llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
Jakob Stoklund Olesen 92c1f72c54 Emit COPY instructions instead of using copyRegToReg in InstrEmitter,
ScheduleDAGEmit, TwoAddressLowering, and PHIElimination.

This switches the bulk of register copies to using COPY, but many less used
copyRegToReg calls remain.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108050 91177308-0d34-0410-b5e6-96231b3b80d8
2010-07-10 19:08:25 +00:00

897 lines
37 KiB
C++

//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the Emit routines for the SelectionDAG class, which creates
// MachineInstrs based on the decisions of the SelectionDAG instruction
// selection.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "instr-emitter"
#include "InstrEmitter.h"
#include "SDNodeDbgValue.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the resulting MachineInstr).
unsigned InstrEmitter::CountResults(SDNode *Node) {
unsigned N = Node->getNumValues();
while (N && Node->getValueType(N - 1) == MVT::Flag)
--N;
if (N && Node->getValueType(N - 1) == MVT::Other)
--N; // Skip over chain result.
return N;
}
/// CountOperands - The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then an optional flag operand.
/// Compute the number of actual operands that will go into the resulting
/// MachineInstr.
unsigned InstrEmitter::CountOperands(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
--N;
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
--N; // Ignore chain if it exists.
return N;
}
/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
/// implicit physical register output.
void InstrEmitter::
EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned VRBase = 0;
if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
// Just use the input register directly!
SDValue Op(Node, ResNo);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
return;
}
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
// the CopyToReg'd destination register instead of creating a new vreg.
bool MatchReg = true;
const TargetRegisterClass *UseRC = NULL;
if (!IsClone && !IsCloned)
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
bool Match = true;
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == ResNo) {
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
VRBase = DestReg;
Match = false;
} else if (DestReg != SrcReg)
Match = false;
} else {
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
SDValue Op = User->getOperand(i);
if (Op.getNode() != Node || Op.getResNo() != ResNo)
continue;
EVT VT = Node->getValueType(Op.getResNo());
if (VT == MVT::Other || VT == MVT::Flag)
continue;
Match = false;
if (User->isMachineOpcode()) {
const TargetInstrDesc &II = TII->get(User->getMachineOpcode());
const TargetRegisterClass *RC = 0;
if (i+II.getNumDefs() < II.getNumOperands())
RC = II.OpInfo[i+II.getNumDefs()].getRegClass(TRI);
if (!UseRC)
UseRC = RC;
else if (RC) {
const TargetRegisterClass *ComRC = getCommonSubClass(UseRC, RC);
// If multiple uses expect disjoint register classes, we emit
// copies in AddRegisterOperand.
if (ComRC)
UseRC = ComRC;
}
}
}
}
MatchReg &= Match;
if (VRBase)
break;
}
EVT VT = Node->getValueType(ResNo);
const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
// Figure out the register class to create for the destreg.
if (VRBase) {
DstRC = MRI->getRegClass(VRBase);
} else if (UseRC) {
assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
DstRC = UseRC;
} else {
DstRC = TLI->getRegClassFor(VT);
}
// If all uses are reading from the src physical register and copying the
// register is either impossible or very expensive, then don't create a copy.
if (MatchReg && SrcRC->getCopyCost() < 0) {
VRBase = SrcReg;
} else {
// Create the reg, emit the copy.
VRBase = MRI->createVirtualRegister(DstRC);
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
VRBase).addReg(SrcReg);
}
SDValue Op(Node, ResNo);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// getDstOfCopyToRegUse - If the only use of the specified result number of
/// node is a CopyToReg, return its destination register. Return 0 otherwise.
unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
unsigned ResNo) const {
if (!Node->hasOneUse())
return 0;
SDNode *User = *Node->use_begin();
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == ResNo) {
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return Reg;
}
return 0;
}
void InstrEmitter::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
const TargetInstrDesc &II,
bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
"IMPLICIT_DEF should have been handled as a special case elsewhere!");
for (unsigned i = 0; i < II.getNumDefs(); ++i) {
// If the specific node value is only used by a CopyToReg and the dest reg
// is a vreg in the same register class, use the CopyToReg'd destination
// register instead of creating a new vreg.
unsigned VRBase = 0;
const TargetRegisterClass *RC = II.OpInfo[i].getRegClass(TRI);
if (II.OpInfo[i].isOptionalDef()) {
// Optional def must be a physical register.
unsigned NumResults = CountResults(Node);
VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
}
if (!VRBase && !IsClone && !IsCloned)
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == i) {
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
if (RegRC == RC) {
VRBase = Reg;
MI->addOperand(MachineOperand::CreateReg(Reg, true));
break;
}
}
}
}
// Create the result registers for this node and add the result regs to
// the machine instruction.
if (VRBase == 0) {
assert(RC && "Isn't a register operand!");
VRBase = MRI->createVirtualRegister(RC);
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
}
SDValue Op(Node, i);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
}
/// getVR - Return the virtual register corresponding to the specified result
/// of the specified node.
unsigned InstrEmitter::getVR(SDValue Op,
DenseMap<SDValue, unsigned> &VRBaseMap) {
if (Op.isMachineOpcode() &&
Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
// Add an IMPLICIT_DEF instruction before every use.
unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
// IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
// does not include operand register class info.
if (!VReg) {
const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
VReg = MRI->createVirtualRegister(RC);
}
BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
return VReg;
}
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
assert(I != VRBaseMap.end() && "Node emitted out of order - late");
return I->second;
}
/// AddRegisterOperand - Add the specified register as an operand to the
/// specified machine instr. Insert register copies if the register is
/// not in the required register class.
void
InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
const TargetInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned) {
assert(Op.getValueType() != MVT::Other &&
Op.getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
// Get/emit the operand.
unsigned VReg = getVR(Op, VRBaseMap);
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
const TargetInstrDesc &TID = MI->getDesc();
bool isOptDef = IIOpNum < TID.getNumOperands() &&
TID.OpInfo[IIOpNum].isOptionalDef();
// If the instruction requires a register in a different class, create
// a new virtual register and copy the value into it.
if (II) {
const TargetRegisterClass *SrcRC = MRI->getRegClass(VReg);
const TargetRegisterClass *DstRC = 0;
if (IIOpNum < II->getNumOperands())
DstRC = II->OpInfo[IIOpNum].getRegClass(TRI);
assert((DstRC || (TID.isVariadic() && IIOpNum >= TID.getNumOperands())) &&
"Don't have operand info for this instruction!");
if (DstRC && SrcRC != DstRC && !SrcRC->hasSuperClass(DstRC)) {
unsigned NewVReg = MRI->createVirtualRegister(DstRC);
BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
VReg = NewVReg;
}
}
// If this value has only one use, that use is a kill. This is a
// conservative approximation. InstrEmitter does trivial coalescing
// with CopyFromReg nodes, so don't emit kill flags for them.
// Avoid kill flags on Schedule cloned nodes, since there will be
// multiple uses.
// Tied operands are never killed, so we need to check that. And that
// means we need to determine the index of the operand.
bool isKill = Op.hasOneUse() &&
Op.getNode()->getOpcode() != ISD::CopyFromReg &&
!IsDebug &&
!(IsClone || IsCloned);
if (isKill) {
unsigned Idx = MI->getNumOperands();
while (Idx > 0 &&
MI->getOperand(Idx-1).isReg() && MI->getOperand(Idx-1).isImplicit())
--Idx;
bool isTied = MI->getDesc().getOperandConstraint(Idx, TOI::TIED_TO) != -1;
if (isTied)
isKill = false;
}
MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef,
false/*isImp*/, isKill,
false/*isDead*/, false/*isUndef*/,
false/*isEarlyClobber*/,
0/*SubReg*/, IsDebug));
}
/// AddOperand - Add the specified operand to the specified machine instr. II
/// specifies the instruction information for the node, and IIOpNum is the
/// operand number (in the II) that we are adding. IIOpNum and II are used for
/// assertions only.
void InstrEmitter::AddOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
const TargetInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned) {
if (Op.isMachineOpcode()) {
AddRegisterOperand(MI, Op, IIOpNum, II, VRBaseMap,
IsDebug, IsClone, IsCloned);
} else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateImm(C->getSExtValue()));
} else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
const ConstantFP *CFP = F->getConstantFPValue();
MI->addOperand(MachineOperand::CreateFPImm(CFP));
} else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
} else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(), TGA->getOffset(),
TGA->getTargetFlags()));
} else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateMBB(BBNode->getBasicBlock()));
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateFI(FI->getIndex()));
} else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateJTI(JT->getIndex(),
JT->getTargetFlags()));
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
int Offset = CP->getOffset();
unsigned Align = CP->getAlignment();
const Type *Type = CP->getType();
// MachineConstantPool wants an explicit alignment.
if (Align == 0) {
Align = TM->getTargetData()->getPrefTypeAlignment(Type);
if (Align == 0) {
// Alignment of vector types. FIXME!
Align = TM->getTargetData()->getTypeAllocSize(Type);
}
}
unsigned Idx;
MachineConstantPool *MCP = MF->getConstantPool();
if (CP->isMachineConstantPoolEntry())
Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
else
Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
MI->addOperand(MachineOperand::CreateCPI(Idx, Offset,
CP->getTargetFlags()));
} else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateES(ES->getSymbol(),
ES->getTargetFlags()));
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateBA(BA->getBlockAddress(),
BA->getTargetFlags()));
} else {
assert(Op.getValueType() != MVT::Other &&
Op.getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
AddRegisterOperand(MI, Op, IIOpNum, II, VRBaseMap,
IsDebug, IsClone, IsCloned);
}
}
/// getSuperRegisterRegClass - Returns the register class of a superreg A whose
/// "SubIdx"'th sub-register class is the specified register class and whose
/// type matches the specified type.
static const TargetRegisterClass*
getSuperRegisterRegClass(const TargetRegisterClass *TRC,
unsigned SubIdx, EVT VT) {
// Pick the register class of the superegister for this type
for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(),
E = TRC->superregclasses_end(); I != E; ++I)
if ((*I)->hasType(VT) && (*I)->getSubRegisterRegClass(SubIdx) == TRC)
return *I;
assert(false && "Couldn't find the register class");
return 0;
}
/// EmitSubregNode - Generate machine code for subreg nodes.
///
void InstrEmitter::EmitSubregNode(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsClone, bool IsCloned) {
unsigned VRBase = 0;
unsigned Opc = Node->getMachineOpcode();
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
// the CopyToReg'd destination register instead of creating a new vreg.
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node) {
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
VRBase = DestReg;
break;
}
}
}
if (Opc == TargetOpcode::EXTRACT_SUBREG) {
// EXTRACT_SUBREG is lowered as %dst = COPY %src:sub
unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
// Figure out the register class to create for the destreg.
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
const TargetRegisterClass *TRC = MRI->getRegClass(VReg);
const TargetRegisterClass *SRC = TRC->getSubRegisterRegClass(SubIdx);
assert(SRC && "Invalid subregister index in EXTRACT_SUBREG");
// Figure out the register class to create for the destreg.
// Note that if we're going to directly use an existing register,
// it must be precisely the required class, and not a subclass
// thereof.
if (VRBase == 0 || SRC != MRI->getRegClass(VRBase)) {
// Create the reg
assert(SRC && "Couldn't find source register class");
VRBase = MRI->createVirtualRegister(SRC);
}
// Create the extract_subreg machine instruction.
MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(),
TII->get(TargetOpcode::COPY), VRBase);
// Add source, and subreg index
AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
assert(TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg()) &&
"Cannot yet extract from physregs");
MI->getOperand(1).setSubReg(SubIdx);
MBB->insert(InsertPos, MI);
} else if (Opc == TargetOpcode::INSERT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG) {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
SDValue N2 = Node->getOperand(2);
unsigned SubReg = getVR(N1, VRBaseMap);
unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
const TargetRegisterClass *SRC =
getSuperRegisterRegClass(TRC, SubIdx, Node->getValueType(0));
// Figure out the register class to create for the destreg.
// Note that if we're going to directly use an existing register,
// it must be precisely the required class, and not a subclass
// thereof.
if (VRBase == 0 || SRC != MRI->getRegClass(VRBase)) {
// Create the reg
assert(SRC && "Couldn't find source register class");
VRBase = MRI->createVirtualRegister(SRC);
}
// Create the insert_subreg or subreg_to_reg machine instruction.
MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc));
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
// If creating a subreg_to_reg, then the first input operand
// is an implicit value immediate, otherwise it's a register
if (Opc == TargetOpcode::SUBREG_TO_REG) {
const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
MI->addOperand(MachineOperand::CreateImm(SD->getZExtValue()));
} else
AddOperand(MI, N0, 0, 0, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
// Add the subregster being inserted
AddOperand(MI, N1, 0, 0, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
MI->addOperand(MachineOperand::CreateImm(SubIdx));
MBB->insert(InsertPos, MI);
} else
llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
/// COPY_TO_REGCLASS is just a normal copy, except that the destination
/// register is constrained to be in a particular register class.
///
void
InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
// Create the new VReg in the destination class and emit a copy.
unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
const TargetRegisterClass *DstRC = TRI->getRegClass(DstRCIdx);
unsigned NewVReg = MRI->createVirtualRegister(DstRC);
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
NewVReg).addReg(VReg);
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
///
void InstrEmitter::EmitRegSequence(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsClone, bool IsCloned) {
const TargetRegisterClass *RC = TLI->getRegClassFor(Node->getValueType(0));
unsigned NewVReg = MRI->createVirtualRegister(RC);
MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(),
TII->get(TargetOpcode::REG_SEQUENCE), NewVReg);
unsigned NumOps = Node->getNumOperands();
assert((NumOps & 1) == 0 &&
"REG_SEQUENCE must have an even number of operands!");
const TargetInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Op = Node->getOperand(i);
if (i & 1) {
unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
const TargetRegisterClass *SRC =
TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
if (!SRC)
llvm_unreachable("Invalid subregister index in REG_SEQUENCE");
if (SRC != RC) {
MRI->setRegClass(NewVReg, SRC);
RC = SRC;
}
}
AddOperand(MI, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
}
MBB->insert(InsertPos, MI);
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
isNew = isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitDbgValue - Generate machine instruction for a dbg_value node.
///
MachineInstr *
InstrEmitter::EmitDbgValue(SDDbgValue *SD,
DenseMap<SDValue, unsigned> &VRBaseMap) {
uint64_t Offset = SD->getOffset();
MDNode* MDPtr = SD->getMDPtr();
DebugLoc DL = SD->getDebugLoc();
if (SD->getKind() == SDDbgValue::FRAMEIX) {
// Stack address; this needs to be lowered in target-dependent fashion.
// EmitTargetCodeForFrameDebugValue is responsible for allocation.
unsigned FrameIx = SD->getFrameIx();
return TII->emitFrameIndexDebugValue(*MF, FrameIx, Offset, MDPtr, DL);
}
// Otherwise, we're going to create an instruction here.
const TargetInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
if (SD->getKind() == SDDbgValue::SDNODE) {
SDNode *Node = SD->getSDNode();
SDValue Op = SDValue(Node, SD->getResNo());
// It's possible we replaced this SDNode with other(s) and therefore
// didn't generate code for it. It's better to catch these cases where
// they happen and transfer the debug info, but trying to guarantee that
// in all cases would be very fragile; this is a safeguard for any
// that were missed.
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
if (I==VRBaseMap.end())
MIB.addReg(0U); // undef
else
AddOperand(&*MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
/*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
} else if (SD->getKind() == SDDbgValue::CONST) {
const Value *V = SD->getConst();
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// FIXME: SDDbgValue constants aren't updated with legalization, so it's
// possible to have i128 constants in them at this point. Dwarf writer
// does not handle i128 constants at the moment so, as a crude workaround,
// just drop the debug info if this happens.
if (!CI->getValue().isSignedIntN(64))
MIB.addReg(0U);
else
MIB.addImm(CI->getSExtValue());
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
MIB.addFPImm(CF);
} else {
// Could be an Undef. In any case insert an Undef so we can see what we
// dropped.
MIB.addReg(0U);
}
} else {
// Insert an Undef so we can see what we dropped.
MIB.addReg(0U);
}
MIB.addImm(Offset).addMetadata(MDPtr);
return &*MIB;
}
/// EmitMachineNode - Generate machine code for a target-specific node and
/// needed dependencies.
///
void InstrEmitter::
EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned Opc = Node->getMachineOpcode();
// Handle subreg insert/extract specially
if (Opc == TargetOpcode::EXTRACT_SUBREG ||
Opc == TargetOpcode::INSERT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG) {
EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
return;
}
// Handle COPY_TO_REGCLASS specially.
if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
EmitCopyToRegClassNode(Node, VRBaseMap);
return;
}
// Handle REG_SEQUENCE specially.
if (Opc == TargetOpcode::REG_SEQUENCE) {
EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
return;
}
if (Opc == TargetOpcode::IMPLICIT_DEF)
// We want a unique VR for each IMPLICIT_DEF use.
return;
const TargetInstrDesc &II = TII->get(Opc);
unsigned NumResults = CountResults(Node);
unsigned NodeOperands = CountOperands(Node);
bool HasPhysRegOuts = NumResults > II.getNumDefs() && II.getImplicitDefs()!=0;
#ifndef NDEBUG
unsigned NumMIOperands = NodeOperands + NumResults;
if (II.isVariadic())
assert(NumMIOperands >= II.getNumOperands() &&
"Too few operands for a variadic node!");
else
assert(NumMIOperands >= II.getNumOperands() &&
NumMIOperands <= II.getNumOperands()+II.getNumImplicitDefs() &&
"#operands for dag node doesn't match .td file!");
#endif
// Create the new machine instruction.
MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), II);
// The MachineInstr constructor adds implicit-def operands. Scan through
// these to determine which are dead.
if (MI->getNumOperands() != 0 &&
Node->getValueType(Node->getNumValues()-1) == MVT::Flag) {
// First, collect all used registers.
SmallVector<unsigned, 8> UsedRegs;
for (SDNode *F = Node->getFlaggedUser(); F; F = F->getFlaggedUser())
if (F->getOpcode() == ISD::CopyFromReg)
UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
else {
// Collect declared implicit uses.
const TargetInstrDesc &TID = TII->get(F->getMachineOpcode());
UsedRegs.append(TID.getImplicitUses(),
TID.getImplicitUses() + TID.getNumImplicitUses());
// In addition to declared implicit uses, we must also check for
// direct RegisterSDNode operands.
for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
unsigned Reg = R->getReg();
if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg))
UsedRegs.push_back(Reg);
}
}
// Then mark unused registers as dead.
MI->setPhysRegsDeadExcept(UsedRegs, *TRI);
}
// Add result register values for things that are defined by this
// instruction.
if (NumResults)
CreateVirtualRegisters(Node, MI, II, IsClone, IsCloned, VRBaseMap);
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
bool HasOptPRefs = II.getNumDefs() > NumResults;
assert((!HasOptPRefs || !HasPhysRegOuts) &&
"Unable to cope with optional defs and phys regs defs!");
unsigned NumSkip = HasOptPRefs ? II.getNumDefs() - NumResults : 0;
for (unsigned i = NumSkip; i != NodeOperands; ++i)
AddOperand(MI, Node->getOperand(i), i-NumSkip+II.getNumDefs(), &II,
VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
// Transfer all of the memory reference descriptions of this instruction.
MI->setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
cast<MachineSDNode>(Node)->memoperands_end());
// Insert the instruction into position in the block. This needs to
// happen before any custom inserter hook is called so that the
// hook knows where in the block to insert the replacement code.
MBB->insert(InsertPos, MI);
if (II.usesCustomInsertionHook()) {
// Insert this instruction into the basic block using a target
// specific inserter which may returns a new basic block.
bool AtEnd = InsertPos == MBB->end();
MachineBasicBlock *NewMBB = TLI->EmitInstrWithCustomInserter(MI, MBB);
if (NewMBB != MBB) {
if (AtEnd)
InsertPos = NewMBB->end();
MBB = NewMBB;
}
return;
}
// Additional results must be an physical register def.
if (HasPhysRegOuts) {
for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
if (Node->hasAnyUseOfValue(i))
EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
// If there are no uses, mark the register as dead now, so that
// MachineLICM/Sink can see that it's dead. Don't do this if the
// node has a Flag value, for the benefit of targets still using
// Flag for values in physregs.
else if (Node->getValueType(Node->getNumValues()-1) != MVT::Flag)
MI->addRegisterDead(Reg, TRI);
}
}
// If the instruction has implicit defs and the node doesn't, mark the
// implicit def as dead. If the node has any flag outputs, we don't do this
// because we don't know what implicit defs are being used by flagged nodes.
if (Node->getValueType(Node->getNumValues()-1) != MVT::Flag)
if (const unsigned *IDList = II.getImplicitDefs()) {
for (unsigned i = NumResults, e = II.getNumDefs()+II.getNumImplicitDefs();
i != e; ++i)
MI->addRegisterDead(IDList[i-II.getNumDefs()], TRI);
}
}
/// EmitSpecialNode - Generate machine code for a target-independent node and
/// needed dependencies.
void InstrEmitter::
EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump();
#endif
llvm_unreachable("This target-independent node should have been selected!");
break;
case ISD::EntryToken:
llvm_unreachable("EntryToken should have been excluded from the schedule!");
break;
case ISD::MERGE_VALUES:
case ISD::TokenFactor: // fall thru
break;
case ISD::CopyToReg: {
unsigned SrcReg;
SDValue SrcVal = Node->getOperand(2);
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
SrcReg = R->getReg();
else
SrcReg = getVR(SrcVal, VRBaseMap);
unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
break;
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
DestReg).addReg(SrcReg);
break;
}
case ISD::CopyFromReg: {
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
break;
}
case ISD::EH_LABEL: {
MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel();
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
TII->get(TargetOpcode::EH_LABEL)).addSym(S);
break;
}
case ISD::INLINEASM: {
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
--NumOps; // Ignore the flag operand.
// Create the inline asm machine instruction.
MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(),
TII->get(TargetOpcode::INLINEASM));
// Add the asm string as an external symbol operand.
SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
MI->addOperand(MachineOperand::CreateES(AsmStr));
// Add the isAlignStack bit.
int64_t isAlignStack =
cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_IsAlignStack))->
getZExtValue();
MI->addOperand(MachineOperand::CreateImm(isAlignStack));
// Add all of the operand registers to the instruction.
for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
MI->addOperand(MachineOperand::CreateImm(Flags));
++i; // Skip the ID value.
switch (InlineAsm::getKind(Flags)) {
default: llvm_unreachable("Bad flags!");
case InlineAsm::Kind_RegDef:
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
// FIXME: Add dead flags for physical and virtual registers defined.
// For now, mark physical register defs as implicit to help fast
// regalloc. This makes inline asm look a lot like calls.
MI->addOperand(MachineOperand::CreateReg(Reg, true,
/*isImp=*/ TargetRegisterInfo::isPhysicalRegister(Reg)));
}
break;
case InlineAsm::Kind_RegDefEarlyClobber:
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
MI->addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/ true,
/*isImp=*/ TargetRegisterInfo::isPhysicalRegister(Reg),
/*isKill=*/ false,
/*isDead=*/ false,
/*isUndef=*/false,
/*isEarlyClobber=*/ true));
}
break;
case InlineAsm::Kind_RegUse: // Use of register.
case InlineAsm::Kind_Imm: // Immediate.
case InlineAsm::Kind_Mem: // Addressing mode.
// The addressing mode has been selected, just add all of the
// operands to the machine instruction.
for (; NumVals; --NumVals, ++i)
AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap,
/*IsDebug=*/false, IsClone, IsCloned);
break;
}
}
// Get the mdnode from the asm if it exists and add it to the instruction.
SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
if (MD)
MI->addOperand(MachineOperand::CreateMetadata(MD));
MBB->insert(InsertPos, MI);
break;
}
}
}
/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
/// at the given position in the given block.
InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
MachineBasicBlock::iterator insertpos)
: MF(mbb->getParent()),
MRI(&MF->getRegInfo()),
TM(&MF->getTarget()),
TII(TM->getInstrInfo()),
TRI(TM->getRegisterInfo()),
TLI(TM->getTargetLowering()),
MBB(mbb), InsertPos(insertpos) {
}