llvm/lib/Target/R600/AMDGPUInstrInfo.cpp
Tom Stellard 0f9eaaa8aa R600/SI: Define a separate MIMG instruction for each possible output value type
During instruction selection, we rewrite the destination register
class for MIMG instructions based on their writemasks.  This creates
machine verifier errors since the new register class does not match
the register class in the MIMG instruction definition.

We can avoid this by defining different MIMG instructions for each
possible destination type and then switching to the correct instruction
when we change the register class.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192365 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-10 17:11:24 +00:00

256 lines
8.6 KiB
C++

//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Implementation of the TargetInstrInfo class that is common to all
/// AMD GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUInstrInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#define GET_INSTRINFO_CTOR
#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
using namespace llvm;
AMDGPUInstrInfo::AMDGPUInstrInfo(TargetMachine &tm)
: AMDGPUGenInstrInfo(-1,-1), RI(tm), TM(tm) { }
const AMDGPURegisterInfo &AMDGPUInstrInfo::getRegisterInfo() const {
return RI;
}
bool AMDGPUInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
// TODO: Implement this function
return false;
}
unsigned AMDGPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
unsigned AMDGPUInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
bool AMDGPUInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
// TODO: Implement this function
return false;
}
unsigned AMDGPUInstrInfo::isStoreFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
unsigned AMDGPUInstrInfo::isStoreFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
bool AMDGPUInstrInfo::hasStoreFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
// TODO: Implement this function
return false;
}
MachineInstr *
AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
// TODO: Implement this function
return NULL;
}
bool AMDGPUInstrInfo::getNextBranchInstr(MachineBasicBlock::iterator &iter,
MachineBasicBlock &MBB) const {
while (iter != MBB.end()) {
switch (iter->getOpcode()) {
default:
break;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32:
case AMDGPU::BRANCH:
return true;
};
++iter;
}
return false;
}
void
AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
assert(!"Not Implemented");
}
void
AMDGPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
assert(!"Not Implemented");
}
MachineInstr *
AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
// TODO: Implement this function
return 0;
}
MachineInstr*
AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const {
// TODO: Implement this function
return 0;
}
bool
AMDGPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const {
// TODO: Implement this function
return false;
}
bool
AMDGPUInstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad,
bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
// TODO: Implement this function
return false;
}
bool
AMDGPUInstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
// TODO: Implement this function
return false;
}
unsigned
AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex) const {
// TODO: Implement this function
return 0;
}
bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
assert(Offset2 > Offset1
&& "Second offset should be larger than first offset!");
// If we have less than 16 loads in a row, and the offsets are within 16,
// then schedule together.
// TODO: Make the loads schedule near if it fits in a cacheline
return (NumLoads < 16 && (Offset2 - Offset1) < 16);
}
bool
AMDGPUInstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
const {
// TODO: Implement this function
return true;
}
void AMDGPUInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
// TODO: Implement this function
}
bool AMDGPUInstrInfo::isPredicated(const MachineInstr *MI) const {
// TODO: Implement this function
return false;
}
bool
AMDGPUInstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
const SmallVectorImpl<MachineOperand> &Pred2)
const {
// TODO: Implement this function
return false;
}
bool AMDGPUInstrInfo::DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
// TODO: Implement this function
return false;
}
bool AMDGPUInstrInfo::isPredicable(MachineInstr *MI) const {
// TODO: Implement this function
return MI->getDesc().isPredicable();
}
bool
AMDGPUInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// TODO: Implement this function
return true;
}
bool AMDGPUInstrInfo::isRegisterStore(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_STORE;
}
bool AMDGPUInstrInfo::isRegisterLoad(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_LOAD;
}
void AMDGPUInstrInfo::convertToISA(MachineInstr & MI, MachineFunction &MF,
DebugLoc DL) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
const AMDGPURegisterInfo & RI = getRegisterInfo();
for (unsigned i = 0; i < MI.getNumOperands(); i++) {
MachineOperand &MO = MI.getOperand(i);
// Convert dst regclass to one that is supported by the ISA
if (MO.isReg() && MO.isDef()) {
if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
const TargetRegisterClass * oldRegClass = MRI.getRegClass(MO.getReg());
const TargetRegisterClass * newRegClass = RI.getISARegClass(oldRegClass);
assert(newRegClass);
MRI.setRegClass(MO.getReg(), newRegClass);
}
}
}
}
int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const {
switch (Channels) {
default: return Opcode;
case 1: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_1);
case 2: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_2);
case 3: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_3);
}
}