llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
David Tweed abb38fe8de Minor changes to the MCJITTest unittests to use the correct API for finalizing
the JIT object (including XFAIL an ARM test that now needs fixing). Also renames
internal function for consistency.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182085 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-17 10:01:46 +00:00

264 lines
9.4 KiB
C++

//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the section-based memory manager used by the MCJIT
// execution engine and RuntimeDyld
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/MathExtras.h"
#ifdef __linux__
// These includes used by SectionMemoryManager::getPointerToNamedFunction()
// for Glibc trickery. See comments in this function for more information.
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#endif
namespace llvm {
uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
bool IsReadOnly) {
if (IsReadOnly)
return allocateSection(RODataMem, Size, Alignment);
return allocateSection(RWDataMem, Size, Alignment);
}
uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID) {
return allocateSection(CodeMem, Size, Alignment);
}
uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup,
uintptr_t Size,
unsigned Alignment) {
if (!Alignment)
Alignment = 16;
assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1);
uintptr_t Addr = 0;
// Look in the list of free memory regions and use a block there if one
// is available.
for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) {
sys::MemoryBlock &MB = MemGroup.FreeMem[i];
if (MB.size() >= RequiredSize) {
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// Store cutted free memory block.
MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
EndOfBlock - Addr - Size);
return (uint8_t*)Addr;
}
}
// No pre-allocated free block was large enough. Allocate a new memory region.
// Note that all sections get allocated as read-write. The permissions will
// be updated later based on memory group.
//
// FIXME: It would be useful to define a default allocation size (or add
// it as a constructor parameter) to minimize the number of allocations.
//
// FIXME: Initialize the Near member for each memory group to avoid
// interleaving.
error_code ec;
sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize,
&MemGroup.Near,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
ec);
if (ec) {
// FIXME: Add error propogation to the interface.
return NULL;
}
// Save this address as the basis for our next request
MemGroup.Near = MB;
MemGroup.AllocatedMem.push_back(MB);
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// The allocateMappedMemory may allocate much more memory than we need. In
// this case, we store the unused memory as a free memory block.
unsigned FreeSize = EndOfBlock-Addr-Size;
if (FreeSize > 16)
MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
// Return aligned address
return (uint8_t*)Addr;
}
bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg)
{
// FIXME: Should in-progress permissions be reverted if an error occurs?
error_code ec;
// Make code memory executable.
ec = applyMemoryGroupPermissions(CodeMem,
sys::Memory::MF_READ | sys::Memory::MF_EXEC);
if (ec) {
if (ErrMsg) {
*ErrMsg = ec.message();
}
return true;
}
// Make read-only data memory read-only.
ec = applyMemoryGroupPermissions(RODataMem,
sys::Memory::MF_READ | sys::Memory::MF_EXEC);
if (ec) {
if (ErrMsg) {
*ErrMsg = ec.message();
}
return true;
}
// Read-write data memory already has the correct permissions
// Some platforms with separate data cache and instruction cache require
// explicit cache flush, otherwise JIT code manipulations (like resolved
// relocations) will get to the data cache but not to the instruction cache.
invalidateInstructionCache();
return false;
}
// Determine whether we can register EH tables.
#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
!defined(__USING_SJLJ_EXCEPTIONS__))
#define HAVE_EHTABLE_SUPPORT 1
#else
#define HAVE_EHTABLE_SUPPORT 0
#endif
#if HAVE_EHTABLE_SUPPORT
extern "C" void __register_frame(void*);
static const char *processFDE(const char *Entry) {
const char *P = Entry;
uint32_t Length = *((uint32_t*)P);
P += 4;
uint32_t Offset = *((uint32_t*)P);
if (Offset != 0)
__register_frame((void*)Entry);
return P + Length;
}
#endif
void SectionMemoryManager::registerEHFrames(StringRef SectionData) {
#if HAVE_EHTABLE_SUPPORT
const char *P = SectionData.data();
const char *End = SectionData.data() + SectionData.size();
do {
P = processFDE(P);
} while(P != End);
#endif
}
error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
unsigned Permissions) {
for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) {
error_code ec;
ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i],
Permissions);
if (ec) {
return ec;
}
}
return error_code::success();
}
void SectionMemoryManager::invalidateInstructionCache() {
for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(),
CodeMem.AllocatedMem[i].size());
}
static int jit_noop() {
return 0;
}
void *SectionMemoryManager::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
#if defined(__linux__)
//===--------------------------------------------------------------------===//
// Function stubs that are invoked instead of certain library calls
//
// Force the following functions to be linked in to anything that uses the
// JIT. This is a hack designed to work around the all-too-clever Glibc
// strategy of making these functions work differently when inlined vs. when
// not inlined, and hiding their real definitions in a separate archive file
// that the dynamic linker can't see. For more info, search for
// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
if (Name == "stat") return (void*)(intptr_t)&stat;
if (Name == "fstat") return (void*)(intptr_t)&fstat;
if (Name == "lstat") return (void*)(intptr_t)&lstat;
if (Name == "stat64") return (void*)(intptr_t)&stat64;
if (Name == "fstat64") return (void*)(intptr_t)&fstat64;
if (Name == "lstat64") return (void*)(intptr_t)&lstat64;
if (Name == "atexit") return (void*)(intptr_t)&atexit;
if (Name == "mknod") return (void*)(intptr_t)&mknod;
#endif // __linux__
// We should not invoke parent's ctors/dtors from generated main()!
// On Mingw and Cygwin, the symbol __main is resolved to
// callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
// (and register wrong callee's dtors with atexit(3)).
// We expect ExecutionEngine::runStaticConstructorsDestructors()
// is called before ExecutionEngine::runFunctionAsMain() is called.
if (Name == "__main") return (void*)(intptr_t)&jit_noop;
const char *NameStr = Name.c_str();
void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
if (Ptr) return Ptr;
// If it wasn't found and if it starts with an underscore ('_') character,
// try again without the underscore.
if (NameStr[0] == '_') {
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
if (Ptr) return Ptr;
}
if (AbortOnFailure)
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
return 0;
}
SectionMemoryManager::~SectionMemoryManager() {
for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]);
for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]);
for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i)
sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]);
}
} // namespace llvm