llvm/utils/TableGen/InstrInfoEmitter.cpp
Joey Gouly 715d98d657 Add an instruction deprecation feature to TableGen.
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.

The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
  ComplexDeprecationPredicate<"MCR">

would mean you would have to define the following function:
  bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
                             std::string &Info)

Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.

The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190598 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-12 10:28:05 +00:00

583 lines
21 KiB
C++

//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of the target
// instruction set for the code generator.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "CodeGenSchedule.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cstdio>
#include <map>
#include <vector>
using namespace llvm;
namespace {
class InstrInfoEmitter {
RecordKeeper &Records;
CodeGenDAGPatterns CDP;
const CodeGenSchedModels &SchedModels;
public:
InstrInfoEmitter(RecordKeeper &R):
Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
// run - Output the instruction set description.
void run(raw_ostream &OS);
private:
void emitEnums(raw_ostream &OS);
typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
/// The keys of this map are maps which have OpName enum values as their keys
/// and instruction operand indices as their values. The values of this map
/// are lists of instruction names.
typedef std::map<std::map<unsigned, unsigned>,
std::vector<std::string> > OpNameMapTy;
typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EL,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS);
void initOperandMapData(
const std::vector<const CodeGenInstruction *> NumberedInstructions,
const std::string &Namespace,
std::map<std::string, unsigned> &Operands,
OpNameMapTy &OperandMap);
void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
const std::vector<const CodeGenInstruction*> &NumberedInstructions);
// Operand information.
void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
};
} // End anonymous namespace
static void PrintDefList(const std::vector<Record*> &Uses,
unsigned Num, raw_ostream &OS) {
OS << "static const uint16_t ImplicitList" << Num << "[] = { ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
OS << getQualifiedName(Uses[i]) << ", ";
OS << "0 };\n";
}
//===----------------------------------------------------------------------===//
// Operand Info Emission.
//===----------------------------------------------------------------------===//
std::vector<std::string>
InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
std::vector<std::string> Result;
for (unsigned i = 0, e = Inst.Operands.size(); i != e; ++i) {
// Handle aggregate operands and normal operands the same way by expanding
// either case into a list of operands for this op.
std::vector<CGIOperandList::OperandInfo> OperandList;
// This might be a multiple operand thing. Targets like X86 have
// registers in their multi-operand operands. It may also be an anonymous
// operand, which has a single operand, but no declared class for the
// operand.
DagInit *MIOI = Inst.Operands[i].MIOperandInfo;
if (!MIOI || MIOI->getNumArgs() == 0) {
// Single, anonymous, operand.
OperandList.push_back(Inst.Operands[i]);
} else {
for (unsigned j = 0, e = Inst.Operands[i].MINumOperands; j != e; ++j) {
OperandList.push_back(Inst.Operands[i]);
Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
OperandList.back().Rec = OpR;
}
}
for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
Record *OpR = OperandList[j].Rec;
std::string Res;
if (OpR->isSubClassOf("RegisterOperand"))
OpR = OpR->getValueAsDef("RegClass");
if (OpR->isSubClassOf("RegisterClass"))
Res += getQualifiedName(OpR) + "RegClassID, ";
else if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
else
// -1 means the operand does not have a fixed register class.
Res += "-1, ";
// Fill in applicable flags.
Res += "0";
// Ptr value whose register class is resolved via callback.
if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += "|(1<<MCOI::LookupPtrRegClass)";
// Predicate operands. Check to see if the original unexpanded operand
// was of type PredicateOp.
if (Inst.Operands[i].Rec->isSubClassOf("PredicateOp"))
Res += "|(1<<MCOI::Predicate)";
// Optional def operands. Check to see if the original unexpanded operand
// was of type OptionalDefOperand.
if (Inst.Operands[i].Rec->isSubClassOf("OptionalDefOperand"))
Res += "|(1<<MCOI::OptionalDef)";
// Fill in operand type.
Res += ", MCOI::";
assert(!Inst.Operands[i].OperandType.empty() && "Invalid operand type.");
Res += Inst.Operands[i].OperandType;
// Fill in constraint info.
Res += ", ";
const CGIOperandList::ConstraintInfo &Constraint =
Inst.Operands[i].Constraints[j];
if (Constraint.isNone())
Res += "0";
else if (Constraint.isEarlyClobber())
Res += "(1 << MCOI::EARLY_CLOBBER)";
else {
assert(Constraint.isTied());
Res += "((" + utostr(Constraint.getTiedOperand()) +
" << 16) | (1 << MCOI::TIED_TO))";
}
Result.push_back(Res);
}
}
return Result;
}
void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
OperandInfoMapTy &OperandInfoIDs) {
// ID #0 is for no operand info.
unsigned OperandListNum = 0;
OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
OS << "\n";
const CodeGenTarget &Target = CDP.getTargetInfo();
for (CodeGenTarget::inst_iterator II = Target.inst_begin(),
E = Target.inst_end(); II != E; ++II) {
std::vector<std::string> OperandInfo = GetOperandInfo(**II);
unsigned &N = OperandInfoIDs[OperandInfo];
if (N != 0) continue;
N = ++OperandListNum;
OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
for (unsigned i = 0, e = OperandInfo.size(); i != e; ++i)
OS << "{ " << OperandInfo[i] << " }, ";
OS << "};\n";
}
}
/// Initialize data structures for generating operand name mappings.
///
/// \param Operands [out] A map used to generate the OpName enum with operand
/// names as its keys and operand enum values as its values.
/// \param OperandMap [out] A map for representing the operand name mappings for
/// each instructions. This is used to generate the OperandMap table as
/// well as the getNamedOperandIdx() function.
void InstrInfoEmitter::initOperandMapData(
const std::vector<const CodeGenInstruction *> NumberedInstructions,
const std::string &Namespace,
std::map<std::string, unsigned> &Operands,
OpNameMapTy &OperandMap) {
unsigned NumOperands = 0;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction *Inst = NumberedInstructions[i];
if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable")) {
continue;
}
std::map<unsigned, unsigned> OpList;
for (unsigned j = 0, je = Inst->Operands.size(); j != je; ++j) {
const CGIOperandList::OperandInfo &Info = Inst->Operands[j];
StrUintMapIter I = Operands.find(Info.Name);
if (I == Operands.end()) {
I = Operands.insert(Operands.begin(),
std::pair<std::string, unsigned>(Info.Name, NumOperands++));
}
OpList[I->second] = Info.MIOperandNo;
}
OperandMap[OpList].push_back(Namespace + "::" + Inst->TheDef->getName());
}
}
/// Generate a table and function for looking up the indices of operands by
/// name.
///
/// This code generates:
/// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
/// for each operand name.
/// - A 2-dimensional table called OperandMap for mapping OpName enum values to
/// operand indices.
/// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
/// for looking up the operand index for an instruction, given a value from
/// OpName enum
void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
const CodeGenTarget &Target,
const std::vector<const CodeGenInstruction*> &NumberedInstructions) {
const std::string &Namespace = Target.getInstNamespace();
std::string OpNameNS = "OpName";
// Map of operand names to their enumeration value. This will be used to
// generate the OpName enum.
std::map<std::string, unsigned> Operands;
OpNameMapTy OperandMap;
initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
OS << "namespace llvm {";
OS << "namespace " << Namespace << " {\n";
OS << "namespace " << OpNameNS << " { \n";
OS << "enum {\n";
for (StrUintMapIter i = Operands.begin(), e = Operands.end(); i != e; ++i)
OS << " " << i->first << " = " << i->second << ",\n";
OS << "OPERAND_LAST";
OS << "\n};\n";
OS << "} // End namespace OpName\n";
OS << "} // End namespace " << Namespace << "\n";
OS << "} // End namespace llvm\n";
OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n";
OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
OS << "namespace llvm {";
OS << "namespace " << Namespace << " {\n";
OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
if (!Operands.empty()) {
OS << " static const int16_t OperandMap [][" << Operands.size()
<< "] = {\n";
for (OpNameMapTy::iterator i = OperandMap.begin(), e = OperandMap.end();
i != e; ++i) {
const std::map<unsigned, unsigned> &OpList = i->first;
OS << "{";
// Emit a row of the OperandMap table
for (unsigned ii = 0, ie = Operands.size(); ii != ie; ++ii)
OS << (OpList.count(ii) == 0 ? -1 : (int)OpList.find(ii)->second)
<< ", ";
OS << "},\n";
}
OS << "};\n";
OS << " switch(Opcode) {\n";
unsigned TableIndex = 0;
for (OpNameMapTy::iterator i = OperandMap.begin(), e = OperandMap.end();
i != e; ++i) {
std::vector<std::string> &OpcodeList = i->second;
for (unsigned ii = 0, ie = OpcodeList.size(); ii != ie; ++ii)
OS << " case " << OpcodeList[ii] << ":\n";
OS << " return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
}
OS << " default: return -1;\n";
OS << " }\n";
} else {
// There are no operands, so no need to emit anything
OS << " return -1;\n";
}
OS << "}\n";
OS << "} // End namespace " << Namespace << "\n";
OS << "} // End namespace llvm\n";
OS << "#endif //GET_INSTRINFO_NAMED_OPS\n";
}
//===----------------------------------------------------------------------===//
// Main Output.
//===----------------------------------------------------------------------===//
// run - Emit the main instruction description records for the target...
void InstrInfoEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("Target Instruction Enum Values", OS);
emitEnums(OS);
emitSourceFileHeader("Target Instruction Descriptors", OS);
OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n";
OS << "#undef GET_INSTRINFO_MC_DESC\n";
OS << "namespace llvm {\n\n";
CodeGenTarget &Target = CDP.getTargetInfo();
const std::string &TargetName = Target.getName();
Record *InstrInfo = Target.getInstructionSet();
// Keep track of all of the def lists we have emitted already.
std::map<std::vector<Record*>, unsigned> EmittedLists;
unsigned ListNumber = 0;
// Emit all of the instruction's implicit uses and defs.
for (CodeGenTarget::inst_iterator II = Target.inst_begin(),
E = Target.inst_end(); II != E; ++II) {
Record *Inst = (*II)->TheDef;
std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
if (!Uses.empty()) {
unsigned &IL = EmittedLists[Uses];
if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
}
std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
if (!Defs.empty()) {
unsigned &IL = EmittedLists[Defs];
if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
}
}
OperandInfoMapTy OperandInfoIDs;
// Emit all of the operand info records.
EmitOperandInfo(OS, OperandInfoIDs);
// Emit all of the MCInstrDesc records in their ENUM ordering.
//
OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i)
emitRecord(*NumberedInstructions[i], i, InstrInfo, EmittedLists,
OperandInfoIDs, OS);
OS << "};\n\n";
// Build an array of instruction names
SequenceToOffsetTable<std::string> InstrNames;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction *Instr = NumberedInstructions[i];
InstrNames.add(Instr->TheDef->getName());
}
InstrNames.layout();
OS << "extern const char " << TargetName << "InstrNameData[] = {\n";
InstrNames.emit(OS, printChar);
OS << "};\n\n";
OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
if (i % 8 == 0)
OS << "\n ";
const CodeGenInstruction *Instr = NumberedInstructions[i];
OS << InstrNames.get(Instr->TheDef->getName()) << "U, ";
}
OS << "\n};\n\n";
// MCInstrInfo initialization routine.
OS << "static inline void Init" << TargetName
<< "MCInstrInfo(MCInstrInfo *II) {\n";
OS << " II->InitMCInstrInfo(" << TargetName << "Insts, "
<< TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
<< NumberedInstructions.size() << ");\n}\n\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
// Create a TargetInstrInfo subclass to hide the MC layer initialization.
OS << "\n#ifdef GET_INSTRINFO_HEADER\n";
OS << "#undef GET_INSTRINFO_HEADER\n";
std::string ClassName = TargetName + "GenInstrInfo";
OS << "namespace llvm {\n";
OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
<< " explicit " << ClassName << "(int SO = -1, int DO = -1);\n"
<< "};\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_HEADER\n\n";
OS << "\n#ifdef GET_INSTRINFO_CTOR\n";
OS << "#undef GET_INSTRINFO_CTOR\n";
OS << "namespace llvm {\n";
OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
OS << "extern const char " << TargetName << "InstrNameData[];\n";
OS << ClassName << "::" << ClassName << "(int SO, int DO)\n"
<< " : TargetInstrInfo(SO, DO) {\n"
<< " InitMCInstrInfo(" << TargetName << "Insts, "
<< TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
<< NumberedInstructions.size() << ");\n}\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_CTOR\n\n";
emitOperandNameMappings(OS, Target, NumberedInstructions);
}
void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EmittedLists,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS) {
int MinOperands = 0;
if (!Inst.Operands.empty())
// Each logical operand can be multiple MI operands.
MinOperands = Inst.Operands.back().MIOperandNo +
Inst.Operands.back().MINumOperands;
OS << " { ";
OS << Num << ",\t" << MinOperands << ",\t"
<< Inst.Operands.NumDefs << ",\t"
<< SchedModels.getSchedClassIdx(Inst) << ",\t"
<< Inst.TheDef->getValueAsInt("Size") << ",\t0";
// Emit all of the target indepedent flags...
if (Inst.isPseudo) OS << "|(1<<MCID::Pseudo)";
if (Inst.isReturn) OS << "|(1<<MCID::Return)";
if (Inst.isBranch) OS << "|(1<<MCID::Branch)";
if (Inst.isIndirectBranch) OS << "|(1<<MCID::IndirectBranch)";
if (Inst.isCompare) OS << "|(1<<MCID::Compare)";
if (Inst.isMoveImm) OS << "|(1<<MCID::MoveImm)";
if (Inst.isBitcast) OS << "|(1<<MCID::Bitcast)";
if (Inst.isSelect) OS << "|(1<<MCID::Select)";
if (Inst.isBarrier) OS << "|(1<<MCID::Barrier)";
if (Inst.hasDelaySlot) OS << "|(1<<MCID::DelaySlot)";
if (Inst.isCall) OS << "|(1<<MCID::Call)";
if (Inst.canFoldAsLoad) OS << "|(1<<MCID::FoldableAsLoad)";
if (Inst.mayLoad) OS << "|(1<<MCID::MayLoad)";
if (Inst.mayStore) OS << "|(1<<MCID::MayStore)";
if (Inst.isPredicable) OS << "|(1<<MCID::Predicable)";
if (Inst.isConvertibleToThreeAddress) OS << "|(1<<MCID::ConvertibleTo3Addr)";
if (Inst.isCommutable) OS << "|(1<<MCID::Commutable)";
if (Inst.isTerminator) OS << "|(1<<MCID::Terminator)";
if (Inst.isReMaterializable) OS << "|(1<<MCID::Rematerializable)";
if (Inst.isNotDuplicable) OS << "|(1<<MCID::NotDuplicable)";
if (Inst.Operands.hasOptionalDef) OS << "|(1<<MCID::HasOptionalDef)";
if (Inst.usesCustomInserter) OS << "|(1<<MCID::UsesCustomInserter)";
if (Inst.hasPostISelHook) OS << "|(1<<MCID::HasPostISelHook)";
if (Inst.Operands.isVariadic)OS << "|(1<<MCID::Variadic)";
if (Inst.hasSideEffects) OS << "|(1<<MCID::UnmodeledSideEffects)";
if (Inst.isAsCheapAsAMove) OS << "|(1<<MCID::CheapAsAMove)";
if (Inst.hasExtraSrcRegAllocReq) OS << "|(1<<MCID::ExtraSrcRegAllocReq)";
if (Inst.hasExtraDefRegAllocReq) OS << "|(1<<MCID::ExtraDefRegAllocReq)";
// Emit all of the target-specific flags...
BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
if (!TSF)
PrintFatalError("no TSFlags?");
uint64_t Value = 0;
for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
Value |= uint64_t(Bit->getValue()) << i;
else
PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName());
}
OS << ", 0x";
OS.write_hex(Value);
OS << "ULL, ";
// Emit the implicit uses and defs lists...
std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
if (UseList.empty())
OS << "NULL, ";
else
OS << "ImplicitList" << EmittedLists[UseList] << ", ";
std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
if (DefList.empty())
OS << "NULL, ";
else
OS << "ImplicitList" << EmittedLists[DefList] << ", ";
// Emit the operand info.
std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
if (OperandInfo.empty())
OS << "0";
else
OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
CodeGenTarget &Target = CDP.getTargetInfo();
if (Inst.HasComplexDeprecationPredicate)
// Emit a function pointer to the complex predicate method.
OS << ",0"
<< ",&get" << Inst.DeprecatedReason << "DeprecationInfo";
else if (!Inst.DeprecatedReason.empty())
// Emit the Subtarget feature.
OS << "," << Target.getInstNamespace() << "::" << Inst.DeprecatedReason
<< ",0";
else
// Instruction isn't deprecated.
OS << ",0,0";
OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
}
// emitEnums - Print out enum values for all of the instructions.
void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
OS << "\n#ifdef GET_INSTRINFO_ENUM\n";
OS << "#undef GET_INSTRINFO_ENUM\n";
OS << "namespace llvm {\n\n";
CodeGenTarget Target(Records);
// We must emit the PHI opcode first...
std::string Namespace = Target.getInstNamespace();
if (Namespace.empty()) {
fprintf(stderr, "No instructions defined!\n");
exit(1);
}
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
OS << "namespace " << Namespace << " {\n";
OS << " enum {\n";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
OS << " " << NumberedInstructions[i]->TheDef->getName()
<< "\t= " << i << ",\n";
}
OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n";
OS << " };\n";
OS << "namespace Sched {\n";
OS << " enum {\n";
for (unsigned i = 0, e = SchedModels.numInstrSchedClasses(); i != e; ++i) {
OS << " " << SchedModels.getSchedClass(i).Name
<< "\t= " << i << ",\n";
}
OS << " SCHED_LIST_END = " << SchedModels.numInstrSchedClasses() << "\n";
OS << " };\n}\n}\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_ENUM\n\n";
}
namespace llvm {
void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
InstrInfoEmitter(RK).run(OS);
EmitMapTable(RK, OS);
}
} // End llvm namespace