llvm/lib/Target/R600/R600InstrInfo.cpp
Tom Stellard ad7ecc65b1 R600: Make sure to schedule AR register uses and defs in the same clause
Reviewed-by: vljn at ovi.com

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183294 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-05 03:43:06 +00:00

1142 lines
35 KiB
C++

//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief R600 Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "R600InstrInfo.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#define GET_INSTRINFO_CTOR
#include "AMDGPUGenDFAPacketizer.inc"
using namespace llvm;
R600InstrInfo::R600InstrInfo(AMDGPUTargetMachine &tm)
: AMDGPUInstrInfo(tm),
RI(tm, *this),
ST(tm.getSubtarget<AMDGPUSubtarget>())
{ }
const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const {
return RI;
}
bool R600InstrInfo::isTrig(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG;
}
bool R600InstrInfo::isVector(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
}
void
R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
if (AMDGPU::R600_Reg128RegClass.contains(DestReg)
&& AMDGPU::R600_Reg128RegClass.contains(SrcReg)) {
for (unsigned I = 0; I < 4; I++) {
unsigned SubRegIndex = RI.getSubRegFromChannel(I);
buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
RI.getSubReg(DestReg, SubRegIndex),
RI.getSubReg(SrcReg, SubRegIndex))
.addReg(DestReg,
RegState::Define | RegState::Implicit);
}
} else {
// We can't copy vec4 registers
assert(!AMDGPU::R600_Reg128RegClass.contains(DestReg)
&& !AMDGPU::R600_Reg128RegClass.contains(SrcReg));
MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
DestReg, SrcReg);
NewMI->getOperand(getOperandIdx(*NewMI, R600Operands::SRC0))
.setIsKill(KillSrc);
}
}
MachineInstr * R600InstrInfo::getMovImmInstr(MachineFunction *MF,
unsigned DstReg, int64_t Imm) const {
MachineInstr * MI = MF->CreateMachineInstr(get(AMDGPU::MOV), DebugLoc());
MachineInstrBuilder MIB(*MF, MI);
MIB.addReg(DstReg, RegState::Define);
MIB.addReg(AMDGPU::ALU_LITERAL_X);
MIB.addImm(Imm);
MIB.addReg(0); // PREDICATE_BIT
return MI;
}
unsigned R600InstrInfo::getIEQOpcode() const {
return AMDGPU::SETE_INT;
}
bool R600InstrInfo::isMov(unsigned Opcode) const {
switch(Opcode) {
default: return false;
case AMDGPU::MOV:
case AMDGPU::MOV_IMM_F32:
case AMDGPU::MOV_IMM_I32:
return true;
}
}
// Some instructions act as place holders to emulate operations that the GPU
// hardware does automatically. This function can be used to check if
// an opcode falls into this category.
bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const {
switch (Opcode) {
default: return false;
case AMDGPU::RETURN:
return true;
}
}
bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
switch(Opcode) {
default: return false;
}
}
bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
switch(Opcode) {
default: return false;
case AMDGPU::CUBE_r600_pseudo:
case AMDGPU::CUBE_r600_real:
case AMDGPU::CUBE_eg_pseudo:
case AMDGPU::CUBE_eg_real:
return true;
}
}
bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
unsigned TargetFlags = get(Opcode).TSFlags;
return ((TargetFlags & R600_InstFlag::OP1) |
(TargetFlags & R600_InstFlag::OP2) |
(TargetFlags & R600_InstFlag::OP3));
}
bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
return (get(Opcode).TSFlags & R600_InstFlag::TRANS_ONLY);
}
bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const {
return isTransOnly(MI->getOpcode());
}
bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
return ST.hasVertexCache() && IS_VTX(get(Opcode));
}
bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const {
const R600MachineFunctionInfo *MFI = MI->getParent()->getParent()->getInfo<R600MachineFunctionInfo>();
return MFI->ShaderType != ShaderType::COMPUTE && usesVertexCache(MI->getOpcode());
}
bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
}
bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const {
const R600MachineFunctionInfo *MFI = MI->getParent()->getParent()->getInfo<R600MachineFunctionInfo>();
return (MFI->ShaderType == ShaderType::COMPUTE && usesVertexCache(MI->getOpcode())) ||
usesTextureCache(MI->getOpcode());
}
SmallVector<std::pair<MachineOperand *, int64_t>, 3>
R600InstrInfo::getSrcs(MachineInstr *MI) const {
SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
if (MI->getOpcode() == AMDGPU::DOT_4) {
static const R600Operands::VecOps OpTable[8][2] = {
{R600Operands::SRC0_X, R600Operands::SRC0_SEL_X},
{R600Operands::SRC0_Y, R600Operands::SRC0_SEL_Y},
{R600Operands::SRC0_Z, R600Operands::SRC0_SEL_Z},
{R600Operands::SRC0_W, R600Operands::SRC0_SEL_W},
{R600Operands::SRC1_X, R600Operands::SRC1_SEL_X},
{R600Operands::SRC1_Y, R600Operands::SRC1_SEL_Y},
{R600Operands::SRC1_Z, R600Operands::SRC1_SEL_Z},
{R600Operands::SRC1_W, R600Operands::SRC1_SEL_W},
};
for (unsigned j = 0; j < 8; j++) {
MachineOperand &MO = MI->getOperand(OpTable[j][0] + 1);
unsigned Reg = MO.getReg();
if (Reg == AMDGPU::ALU_CONST) {
unsigned Sel = MI->getOperand(OpTable[j][1] + 1).getImm();
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
continue;
}
}
return Result;
}
static const R600Operands::Ops OpTable[3][2] = {
{R600Operands::SRC0, R600Operands::SRC0_SEL},
{R600Operands::SRC1, R600Operands::SRC1_SEL},
{R600Operands::SRC2, R600Operands::SRC2_SEL},
};
for (unsigned j = 0; j < 3; j++) {
int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]);
if (SrcIdx < 0)
break;
MachineOperand &MO = MI->getOperand(SrcIdx);
unsigned Reg = MI->getOperand(SrcIdx).getReg();
if (Reg == AMDGPU::ALU_CONST) {
unsigned Sel = MI->getOperand(
getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm();
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
continue;
}
if (Reg == AMDGPU::ALU_LITERAL_X) {
unsigned Imm = MI->getOperand(
getOperandIdx(MI->getOpcode(), R600Operands::IMM)).getImm();
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm));
continue;
}
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0));
}
return Result;
}
std::vector<std::pair<int, unsigned> >
R600InstrInfo::ExtractSrcs(MachineInstr *MI,
const DenseMap<unsigned, unsigned> &PV)
const {
const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs = getSrcs(MI);
const std::pair<int, unsigned> DummyPair(-1, 0);
std::vector<std::pair<int, unsigned> > Result;
unsigned i = 0;
for (unsigned n = Srcs.size(); i < n; ++i) {
unsigned Reg = Srcs[i].first->getReg();
unsigned Index = RI.getEncodingValue(Reg) & 0xff;
unsigned Chan = RI.getHWRegChan(Reg);
if (Index > 127) {
Result.push_back(DummyPair);
continue;
}
if (PV.find(Index) != PV.end()) {
Result.push_back(DummyPair);
continue;
}
Result.push_back(std::pair<int, unsigned>(Index, Chan));
}
for (; i < 3; ++i)
Result.push_back(DummyPair);
return Result;
}
static std::vector<std::pair<int, unsigned> >
Swizzle(std::vector<std::pair<int, unsigned> > Src,
R600InstrInfo::BankSwizzle Swz) {
switch (Swz) {
case R600InstrInfo::ALU_VEC_012:
break;
case R600InstrInfo::ALU_VEC_021:
std::swap(Src[1], Src[2]);
break;
case R600InstrInfo::ALU_VEC_102:
std::swap(Src[0], Src[1]);
break;
case R600InstrInfo::ALU_VEC_120:
std::swap(Src[0], Src[1]);
std::swap(Src[0], Src[2]);
break;
case R600InstrInfo::ALU_VEC_201:
std::swap(Src[0], Src[2]);
std::swap(Src[0], Src[1]);
break;
case R600InstrInfo::ALU_VEC_210:
std::swap(Src[0], Src[2]);
break;
}
return Src;
}
static bool
isLegal(const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
const std::vector<R600InstrInfo::BankSwizzle> &Swz,
unsigned CheckedSize) {
int Vector[4][3];
memset(Vector, -1, sizeof(Vector));
for (unsigned i = 0; i < CheckedSize; i++) {
const std::vector<std::pair<int, unsigned> > &Srcs =
Swizzle(IGSrcs[i], Swz[i]);
for (unsigned j = 0; j < 3; j++) {
const std::pair<int, unsigned> &Src = Srcs[j];
if (Src.first < 0)
continue;
if (Vector[Src.second][j] < 0)
Vector[Src.second][j] = Src.first;
if (Vector[Src.second][j] != Src.first)
return false;
}
}
return true;
}
static bool recursiveFitsFPLimitation(
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
unsigned Depth = 0) {
if (!isLegal(IGSrcs, SwzCandidate, Depth))
return false;
if (IGSrcs.size() == Depth)
return true;
unsigned i = SwzCandidate[Depth];
for (; i < 6; i++) {
SwzCandidate[Depth] = (R600InstrInfo::BankSwizzle) i;
if (recursiveFitsFPLimitation(IGSrcs, SwzCandidate, Depth + 1))
return true;
}
SwzCandidate[Depth] = R600InstrInfo::ALU_VEC_012;
return false;
}
bool
R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
const DenseMap<unsigned, unsigned> &PV,
std::vector<BankSwizzle> &ValidSwizzle)
const {
//Todo : support shared src0 - src1 operand
std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs;
ValidSwizzle.clear();
for (unsigned i = 0, e = IG.size(); i < e; ++i) {
IGSrcs.push_back(ExtractSrcs(IG[i], PV));
unsigned Op = getOperandIdx(IG[i]->getOpcode(),
R600Operands::BANK_SWIZZLE);
ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
IG[i]->getOperand(Op).getImm());
}
bool Result = recursiveFitsFPLimitation(IGSrcs, ValidSwizzle);
if (!Result)
return false;
return true;
}
bool
R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
const {
assert (Consts.size() <= 12 && "Too many operands in instructions group");
unsigned Pair1 = 0, Pair2 = 0;
for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
unsigned ReadConstHalf = Consts[i] & 2;
unsigned ReadConstIndex = Consts[i] & (~3);
unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
if (!Pair1) {
Pair1 = ReadHalfConst;
continue;
}
if (Pair1 == ReadHalfConst)
continue;
if (!Pair2) {
Pair2 = ReadHalfConst;
continue;
}
if (Pair2 != ReadHalfConst)
return false;
}
return true;
}
bool
R600InstrInfo::canBundle(const std::vector<MachineInstr *> &MIs) const {
std::vector<unsigned> Consts;
for (unsigned i = 0, n = MIs.size(); i < n; i++) {
MachineInstr *MI = MIs[i];
if (!isALUInstr(MI->getOpcode()))
continue;
const SmallVector<std::pair<MachineOperand *, int64_t>, 3> &Srcs =
getSrcs(MI);
for (unsigned j = 0, e = Srcs.size(); j < e; j++) {
std::pair<MachineOperand *, unsigned> Src = Srcs[j];
if (Src.first->getReg() == AMDGPU::ALU_CONST)
Consts.push_back(Src.second);
if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) ||
AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) {
unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
unsigned Chan = RI.getHWRegChan(Src.first->getReg());
Consts.push_back((Index << 2) | Chan);
}
}
}
return fitsConstReadLimitations(Consts);
}
DFAPacketizer *R600InstrInfo::CreateTargetScheduleState(const TargetMachine *TM,
const ScheduleDAG *DAG) const {
const InstrItineraryData *II = TM->getInstrItineraryData();
return TM->getSubtarget<AMDGPUSubtarget>().createDFAPacketizer(II);
}
static bool
isPredicateSetter(unsigned Opcode) {
switch (Opcode) {
case AMDGPU::PRED_X:
return true;
default:
return false;
}
}
static MachineInstr *
findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
while (I != MBB.begin()) {
--I;
MachineInstr *MI = I;
if (isPredicateSetter(MI->getOpcode()))
return MI;
}
return NULL;
}
static
bool isJump(unsigned Opcode) {
return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND;
}
bool
R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Most of the following comes from the ARM implementation of AnalyzeBranch
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin())
return false;
--I;
while (I->isDebugValue()) {
if (I == MBB.begin())
return false;
--I;
}
if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) {
return false;
}
// Get the last instruction in the block.
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
unsigned LastOpc = LastInst->getOpcode();
if (I == MBB.begin() ||
!isJump(static_cast<MachineInstr *>(--I)->getOpcode())) {
if (LastOpc == AMDGPU::JUMP) {
TBB = LastInst->getOperand(0).getMBB();
return false;
} else if (LastOpc == AMDGPU::JUMP_COND) {
MachineInstr *predSet = I;
while (!isPredicateSetter(predSet->getOpcode())) {
predSet = --I;
}
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(predSet->getOperand(1));
Cond.push_back(predSet->getOperand(2));
Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
return false;
}
return true; // Can't handle indirect branch.
}
// Get the instruction before it if it is a terminator.
MachineInstr *SecondLastInst = I;
unsigned SecondLastOpc = SecondLastInst->getOpcode();
// If the block ends with a B and a Bcc, handle it.
if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) {
MachineInstr *predSet = --I;
while (!isPredicateSetter(predSet->getOpcode())) {
predSet = --I;
}
TBB = SecondLastInst->getOperand(0).getMBB();
FBB = LastInst->getOperand(0).getMBB();
Cond.push_back(predSet->getOperand(1));
Cond.push_back(predSet->getOperand(2));
Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
return false;
}
// Otherwise, can't handle this.
return true;
}
int R600InstrInfo::getBranchInstr(const MachineOperand &op) const {
const MachineInstr *MI = op.getParent();
switch (MI->getDesc().OpInfo->RegClass) {
default: // FIXME: fallthrough??
case AMDGPU::GPRI32RegClassID: return AMDGPU::BRANCH_COND_i32;
case AMDGPU::GPRF32RegClassID: return AMDGPU::BRANCH_COND_f32;
};
}
unsigned
R600InstrInfo::InsertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
if (FBB == 0) {
if (Cond.empty()) {
BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB);
return 1;
} else {
MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
assert(PredSet && "No previous predicate !");
addFlag(PredSet, 0, MO_FLAG_PUSH);
PredSet->getOperand(2).setImm(Cond[1].getImm());
BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
.addMBB(TBB)
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
return 1;
}
} else {
MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
assert(PredSet && "No previous predicate !");
addFlag(PredSet, 0, MO_FLAG_PUSH);
PredSet->getOperand(2).setImm(Cond[1].getImm());
BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
.addMBB(TBB)
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB);
return 2;
}
}
unsigned
R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
// Note : we leave PRED* instructions there.
// They may be needed when predicating instructions.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) {
return 0;
}
--I;
switch (I->getOpcode()) {
default:
return 0;
case AMDGPU::JUMP_COND: {
MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
clearFlag(predSet, 0, MO_FLAG_PUSH);
I->eraseFromParent();
break;
}
case AMDGPU::JUMP:
I->eraseFromParent();
break;
}
I = MBB.end();
if (I == MBB.begin()) {
return 1;
}
--I;
switch (I->getOpcode()) {
// FIXME: only one case??
default:
return 1;
case AMDGPU::JUMP_COND: {
MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
clearFlag(predSet, 0, MO_FLAG_PUSH);
I->eraseFromParent();
break;
}
case AMDGPU::JUMP:
I->eraseFromParent();
break;
}
return 2;
}
bool
R600InstrInfo::isPredicated(const MachineInstr *MI) const {
int idx = MI->findFirstPredOperandIdx();
if (idx < 0)
return false;
unsigned Reg = MI->getOperand(idx).getReg();
switch (Reg) {
default: return false;
case AMDGPU::PRED_SEL_ONE:
case AMDGPU::PRED_SEL_ZERO:
case AMDGPU::PREDICATE_BIT:
return true;
}
}
bool
R600InstrInfo::isPredicable(MachineInstr *MI) const {
// XXX: KILL* instructions can be predicated, but they must be the last
// instruction in a clause, so this means any instructions after them cannot
// be predicated. Until we have proper support for instruction clauses in the
// backend, we will mark KILL* instructions as unpredicable.
if (MI->getOpcode() == AMDGPU::KILLGT) {
return false;
} else if (isVector(*MI)) {
return false;
} else {
return AMDGPUInstrInfo::isPredicable(MI);
}
}
bool
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCyles,
unsigned ExtraPredCycles,
const BranchProbability &Probability) const{
return true;
}
bool
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles,
unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles,
unsigned ExtraFCycles,
const BranchProbability &Probability) const {
return true;
}
bool
R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
unsigned NumCyles,
const BranchProbability &Probability)
const {
return true;
}
bool
R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const {
return false;
}
bool
R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
MachineOperand &MO = Cond[1];
switch (MO.getImm()) {
case OPCODE_IS_ZERO_INT:
MO.setImm(OPCODE_IS_NOT_ZERO_INT);
break;
case OPCODE_IS_NOT_ZERO_INT:
MO.setImm(OPCODE_IS_ZERO_INT);
break;
case OPCODE_IS_ZERO:
MO.setImm(OPCODE_IS_NOT_ZERO);
break;
case OPCODE_IS_NOT_ZERO:
MO.setImm(OPCODE_IS_ZERO);
break;
default:
return true;
}
MachineOperand &MO2 = Cond[2];
switch (MO2.getReg()) {
case AMDGPU::PRED_SEL_ZERO:
MO2.setReg(AMDGPU::PRED_SEL_ONE);
break;
case AMDGPU::PRED_SEL_ONE:
MO2.setReg(AMDGPU::PRED_SEL_ZERO);
break;
default:
return true;
}
return false;
}
bool
R600InstrInfo::DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
return isPredicateSetter(MI->getOpcode());
}
bool
R600InstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
const SmallVectorImpl<MachineOperand> &Pred2) const {
return false;
}
bool
R600InstrInfo::PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const {
int PIdx = MI->findFirstPredOperandIdx();
if (PIdx != -1) {
MachineOperand &PMO = MI->getOperand(PIdx);
PMO.setReg(Pred[2].getReg());
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
return true;
}
return false;
}
unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
if (PredCost)
*PredCost = 2;
return 2;
}
int R600InstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
const MachineFrameInfo *MFI = MF.getFrameInfo();
int Offset = 0;
if (MFI->getNumObjects() == 0) {
return -1;
}
if (MRI.livein_empty()) {
return 0;
}
for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
LE = MRI.livein_end();
LI != LE; ++LI) {
Offset = std::max(Offset,
GET_REG_INDEX(RI.getEncodingValue(LI->first)));
}
return Offset + 1;
}
int R600InstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
int Offset = 0;
const MachineFrameInfo *MFI = MF.getFrameInfo();
// Variable sized objects are not supported
assert(!MFI->hasVarSizedObjects());
if (MFI->getNumObjects() == 0) {
return -1;
}
Offset = TM.getFrameLowering()->getFrameIndexOffset(MF, -1);
return getIndirectIndexBegin(MF) + Offset;
}
std::vector<unsigned> R600InstrInfo::getIndirectReservedRegs(
const MachineFunction &MF) const {
const AMDGPUFrameLowering *TFL =
static_cast<const AMDGPUFrameLowering*>(TM.getFrameLowering());
std::vector<unsigned> Regs;
unsigned StackWidth = TFL->getStackWidth(MF);
int End = getIndirectIndexEnd(MF);
if (End == -1) {
return Regs;
}
for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index);
Regs.push_back(SuperReg);
for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
Regs.push_back(Reg);
}
}
return Regs;
}
unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
unsigned Channel) const {
// XXX: Remove when we support a stack width > 2
assert(Channel == 0);
return RegIndex;
}
const TargetRegisterClass * R600InstrInfo::getIndirectAddrStoreRegClass(
unsigned SourceReg) const {
return &AMDGPU::R600_TReg32RegClass;
}
const TargetRegisterClass *R600InstrInfo::getIndirectAddrLoadRegClass() const {
return &AMDGPU::TRegMemRegClass;
}
MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const {
unsigned AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address);
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
AMDGPU::AR_X, OffsetReg);
setImmOperand(MOVA, R600Operands::WRITE, 0);
MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
AddrReg, ValueReg)
.addReg(AMDGPU::AR_X,
RegState::Implicit | RegState::Kill);
setImmOperand(Mov, R600Operands::DST_REL, 1);
return Mov;
}
MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const {
unsigned AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address);
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
AMDGPU::AR_X,
OffsetReg);
setImmOperand(MOVA, R600Operands::WRITE, 0);
MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
ValueReg,
AddrReg)
.addReg(AMDGPU::AR_X,
RegState::Implicit | RegState::Kill);
setImmOperand(Mov, R600Operands::SRC0_REL, 1);
return Mov;
}
const TargetRegisterClass *R600InstrInfo::getSuperIndirectRegClass() const {
return &AMDGPU::IndirectRegRegClass;
}
unsigned R600InstrInfo::getMaxAlusPerClause() const {
return 115;
}
MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned Opcode,
unsigned DstReg,
unsigned Src0Reg,
unsigned Src1Reg) const {
MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
DstReg); // $dst
if (Src1Reg) {
MIB.addImm(0) // $update_exec_mask
.addImm(0); // $update_predicate
}
MIB.addImm(1) // $write
.addImm(0) // $omod
.addImm(0) // $dst_rel
.addImm(0) // $dst_clamp
.addReg(Src0Reg) // $src0
.addImm(0) // $src0_neg
.addImm(0) // $src0_rel
.addImm(0) // $src0_abs
.addImm(-1); // $src0_sel
if (Src1Reg) {
MIB.addReg(Src1Reg) // $src1
.addImm(0) // $src1_neg
.addImm(0) // $src1_rel
.addImm(0) // $src1_abs
.addImm(-1); // $src1_sel
}
//XXX: The r600g finalizer expects this to be 1, once we've moved the
//scheduling to the backend, we can change the default to 0.
MIB.addImm(1) // $last
.addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel
.addImm(0) // $literal
.addImm(0); // $bank_swizzle
return MIB;
}
#define OPERAND_CASE(Label) \
case Label: { \
static const R600Operands::VecOps Ops[] = \
{ \
Label##_X, \
Label##_Y, \
Label##_Z, \
Label##_W \
}; \
return Ops[Slot]; \
}
static R600Operands::VecOps
getSlotedOps(R600Operands::Ops Op, unsigned Slot) {
switch (Op) {
OPERAND_CASE(R600Operands::UPDATE_EXEC_MASK)
OPERAND_CASE(R600Operands::UPDATE_PREDICATE)
OPERAND_CASE(R600Operands::WRITE)
OPERAND_CASE(R600Operands::OMOD)
OPERAND_CASE(R600Operands::DST_REL)
OPERAND_CASE(R600Operands::CLAMP)
OPERAND_CASE(R600Operands::SRC0)
OPERAND_CASE(R600Operands::SRC0_NEG)
OPERAND_CASE(R600Operands::SRC0_REL)
OPERAND_CASE(R600Operands::SRC0_ABS)
OPERAND_CASE(R600Operands::SRC0_SEL)
OPERAND_CASE(R600Operands::SRC1)
OPERAND_CASE(R600Operands::SRC1_NEG)
OPERAND_CASE(R600Operands::SRC1_REL)
OPERAND_CASE(R600Operands::SRC1_ABS)
OPERAND_CASE(R600Operands::SRC1_SEL)
OPERAND_CASE(R600Operands::PRED_SEL)
default:
llvm_unreachable("Wrong Operand");
}
}
#undef OPERAND_CASE
static int
getVecOperandIdx(R600Operands::VecOps Op) {
return 1 + Op;
}
MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
const {
assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented");
unsigned Opcode;
const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD4XXX)
Opcode = AMDGPU::DOT4_r600;
else
Opcode = AMDGPU::DOT4_eg;
MachineBasicBlock::iterator I = MI;
MachineOperand &Src0 = MI->getOperand(
getVecOperandIdx(getSlotedOps(R600Operands::SRC0, Slot)));
MachineOperand &Src1 = MI->getOperand(
getVecOperandIdx(getSlotedOps(R600Operands::SRC1, Slot)));
MachineInstr *MIB = buildDefaultInstruction(
MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
static const R600Operands::Ops Operands[14] = {
R600Operands::UPDATE_EXEC_MASK,
R600Operands::UPDATE_PREDICATE,
R600Operands::WRITE,
R600Operands::OMOD,
R600Operands::DST_REL,
R600Operands::CLAMP,
R600Operands::SRC0_NEG,
R600Operands::SRC0_REL,
R600Operands::SRC0_ABS,
R600Operands::SRC0_SEL,
R600Operands::SRC1_NEG,
R600Operands::SRC1_REL,
R600Operands::SRC1_ABS,
R600Operands::SRC1_SEL,
};
for (unsigned i = 0; i < 14; i++) {
MachineOperand &MO = MI->getOperand(
getVecOperandIdx(getSlotedOps(Operands[i], Slot)));
assert (MO.isImm());
setImmOperand(MIB, Operands[i], MO.getImm());
}
MIB->getOperand(20).setImm(0);
return MIB;
}
MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
unsigned DstReg,
uint64_t Imm) const {
MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg,
AMDGPU::ALU_LITERAL_X);
setImmOperand(MovImm, R600Operands::IMM, Imm);
return MovImm;
}
int R600InstrInfo::getOperandIdx(const MachineInstr &MI,
R600Operands::Ops Op) const {
return getOperandIdx(MI.getOpcode(), Op);
}
int R600InstrInfo::getOperandIdx(const MachineInstr &MI,
R600Operands::VecOps Op) const {
return getOperandIdx(MI.getOpcode(), Op);
}
int R600InstrInfo::getOperandIdx(unsigned Opcode,
R600Operands::Ops Op) const {
unsigned TargetFlags = get(Opcode).TSFlags;
unsigned OpTableIdx;
if (!HAS_NATIVE_OPERANDS(TargetFlags)) {
switch (Op) {
case R600Operands::DST: return 0;
case R600Operands::SRC0: return 1;
case R600Operands::SRC1: return 2;
case R600Operands::SRC2: return 3;
default:
assert(!"Unknown operand type for instruction");
return -1;
}
}
if (TargetFlags & R600_InstFlag::OP1) {
OpTableIdx = 0;
} else if (TargetFlags & R600_InstFlag::OP2) {
OpTableIdx = 1;
} else {
assert((TargetFlags & R600_InstFlag::OP3) && "OP1, OP2, or OP3 not defined "
"for this instruction");
OpTableIdx = 2;
}
return R600Operands::ALUOpTable[OpTableIdx][Op];
}
int R600InstrInfo::getOperandIdx(unsigned Opcode,
R600Operands::VecOps Op) const {
return Op + 1;
}
void R600InstrInfo::setImmOperand(MachineInstr *MI, R600Operands::Ops Op,
int64_t Imm) const {
int Idx = getOperandIdx(*MI, Op);
assert(Idx != -1 && "Operand not supported for this instruction.");
assert(MI->getOperand(Idx).isImm());
MI->getOperand(Idx).setImm(Imm);
}
//===----------------------------------------------------------------------===//
// Instruction flag getters/setters
//===----------------------------------------------------------------------===//
bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const {
return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0;
}
MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx,
unsigned Flag) const {
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
int FlagIndex = 0;
if (Flag != 0) {
// If we pass something other than the default value of Flag to this
// function, it means we are want to set a flag on an instruction
// that uses native encoding.
assert(HAS_NATIVE_OPERANDS(TargetFlags));
bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
switch (Flag) {
case MO_FLAG_CLAMP:
FlagIndex = getOperandIdx(*MI, R600Operands::CLAMP);
break;
case MO_FLAG_MASK:
FlagIndex = getOperandIdx(*MI, R600Operands::WRITE);
break;
case MO_FLAG_NOT_LAST:
case MO_FLAG_LAST:
FlagIndex = getOperandIdx(*MI, R600Operands::LAST);
break;
case MO_FLAG_NEG:
switch (SrcIdx) {
case 0: FlagIndex = getOperandIdx(*MI, R600Operands::SRC0_NEG); break;
case 1: FlagIndex = getOperandIdx(*MI, R600Operands::SRC1_NEG); break;
case 2: FlagIndex = getOperandIdx(*MI, R600Operands::SRC2_NEG); break;
}
break;
case MO_FLAG_ABS:
assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
"instructions.");
(void)IsOP3;
switch (SrcIdx) {
case 0: FlagIndex = getOperandIdx(*MI, R600Operands::SRC0_ABS); break;
case 1: FlagIndex = getOperandIdx(*MI, R600Operands::SRC1_ABS); break;
}
break;
default:
FlagIndex = -1;
break;
}
assert(FlagIndex != -1 && "Flag not supported for this instruction");
} else {
FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
assert(FlagIndex != 0 &&
"Instruction flags not supported for this instruction");
}
MachineOperand &FlagOp = MI->getOperand(FlagIndex);
assert(FlagOp.isImm());
return FlagOp;
}
void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand,
unsigned Flag) const {
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
if (Flag == 0) {
return;
}
if (HAS_NATIVE_OPERANDS(TargetFlags)) {
MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
if (Flag == MO_FLAG_NOT_LAST) {
clearFlag(MI, Operand, MO_FLAG_LAST);
} else if (Flag == MO_FLAG_MASK) {
clearFlag(MI, Operand, Flag);
} else {
FlagOp.setImm(1);
}
} else {
MachineOperand &FlagOp = getFlagOp(MI, Operand);
FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
}
}
void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand,
unsigned Flag) const {
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
if (HAS_NATIVE_OPERANDS(TargetFlags)) {
MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
FlagOp.setImm(0);
} else {
MachineOperand &FlagOp = getFlagOp(MI);
unsigned InstFlags = FlagOp.getImm();
InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
FlagOp.setImm(InstFlags);
}
}