N) {
|
|
Out << ' ';
|
|
TypePrinter.print(CS->getOperand(0)->getType(), Out);
|
|
Out << ' ';
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
|
|
Context);
|
|
|
|
for (unsigned i = 1; i < N; i++) {
|
|
Out << ", ";
|
|
TypePrinter.print(CS->getOperand(i)->getType(), Out);
|
|
Out << ' ';
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
|
|
Context);
|
|
}
|
|
Out << ' ';
|
|
}
|
|
|
|
Out << '}';
|
|
if (CS->getType()->isPacked())
|
|
Out << '>';
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
|
|
Type *ETy = CV->getType()->getVectorElementType();
|
|
Out << '<';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
|
|
Machine, Context);
|
|
for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
|
|
Machine, Context);
|
|
}
|
|
Out << '>';
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantPointerNull>(CV)) {
|
|
Out << "null";
|
|
return;
|
|
}
|
|
|
|
if (isa<UndefValue>(CV)) {
|
|
Out << "undef";
|
|
return;
|
|
}
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
Out << CE->getOpcodeName();
|
|
WriteOptimizationInfo(Out, CE);
|
|
if (CE->isCompare())
|
|
Out << ' ' << getPredicateText(CE->getPredicate());
|
|
Out << " (";
|
|
|
|
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
|
|
TypePrinter.print((*OI)->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
|
|
if (OI+1 != CE->op_end())
|
|
Out << ", ";
|
|
}
|
|
|
|
if (CE->hasIndices()) {
|
|
ArrayRef<unsigned> Indices = CE->getIndices();
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
|
|
Out << ", " << Indices[i];
|
|
}
|
|
|
|
if (CE->isCast()) {
|
|
Out << " to ";
|
|
TypePrinter.print(CE->getType(), Out);
|
|
}
|
|
|
|
Out << ')';
|
|
return;
|
|
}
|
|
|
|
Out << "<placeholder or erroneous Constant>";
|
|
}
|
|
|
|
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!{";
|
|
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
|
|
const Value *V = Node->getOperand(mi);
|
|
if (V == 0)
|
|
Out << "null";
|
|
else {
|
|
TypePrinter->print(V->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, Node->getOperand(mi),
|
|
TypePrinter, Machine, Context);
|
|
}
|
|
if (mi + 1 != me)
|
|
Out << ", ";
|
|
}
|
|
|
|
Out << "}";
|
|
}
|
|
|
|
// Full implementation of printing a Value as an operand with support for
|
|
// TypePrinting, etc.
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (V->hasName()) {
|
|
PrintLLVMName(Out, V);
|
|
return;
|
|
}
|
|
|
|
const Constant *CV = dyn_cast<Constant>(V);
|
|
if (CV && !isa<GlobalValue>(CV)) {
|
|
assert(TypePrinter && "Constants require TypePrinting!");
|
|
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
|
|
return;
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Out << "asm ";
|
|
if (IA->hasSideEffects())
|
|
Out << "sideeffect ";
|
|
if (IA->isAlignStack())
|
|
Out << "alignstack ";
|
|
// We don't emit the AD_ATT dialect as it's the assumed default.
|
|
if (IA->getDialect() == InlineAsm::AD_Intel)
|
|
Out << "inteldialect ";
|
|
Out << '"';
|
|
PrintEscapedString(IA->getAsmString(), Out);
|
|
Out << "\", \"";
|
|
PrintEscapedString(IA->getConstraintString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
if (const MDNode *N = dyn_cast<MDNode>(V)) {
|
|
if (N->isFunctionLocal()) {
|
|
// Print metadata inline, not via slot reference number.
|
|
WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
|
|
return;
|
|
}
|
|
|
|
if (!Machine) {
|
|
if (N->isFunctionLocal())
|
|
Machine = new SlotTracker(N->getFunction());
|
|
else
|
|
Machine = new SlotTracker(Context);
|
|
}
|
|
int Slot = Machine->getMetadataSlot(N);
|
|
if (Slot == -1)
|
|
Out << "<badref>";
|
|
else
|
|
Out << '!' << Slot;
|
|
return;
|
|
}
|
|
|
|
if (const MDString *MDS = dyn_cast<MDString>(V)) {
|
|
Out << "!\"";
|
|
PrintEscapedString(MDS->getString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
if (V->getValueID() == Value::PseudoSourceValueVal ||
|
|
V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
|
|
V->print(Out);
|
|
return;
|
|
}
|
|
|
|
char Prefix = '%';
|
|
int Slot;
|
|
// If we have a SlotTracker, use it.
|
|
if (Machine) {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Slot = Machine->getGlobalSlot(GV);
|
|
Prefix = '@';
|
|
} else {
|
|
Slot = Machine->getLocalSlot(V);
|
|
|
|
// If the local value didn't succeed, then we may be referring to a value
|
|
// from a different function. Translate it, as this can happen when using
|
|
// address of blocks.
|
|
if (Slot == -1)
|
|
if ((Machine = createSlotTracker(V))) {
|
|
Slot = Machine->getLocalSlot(V);
|
|
delete Machine;
|
|
}
|
|
}
|
|
} else if ((Machine = createSlotTracker(V))) {
|
|
// Otherwise, create one to get the # and then destroy it.
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Slot = Machine->getGlobalSlot(GV);
|
|
Prefix = '@';
|
|
} else {
|
|
Slot = Machine->getLocalSlot(V);
|
|
}
|
|
delete Machine;
|
|
Machine = 0;
|
|
} else {
|
|
Slot = -1;
|
|
}
|
|
|
|
if (Slot != -1)
|
|
Out << Prefix << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
void AssemblyWriter::init() {
|
|
if (TheModule)
|
|
TypePrinter.incorporateTypes(*TheModule);
|
|
}
|
|
|
|
|
|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
|
|
const Module *M,
|
|
AssemblyAnnotationWriter *AAW)
|
|
: Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
|
|
init();
|
|
}
|
|
|
|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
|
|
AssemblyAnnotationWriter *AAW)
|
|
: Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
|
|
Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
|
|
init();
|
|
}
|
|
|
|
AssemblyWriter::~AssemblyWriter() { }
|
|
|
|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
|
|
if (Operand == 0) {
|
|
Out << "<null operand!>";
|
|
return;
|
|
}
|
|
if (PrintType) {
|
|
TypePrinter.print(Operand->getType(), Out);
|
|
Out << ' ';
|
|
}
|
|
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope) {
|
|
if (Ordering == NotAtomic)
|
|
return;
|
|
|
|
switch (SynchScope) {
|
|
case SingleThread: Out << " singlethread"; break;
|
|
case CrossThread: break;
|
|
}
|
|
|
|
switch (Ordering) {
|
|
default: Out << " <bad ordering " << int(Ordering) << ">"; break;
|
|
case Unordered: Out << " unordered"; break;
|
|
case Monotonic: Out << " monotonic"; break;
|
|
case Acquire: Out << " acquire"; break;
|
|
case Release: Out << " release"; break;
|
|
case AcquireRelease: Out << " acq_rel"; break;
|
|
case SequentiallyConsistent: Out << " seq_cst"; break;
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeParamOperand(const Value *Operand,
|
|
AttributeSet Attrs, unsigned Idx) {
|
|
if (Operand == 0) {
|
|
Out << "<null operand!>";
|
|
return;
|
|
}
|
|
|
|
// Print the type
|
|
TypePrinter.print(Operand->getType(), Out);
|
|
// Print parameter attributes list
|
|
if (Attrs.hasAttributes(Idx))
|
|
Out << ' ' << Attrs.getAsString(Idx);
|
|
Out << ' ';
|
|
// Print the operand
|
|
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::printModule(const Module *M) {
|
|
Machine.initialize();
|
|
|
|
if (!M->getModuleIdentifier().empty() &&
|
|
// Don't print the ID if it will start a new line (which would
|
|
// require a comment char before it).
|
|
M->getModuleIdentifier().find('\n') == std::string::npos)
|
|
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
|
|
|
|
const std::string &DL = M->getDataLayoutStr();
|
|
if (!DL.empty())
|
|
Out << "target datalayout = \"" << DL << "\"\n";
|
|
if (!M->getTargetTriple().empty())
|
|
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
|
|
|
|
if (!M->getModuleInlineAsm().empty()) {
|
|
// Split the string into lines, to make it easier to read the .ll file.
|
|
std::string Asm = M->getModuleInlineAsm();
|
|
size_t CurPos = 0;
|
|
size_t NewLine = Asm.find_first_of('\n', CurPos);
|
|
Out << '\n';
|
|
while (NewLine != std::string::npos) {
|
|
// We found a newline, print the portion of the asm string from the
|
|
// last newline up to this newline.
|
|
Out << "module asm \"";
|
|
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
|
|
Out);
|
|
Out << "\"\n";
|
|
CurPos = NewLine+1;
|
|
NewLine = Asm.find_first_of('\n', CurPos);
|
|
}
|
|
std::string rest(Asm.begin()+CurPos, Asm.end());
|
|
if (!rest.empty()) {
|
|
Out << "module asm \"";
|
|
PrintEscapedString(rest, Out);
|
|
Out << "\"\n";
|
|
}
|
|
}
|
|
|
|
printTypeIdentities();
|
|
|
|
// Output all globals.
|
|
if (!M->global_empty()) Out << '\n';
|
|
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
|
|
I != E; ++I) {
|
|
printGlobal(I); Out << '\n';
|
|
}
|
|
|
|
// Output all aliases.
|
|
if (!M->alias_empty()) Out << "\n";
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
printAlias(I);
|
|
|
|
// Output all of the functions.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
printFunction(I);
|
|
|
|
// Output all attribute groups.
|
|
if (!Machine.as_empty()) {
|
|
Out << '\n';
|
|
writeAllAttributeGroups();
|
|
}
|
|
|
|
// Output named metadata.
|
|
if (!M->named_metadata_empty()) Out << '\n';
|
|
|
|
for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
|
|
E = M->named_metadata_end(); I != E; ++I)
|
|
printNamedMDNode(I);
|
|
|
|
// Output metadata.
|
|
if (!Machine.mdn_empty()) {
|
|
Out << '\n';
|
|
writeAllMDNodes();
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
|
|
Out << '!';
|
|
StringRef Name = NMD->getName();
|
|
if (Name.empty()) {
|
|
Out << "<empty name> ";
|
|
} else {
|
|
if (isalpha(static_cast<unsigned char>(Name[0])) ||
|
|
Name[0] == '-' || Name[0] == '$' ||
|
|
Name[0] == '.' || Name[0] == '_')
|
|
Out << Name[0];
|
|
else
|
|
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
|
|
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
|
|
unsigned char C = Name[i];
|
|
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
|
|
C == '.' || C == '_')
|
|
Out << C;
|
|
else
|
|
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
|
|
}
|
|
}
|
|
Out << " = !{";
|
|
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
|
|
if (i) Out << ", ";
|
|
int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
|
|
if (Slot == -1)
|
|
Out << "<badref>";
|
|
else
|
|
Out << '!' << Slot;
|
|
}
|
|
Out << "}\n";
|
|
}
|
|
|
|
|
|
static void PrintLinkage(GlobalValue::LinkageTypes LT,
|
|
formatted_raw_ostream &Out) {
|
|
switch (LT) {
|
|
case GlobalValue::ExternalLinkage: break;
|
|
case GlobalValue::PrivateLinkage: Out << "private "; break;
|
|
case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
|
|
case GlobalValue::LinkerPrivateWeakLinkage:
|
|
Out << "linker_private_weak ";
|
|
break;
|
|
case GlobalValue::InternalLinkage: Out << "internal "; break;
|
|
case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
|
|
case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
|
|
case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
|
|
case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
|
|
case GlobalValue::CommonLinkage: Out << "common "; break;
|
|
case GlobalValue::AppendingLinkage: Out << "appending "; break;
|
|
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
Out << "available_externally ";
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
|
|
formatted_raw_ostream &Out) {
|
|
switch (Vis) {
|
|
case GlobalValue::DefaultVisibility: break;
|
|
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
|
|
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
|
|
}
|
|
}
|
|
|
|
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
|
|
formatted_raw_ostream &Out) {
|
|
switch (SCT) {
|
|
case GlobalValue::DefaultStorageClass: break;
|
|
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
|
|
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
|
|
}
|
|
}
|
|
|
|
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
|
|
formatted_raw_ostream &Out) {
|
|
switch (TLM) {
|
|
case GlobalVariable::NotThreadLocal:
|
|
break;
|
|
case GlobalVariable::GeneralDynamicTLSModel:
|
|
Out << "thread_local ";
|
|
break;
|
|
case GlobalVariable::LocalDynamicTLSModel:
|
|
Out << "thread_local(localdynamic) ";
|
|
break;
|
|
case GlobalVariable::InitialExecTLSModel:
|
|
Out << "thread_local(initialexec) ";
|
|
break;
|
|
case GlobalVariable::LocalExecTLSModel:
|
|
Out << "thread_local(localexec) ";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
|
|
if (GV->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
|
|
Out << " = ";
|
|
|
|
if (!GV->hasInitializer() && GV->hasExternalLinkage())
|
|
Out << "external ";
|
|
|
|
PrintLinkage(GV->getLinkage(), Out);
|
|
PrintVisibility(GV->getVisibility(), Out);
|
|
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
|
|
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
|
|
|
|
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
|
|
Out << "addrspace(" << AddressSpace << ") ";
|
|
if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
|
|
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
|
|
Out << (GV->isConstant() ? "constant " : "global ");
|
|
TypePrinter.print(GV->getType()->getElementType(), Out);
|
|
|
|
if (GV->hasInitializer()) {
|
|
Out << ' ';
|
|
writeOperand(GV->getInitializer(), false);
|
|
}
|
|
|
|
if (GV->hasSection()) {
|
|
Out << ", section \"";
|
|
PrintEscapedString(GV->getSection(), Out);
|
|
Out << '"';
|
|
}
|
|
if (GV->getAlignment())
|
|
Out << ", align " << GV->getAlignment();
|
|
|
|
printInfoComment(*GV);
|
|
}
|
|
|
|
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
|
|
if (GA->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
// Don't crash when dumping partially built GA
|
|
if (!GA->hasName())
|
|
Out << "<<nameless>> = ";
|
|
else {
|
|
PrintLLVMName(Out, GA);
|
|
Out << " = ";
|
|
}
|
|
PrintVisibility(GA->getVisibility(), Out);
|
|
PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
|
|
|
|
Out << "alias ";
|
|
|
|
PrintLinkage(GA->getLinkage(), Out);
|
|
|
|
const Constant *Aliasee = GA->getAliasee();
|
|
|
|
if (Aliasee == 0) {
|
|
TypePrinter.print(GA->getType(), Out);
|
|
Out << " <<NULL ALIASEE>>";
|
|
} else {
|
|
writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
|
|
}
|
|
|
|
printInfoComment(*GA);
|
|
Out << '\n';
|
|
}
|
|
|
|
void AssemblyWriter::printTypeIdentities() {
|
|
if (TypePrinter.NumberedTypes.empty() &&
|
|
TypePrinter.NamedTypes.empty())
|
|
return;
|
|
|
|
Out << '\n';
|
|
|
|
// We know all the numbers that each type is used and we know that it is a
|
|
// dense assignment. Convert the map to an index table.
|
|
std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
|
|
for (DenseMap<StructType*, unsigned>::iterator I =
|
|
TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
|
|
I != E; ++I) {
|
|
assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
|
|
NumberedTypes[I->second] = I->first;
|
|
}
|
|
|
|
// Emit all numbered types.
|
|
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
|
|
Out << '%' << i << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %2 = type %2
|
|
TypePrinter.printStructBody(NumberedTypes[i], Out);
|
|
Out << '\n';
|
|
}
|
|
|
|
for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
|
|
PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
|
|
Out << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %FILE = type %FILE
|
|
TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
/// printFunction - Print all aspects of a function.
|
|
///
|
|
void AssemblyWriter::printFunction(const Function *F) {
|
|
// Print out the return type and name.
|
|
Out << '\n';
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
|
|
|
|
if (F->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
const AttributeSet &Attrs = F->getAttributes();
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
|
|
AttributeSet AS = Attrs.getFnAttributes();
|
|
std::string AttrStr;
|
|
|
|
unsigned Idx = 0;
|
|
for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
|
|
if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
|
|
break;
|
|
|
|
for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
|
|
I != E; ++I) {
|
|
Attribute Attr = *I;
|
|
if (!Attr.isStringAttribute()) {
|
|
if (!AttrStr.empty()) AttrStr += ' ';
|
|
AttrStr += Attr.getAsString();
|
|
}
|
|
}
|
|
|
|
if (!AttrStr.empty())
|
|
Out << "; Function Attrs: " << AttrStr << '\n';
|
|
}
|
|
|
|
if (F->isDeclaration())
|
|
Out << "declare ";
|
|
else
|
|
Out << "define ";
|
|
|
|
PrintLinkage(F->getLinkage(), Out);
|
|
PrintVisibility(F->getVisibility(), Out);
|
|
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
|
|
|
|
// Print the calling convention.
|
|
if (F->getCallingConv() != CallingConv::C) {
|
|
PrintCallingConv(F->getCallingConv(), Out);
|
|
Out << " ";
|
|
}
|
|
|
|
FunctionType *FT = F->getFunctionType();
|
|
if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
|
|
Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
|
|
TypePrinter.print(F->getReturnType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
|
|
Out << '(';
|
|
Machine.incorporateFunction(F);
|
|
|
|
// Loop over the arguments, printing them...
|
|
|
|
unsigned Idx = 1;
|
|
if (!F->isDeclaration()) {
|
|
// If this isn't a declaration, print the argument names as well.
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (I != F->arg_begin()) Out << ", ";
|
|
printArgument(I, Attrs, Idx);
|
|
Idx++;
|
|
}
|
|
} else {
|
|
// Otherwise, print the types from the function type.
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (i) Out << ", ";
|
|
|
|
// Output type...
|
|
TypePrinter.print(FT->getParamType(i), Out);
|
|
|
|
if (Attrs.hasAttributes(i+1))
|
|
Out << ' ' << Attrs.getAsString(i+1);
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments...
|
|
if (FT->isVarArg()) {
|
|
if (FT->getNumParams()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ')';
|
|
if (F->hasUnnamedAddr())
|
|
Out << " unnamed_addr";
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
|
|
if (F->hasSection()) {
|
|
Out << " section \"";
|
|
PrintEscapedString(F->getSection(), Out);
|
|
Out << '"';
|
|
}
|
|
if (F->getAlignment())
|
|
Out << " align " << F->getAlignment();
|
|
if (F->hasGC())
|
|
Out << " gc \"" << F->getGC() << '"';
|
|
if (F->hasPrefixData()) {
|
|
Out << " prefix ";
|
|
writeOperand(F->getPrefixData(), true);
|
|
}
|
|
if (F->isDeclaration()) {
|
|
Out << '\n';
|
|
} else {
|
|
Out << " {";
|
|
// Output all of the function's basic blocks.
|
|
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
printBasicBlock(I);
|
|
|
|
Out << "}\n";
|
|
}
|
|
|
|
Machine.purgeFunction();
|
|
}
|
|
|
|
/// printArgument - This member is called for every argument that is passed into
|
|
/// the function. Simply print it out
|
|
///
|
|
void AssemblyWriter::printArgument(const Argument *Arg,
|
|
AttributeSet Attrs, unsigned Idx) {
|
|
// Output type...
|
|
TypePrinter.print(Arg->getType(), Out);
|
|
|
|
// Output parameter attributes list
|
|
if (Attrs.hasAttributes(Idx))
|
|
Out << ' ' << Attrs.getAsString(Idx);
|
|
|
|
// Output name, if available...
|
|
if (Arg->hasName()) {
|
|
Out << ' ';
|
|
PrintLLVMName(Out, Arg);
|
|
}
|
|
}
|
|
|
|
/// printBasicBlock - This member is called for each basic block in a method.
|
|
///
|
|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
|
|
if (BB->hasName()) { // Print out the label if it exists...
|
|
Out << "\n";
|
|
PrintLLVMName(Out, BB->getName(), LabelPrefix);
|
|
Out << ':';
|
|
} else if (!BB->use_empty()) { // Don't print block # of no uses...
|
|
Out << "\n; <label>:";
|
|
int Slot = Machine.getLocalSlot(BB);
|
|
if (Slot != -1)
|
|
Out << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
if (BB->getParent() == 0) {
|
|
Out.PadToColumn(50);
|
|
Out << "; Error: Block without parent!";
|
|
} else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
|
|
// Output predecessors for the block.
|
|
Out.PadToColumn(50);
|
|
Out << ";";
|
|
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
if (PI == PE) {
|
|
Out << " No predecessors!";
|
|
} else {
|
|
Out << " preds = ";
|
|
writeOperand(*PI, false);
|
|
for (++PI; PI != PE; ++PI) {
|
|
Out << ", ";
|
|
writeOperand(*PI, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
printInstructionLine(*I);
|
|
}
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
|
|
}
|
|
|
|
/// printInstructionLine - Print an instruction and a newline character.
|
|
void AssemblyWriter::printInstructionLine(const Instruction &I) {
|
|
printInstruction(I);
|
|
Out << '\n';
|
|
}
|
|
|
|
/// printInfoComment - Print a little comment after the instruction indicating
|
|
/// which slot it occupies.
|
|
///
|
|
void AssemblyWriter::printInfoComment(const Value &V) {
|
|
if (AnnotationWriter)
|
|
AnnotationWriter->printInfoComment(V, Out);
|
|
}
|
|
|
|
// This member is called for each Instruction in a function..
|
|
void AssemblyWriter::printInstruction(const Instruction &I) {
|
|
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
|
|
|
|
// Print out indentation for an instruction.
|
|
Out << " ";
|
|
|
|
// Print out name if it exists...
|
|
if (I.hasName()) {
|
|
PrintLLVMName(Out, &I);
|
|
Out << " = ";
|
|
} else if (!I.getType()->isVoidTy()) {
|
|
// Print out the def slot taken.
|
|
int SlotNum = Machine.getLocalSlot(&I);
|
|
if (SlotNum == -1)
|
|
Out << "<badref> = ";
|
|
else
|
|
Out << '%' << SlotNum << " = ";
|
|
}
|
|
|
|
if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
|
|
Out << "tail ";
|
|
|
|
// Print out the opcode...
|
|
Out << I.getOpcodeName();
|
|
|
|
// If this is an atomic load or store, print out the atomic marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
|
|
Out << " atomic";
|
|
|
|
// If this is a volatile operation, print out the volatile marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
|
|
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
|
|
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
|
|
Out << " volatile";
|
|
|
|
// Print out optimization information.
|
|
WriteOptimizationInfo(Out, &I);
|
|
|
|
// Print out the compare instruction predicates
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
|
|
Out << ' ' << getPredicateText(CI->getPredicate());
|
|
|
|
// Print out the atomicrmw operation
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
|
|
writeAtomicRMWOperation(Out, RMWI->getOperation());
|
|
|
|
// Print out the type of the operands...
|
|
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
|
|
|
|
// Special case conditional branches to swizzle the condition out to the front
|
|
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
|
|
const BranchInst &BI(cast<BranchInst>(I));
|
|
Out << ' ';
|
|
writeOperand(BI.getCondition(), true);
|
|
Out << ", ";
|
|
writeOperand(BI.getSuccessor(0), true);
|
|
Out << ", ";
|
|
writeOperand(BI.getSuccessor(1), true);
|
|
|
|
} else if (isa<SwitchInst>(I)) {
|
|
const SwitchInst& SI(cast<SwitchInst>(I));
|
|
// Special case switch instruction to get formatting nice and correct.
|
|
Out << ' ';
|
|
writeOperand(SI.getCondition(), true);
|
|
Out << ", ";
|
|
writeOperand(SI.getDefaultDest(), true);
|
|
Out << " [";
|
|
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
|
|
i != e; ++i) {
|
|
Out << "\n ";
|
|
writeOperand(i.getCaseValue(), true);
|
|
Out << ", ";
|
|
writeOperand(i.getCaseSuccessor(), true);
|
|
}
|
|
Out << "\n ]";
|
|
} else if (isa<IndirectBrInst>(I)) {
|
|
// Special case indirectbr instruction to get formatting nice and correct.
|
|
Out << ' ';
|
|
writeOperand(Operand, true);
|
|
Out << ", [";
|
|
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
if (i != 1)
|
|
Out << ", ";
|
|
writeOperand(I.getOperand(i), true);
|
|
}
|
|
Out << ']';
|
|
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(I.getType(), Out);
|
|
Out << ' ';
|
|
|
|
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
|
|
if (op) Out << ", ";
|
|
Out << "[ ";
|
|
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
|
|
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
|
|
}
|
|
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
|
|
Out << ' ';
|
|
writeOperand(I.getOperand(0), true);
|
|
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
|
|
Out << ", " << *i;
|
|
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
|
|
Out << ' ';
|
|
writeOperand(I.getOperand(0), true); Out << ", ";
|
|
writeOperand(I.getOperand(1), true);
|
|
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
|
|
Out << ", " << *i;
|
|
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(I.getType(), Out);
|
|
Out << " personality ";
|
|
writeOperand(I.getOperand(0), true); Out << '\n';
|
|
|
|
if (LPI->isCleanup())
|
|
Out << " cleanup";
|
|
|
|
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
|
|
if (i != 0 || LPI->isCleanup()) Out << "\n";
|
|
if (LPI->isCatch(i))
|
|
Out << " catch ";
|
|
else
|
|
Out << " filter ";
|
|
|
|
writeOperand(LPI->getClause(i), true);
|
|
}
|
|
} else if (isa<ReturnInst>(I) && !Operand) {
|
|
Out << " void";
|
|
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Print the calling convention being used.
|
|
if (CI->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(CI->getCallingConv(), Out);
|
|
}
|
|
|
|
Operand = CI->getCalledValue();
|
|
PointerType *PTy = cast<PointerType>(Operand->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeSet &PAL = CI->getAttributes();
|
|
|
|
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
|
|
|
|
// If possible, print out the short form of the call instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
if (!FTy->isVarArg() &&
|
|
(!RetTy->isPointerTy() ||
|
|
!cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
|
|
TypePrinter.print(RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
} else {
|
|
writeOperand(Operand, true);
|
|
}
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op > 0)
|
|
Out << ", ";
|
|
writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
|
|
}
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
Operand = II->getCalledValue();
|
|
PointerType *PTy = cast<PointerType>(Operand->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeSet &PAL = II->getAttributes();
|
|
|
|
// Print the calling convention being used.
|
|
if (II->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(II->getCallingConv(), Out);
|
|
}
|
|
|
|
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
|
|
|
|
// If possible, print out the short form of the invoke instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
if (!FTy->isVarArg() &&
|
|
(!RetTy->isPointerTy() ||
|
|
!cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
|
|
TypePrinter.print(RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
} else {
|
|
writeOperand(Operand, true);
|
|
}
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op)
|
|
Out << ", ";
|
|
writeParamOperand(II->getArgOperand(op), PAL, op + 1);
|
|
}
|
|
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
|
|
Out << "\n to ";
|
|
writeOperand(II->getNormalDest(), true);
|
|
Out << " unwind ";
|
|
writeOperand(II->getUnwindDest(), true);
|
|
|
|
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(AI->getAllocatedType(), Out);
|
|
if (AI->isUsedWithInAlloca())
|
|
Out << ", inalloca";
|
|
if (!AI->getArraySize() || AI->isArrayAllocation()) {
|
|
Out << ", ";
|
|
writeOperand(AI->getArraySize(), true);
|
|
}
|
|
if (AI->getAlignment()) {
|
|
Out << ", align " << AI->getAlignment();
|
|
}
|
|
} else if (isa<CastInst>(I)) {
|
|
if (Operand) {
|
|
Out << ' ';
|
|
writeOperand(Operand, true); // Work with broken code
|
|
}
|
|
Out << " to ";
|
|
TypePrinter.print(I.getType(), Out);
|
|
} else if (isa<VAArgInst>(I)) {
|
|
if (Operand) {
|
|
Out << ' ';
|
|
writeOperand(Operand, true); // Work with broken code
|
|
}
|
|
Out << ", ";
|
|
TypePrinter.print(I.getType(), Out);
|
|
} else if (Operand) { // Print the normal way.
|
|
|
|
// PrintAllTypes - Instructions who have operands of all the same type
|
|
// omit the type from all but the first operand. If the instruction has
|
|
// different type operands (for example br), then they are all printed.
|
|
bool PrintAllTypes = false;
|
|
Type *TheType = Operand->getType();
|
|
|
|
// Select, Store and ShuffleVector always print all types.
|
|
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|
|
|| isa<ReturnInst>(I)) {
|
|
PrintAllTypes = true;
|
|
} else {
|
|
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
|
|
Operand = I.getOperand(i);
|
|
// note that Operand shouldn't be null, but the test helps make dump()
|
|
// more tolerant of malformed IR
|
|
if (Operand && Operand->getType() != TheType) {
|
|
PrintAllTypes = true; // We have differing types! Print them all!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!PrintAllTypes) {
|
|
Out << ' ';
|
|
TypePrinter.print(TheType, Out);
|
|
}
|
|
|
|
Out << ' ';
|
|
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
|
|
if (i) Out << ", ";
|
|
writeOperand(I.getOperand(i), PrintAllTypes);
|
|
}
|
|
}
|
|
|
|
// Print atomic ordering/alignment for memory operations
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (LI->isAtomic())
|
|
writeAtomic(LI->getOrdering(), LI->getSynchScope());
|
|
if (LI->getAlignment())
|
|
Out << ", align " << LI->getAlignment();
|
|
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (SI->isAtomic())
|
|
writeAtomic(SI->getOrdering(), SI->getSynchScope());
|
|
if (SI->getAlignment())
|
|
Out << ", align " << SI->getAlignment();
|
|
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
|
|
writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
|
|
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
|
|
writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
|
|
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
|
|
writeAtomic(FI->getOrdering(), FI->getSynchScope());
|
|
}
|
|
|
|
// Print Metadata info.
|
|
SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
|
|
I.getAllMetadata(InstMD);
|
|
if (!InstMD.empty()) {
|
|
SmallVector<StringRef, 8> MDNames;
|
|
I.getType()->getContext().getMDKindNames(MDNames);
|
|
for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
|
|
unsigned Kind = InstMD[i].first;
|
|
if (Kind < MDNames.size()) {
|
|
Out << ", !" << MDNames[Kind];
|
|
} else {
|
|
Out << ", !<unknown kind #" << Kind << ">";
|
|
}
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
|
|
TheModule);
|
|
}
|
|
}
|
|
printInfoComment(I);
|
|
}
|
|
|
|
static void WriteMDNodeComment(const MDNode *Node,
|
|
formatted_raw_ostream &Out) {
|
|
if (Node->getNumOperands() < 1)
|
|
return;
|
|
|
|
Value *Op = Node->getOperand(0);
|
|
if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
|
|
return;
|
|
|
|
DIDescriptor Desc(Node);
|
|
if (!Desc.Verify())
|
|
return;
|
|
|
|
unsigned Tag = Desc.getTag();
|
|
Out.PadToColumn(50);
|
|
if (dwarf::TagString(Tag)) {
|
|
Out << "; ";
|
|
Desc.print(Out);
|
|
} else if (Tag == dwarf::DW_TAG_user_base) {
|
|
Out << "; [ DW_TAG_user_base ]";
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
|
|
Out << '!' << Slot << " = metadata ";
|
|
printMDNodeBody(Node);
|
|
}
|
|
|
|
void AssemblyWriter::writeAllMDNodes() {
|
|
SmallVector<const MDNode *, 16> Nodes;
|
|
Nodes.resize(Machine.mdn_size());
|
|
for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
|
|
I != E; ++I)
|
|
Nodes[I->second] = cast<MDNode>(I->first);
|
|
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
writeMDNode(i, Nodes[i]);
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
|
|
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
|
|
WriteMDNodeComment(Node, Out);
|
|
Out << "\n";
|
|
}
|
|
|
|
void AssemblyWriter::writeAllAttributeGroups() {
|
|
std::vector<std::pair<AttributeSet, unsigned> > asVec;
|
|
asVec.resize(Machine.as_size());
|
|
|
|
for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
|
|
I != E; ++I)
|
|
asVec[I->second] = *I;
|
|
|
|
for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
|
|
I = asVec.begin(), E = asVec.end(); I != E; ++I)
|
|
Out << "attributes #" << I->second << " = { "
|
|
<< I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
|
|
}
|
|
|
|
} // namespace llvm
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
|
|
SlotTracker SlotTable(this);
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this, AAW);
|
|
W.printModule(this);
|
|
}
|
|
|
|
void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
|
|
SlotTracker SlotTable(getParent());
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, getParent(), AAW);
|
|
W.printNamedMDNode(this);
|
|
}
|
|
|
|
void Type::print(raw_ostream &OS) const {
|
|
if (this == 0) {
|
|
OS << "<null Type>";
|
|
return;
|
|
}
|
|
TypePrinting TP;
|
|
TP.print(const_cast<Type*>(this), OS);
|
|
|
|
// If the type is a named struct type, print the body as well.
|
|
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
|
|
if (!STy->isLiteral()) {
|
|
OS << " = type ";
|
|
TP.printStructBody(STy, OS);
|
|
}
|
|
}
|
|
|
|
void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
|
|
if (this == 0) {
|
|
ROS << "printing a <null> value\n";
|
|
return;
|
|
}
|
|
formatted_raw_ostream OS(ROS);
|
|
if (const Instruction *I = dyn_cast<Instruction>(this)) {
|
|
const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
|
|
SlotTracker SlotTable(F);
|
|
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
|
|
W.printInstruction(*I);
|
|
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
|
|
SlotTracker SlotTable(BB->getParent());
|
|
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
|
|
W.printBasicBlock(BB);
|
|
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
|
|
SlotTracker SlotTable(GV->getParent());
|
|
AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
|
|
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
|
|
W.printGlobal(V);
|
|
else if (const Function *F = dyn_cast<Function>(GV))
|
|
W.printFunction(F);
|
|
else
|
|
W.printAlias(cast<GlobalAlias>(GV));
|
|
} else if (const MDNode *N = dyn_cast<MDNode>(this)) {
|
|
const Function *F = N->getFunction();
|
|
SlotTracker SlotTable(F);
|
|
AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
|
|
W.printMDNodeBody(N);
|
|
} else if (const Constant *C = dyn_cast<Constant>(this)) {
|
|
TypePrinting TypePrinter;
|
|
TypePrinter.print(C->getType(), OS);
|
|
OS << ' ';
|
|
WriteConstantInternal(OS, C, TypePrinter, 0, 0);
|
|
} else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
|
|
isa<Argument>(this)) {
|
|
this->printAsOperand(OS);
|
|
} else {
|
|
// Otherwise we don't know what it is. Call the virtual function to
|
|
// allow a subclass to print itself.
|
|
printCustom(OS);
|
|
}
|
|
}
|
|
|
|
void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const {
|
|
// Fast path: Don't construct and populate a TypePrinting object if we
|
|
// won't be needing any types printed.
|
|
if (!PrintType &&
|
|
((!isa<Constant>(this) && !isa<MDNode>(this)) ||
|
|
hasName() || isa<GlobalValue>(this))) {
|
|
WriteAsOperandInternal(O, this, 0, 0, M);
|
|
return;
|
|
}
|
|
|
|
if (!M)
|
|
M = getModuleFromVal(this);
|
|
|
|
TypePrinting TypePrinter;
|
|
if (M)
|
|
TypePrinter.incorporateTypes(*M);
|
|
if (PrintType) {
|
|
TypePrinter.print(getType(), O);
|
|
O << ' ';
|
|
}
|
|
|
|
WriteAsOperandInternal(O, this, &TypePrinter, 0, M);
|
|
}
|
|
|
|
// Value::printCustom - subclasses should override this to implement printing.
|
|
void Value::printCustom(raw_ostream &OS) const {
|
|
llvm_unreachable("Unknown value to print out!");
|
|
}
|
|
|
|
// Value::dump - allow easy printing of Values from the debugger.
|
|
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
|
|
|
|
// Type::dump - allow easy printing of Types from the debugger.
|
|
void Type::dump() const { print(dbgs()); }
|
|
|
|
// Module::dump() - Allow printing of Modules from the debugger.
|
|
void Module::dump() const { print(dbgs(), 0); }
|
|
|
|
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
|
|
void NamedMDNode::dump() const { print(dbgs(), 0); }
|