mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-26 04:34:41 +00:00
38be65b328
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210965 91177308-0d34-0410-b5e6-96231b3b80d8
1150 lines
42 KiB
C++
1150 lines
42 KiB
C++
//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements an idiom recognizer that transforms simple loops into a
|
|
// non-loop form. In cases that this kicks in, it can be a significant
|
|
// performance win.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// TODO List:
|
|
//
|
|
// Future loop memory idioms to recognize:
|
|
// memcmp, memmove, strlen, etc.
|
|
// Future floating point idioms to recognize in -ffast-math mode:
|
|
// fpowi
|
|
// Future integer operation idioms to recognize:
|
|
// ctpop, ctlz, cttz
|
|
//
|
|
// Beware that isel's default lowering for ctpop is highly inefficient for
|
|
// i64 and larger types when i64 is legal and the value has few bits set. It
|
|
// would be good to enhance isel to emit a loop for ctpop in this case.
|
|
//
|
|
// We should enhance the memset/memcpy recognition to handle multiple stores in
|
|
// the loop. This would handle things like:
|
|
// void foo(_Complex float *P)
|
|
// for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
|
|
//
|
|
// We should enhance this to handle negative strides through memory.
|
|
// Alternatively (and perhaps better) we could rely on an earlier pass to force
|
|
// forward iteration through memory, which is generally better for cache
|
|
// behavior. Negative strides *do* happen for memset/memcpy loops.
|
|
//
|
|
// This could recognize common matrix multiplies and dot product idioms and
|
|
// replace them with calls to BLAS (if linked in??).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-idiom"
|
|
|
|
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
|
|
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
|
|
|
|
namespace {
|
|
|
|
class LoopIdiomRecognize;
|
|
|
|
/// This class defines some utility functions for loop idiom recognization.
|
|
class LIRUtil {
|
|
public:
|
|
/// Return true iff the block contains nothing but an uncondition branch
|
|
/// (aka goto instruction).
|
|
static bool isAlmostEmpty(BasicBlock *);
|
|
|
|
static BranchInst *getBranch(BasicBlock *BB) {
|
|
return dyn_cast<BranchInst>(BB->getTerminator());
|
|
}
|
|
|
|
/// Derive the precondition block (i.e the block that guards the loop
|
|
/// preheader) from the given preheader.
|
|
static BasicBlock *getPrecondBb(BasicBlock *PreHead);
|
|
};
|
|
|
|
/// This class is to recoginize idioms of population-count conducted in
|
|
/// a noncountable loop. Currently it only recognizes this pattern:
|
|
/// \code
|
|
/// while(x) {cnt++; ...; x &= x - 1; ...}
|
|
/// \endcode
|
|
class NclPopcountRecognize {
|
|
LoopIdiomRecognize &LIR;
|
|
Loop *CurLoop;
|
|
BasicBlock *PreCondBB;
|
|
|
|
typedef IRBuilder<> IRBuilderTy;
|
|
|
|
public:
|
|
explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
|
|
bool recognize();
|
|
|
|
private:
|
|
/// Take a glimpse of the loop to see if we need to go ahead recoginizing
|
|
/// the idiom.
|
|
bool preliminaryScreen();
|
|
|
|
/// Check if the given conditional branch is based on the comparison
|
|
/// between a variable and zero, and if the variable is non-zero, the
|
|
/// control yields to the loop entry. If the branch matches the behavior,
|
|
/// the variable involved in the comparion is returned. This function will
|
|
/// be called to see if the precondition and postcondition of the loop
|
|
/// are in desirable form.
|
|
Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const;
|
|
|
|
/// Return true iff the idiom is detected in the loop. and 1) \p CntInst
|
|
/// is set to the instruction counting the population bit. 2) \p CntPhi
|
|
/// is set to the corresponding phi node. 3) \p Var is set to the value
|
|
/// whose population bits are being counted.
|
|
bool detectIdiom
|
|
(Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
|
|
|
|
/// Insert ctpop intrinsic function and some obviously dead instructions.
|
|
void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var);
|
|
|
|
/// Create llvm.ctpop.* intrinsic function.
|
|
CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
|
|
};
|
|
|
|
class LoopIdiomRecognize : public LoopPass {
|
|
Loop *CurLoop;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT;
|
|
ScalarEvolution *SE;
|
|
TargetLibraryInfo *TLI;
|
|
const TargetTransformInfo *TTI;
|
|
public:
|
|
static char ID;
|
|
explicit LoopIdiomRecognize() : LoopPass(ID) {
|
|
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
|
|
DL = nullptr; DT = nullptr; SE = nullptr; TLI = nullptr; TTI = nullptr;
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
|
|
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
|
|
SmallVectorImpl<BasicBlock*> &ExitBlocks);
|
|
|
|
bool processLoopStore(StoreInst *SI, const SCEV *BECount);
|
|
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
|
|
|
|
bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
|
|
unsigned StoreAlignment,
|
|
Value *SplatValue, Instruction *TheStore,
|
|
const SCEVAddRecExpr *Ev,
|
|
const SCEV *BECount);
|
|
bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
|
|
const SCEVAddRecExpr *StoreEv,
|
|
const SCEVAddRecExpr *LoadEv,
|
|
const SCEV *BECount);
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG.
|
|
///
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addPreserved<LoopInfo>();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addPreservedID(LCSSAID);
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.addPreserved<ScalarEvolution>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfo>();
|
|
AU.addRequired<TargetTransformInfo>();
|
|
}
|
|
|
|
const DataLayout *getDataLayout() {
|
|
if (DL)
|
|
return DL;
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
|
return DL;
|
|
}
|
|
|
|
DominatorTree *getDominatorTree() {
|
|
return DT ? DT
|
|
: (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree());
|
|
}
|
|
|
|
ScalarEvolution *getScalarEvolution() {
|
|
return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
|
|
}
|
|
|
|
TargetLibraryInfo *getTargetLibraryInfo() {
|
|
return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
|
|
}
|
|
|
|
const TargetTransformInfo *getTargetTransformInfo() {
|
|
return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
|
|
}
|
|
|
|
Loop *getLoop() const { return CurLoop; }
|
|
|
|
private:
|
|
bool runOnNoncountableLoop();
|
|
bool runOnCountableLoop();
|
|
};
|
|
}
|
|
|
|
char LoopIdiomRecognize::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSA)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
|
|
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
|
|
false, false)
|
|
|
|
Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
|
|
|
|
/// deleteDeadInstruction - Delete this instruction. Before we do, go through
|
|
/// and zero out all the operands of this instruction. If any of them become
|
|
/// dead, delete them and the computation tree that feeds them.
|
|
///
|
|
static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
|
|
const TargetLibraryInfo *TLI) {
|
|
SmallVector<Instruction*, 32> NowDeadInsts;
|
|
|
|
NowDeadInsts.push_back(I);
|
|
|
|
// Before we touch this instruction, remove it from SE!
|
|
do {
|
|
Instruction *DeadInst = NowDeadInsts.pop_back_val();
|
|
|
|
// This instruction is dead, zap it, in stages. Start by removing it from
|
|
// SCEV.
|
|
SE.forgetValue(DeadInst);
|
|
|
|
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
|
|
Value *Op = DeadInst->getOperand(op);
|
|
DeadInst->setOperand(op, nullptr);
|
|
|
|
// If this operand just became dead, add it to the NowDeadInsts list.
|
|
if (!Op->use_empty()) continue;
|
|
|
|
if (Instruction *OpI = dyn_cast<Instruction>(Op))
|
|
if (isInstructionTriviallyDead(OpI, TLI))
|
|
NowDeadInsts.push_back(OpI);
|
|
}
|
|
|
|
DeadInst->eraseFromParent();
|
|
|
|
} while (!NowDeadInsts.empty());
|
|
}
|
|
|
|
/// deleteIfDeadInstruction - If the specified value is a dead instruction,
|
|
/// delete it and any recursively used instructions.
|
|
static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
|
|
const TargetLibraryInfo *TLI) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (isInstructionTriviallyDead(I, TLI))
|
|
deleteDeadInstruction(I, SE, TLI);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of LIRUtil
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// This function will return true iff the given block contains nothing but goto.
|
|
// A typical usage of this function is to check if the preheader function is
|
|
// "almost" empty such that generated intrinsic functions can be moved across
|
|
// the preheader and be placed at the end of the precondition block without
|
|
// the concern of breaking data dependence.
|
|
bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
|
|
if (BranchInst *Br = getBranch(BB)) {
|
|
return Br->isUnconditional() && BB->size() == 1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
|
|
if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
|
|
BranchInst *Br = getBranch(BB);
|
|
return Br && Br->isConditional() ? BB : nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of NclPopcountRecognize
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
|
|
LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) {
|
|
}
|
|
|
|
bool NclPopcountRecognize::preliminaryScreen() {
|
|
const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
|
|
if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
|
|
return false;
|
|
|
|
// Counting population are usually conducted by few arithmetic instructions.
|
|
// Such instructions can be easilly "absorbed" by vacant slots in a
|
|
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
|
|
// in a compact loop.
|
|
|
|
// Give up if the loop has multiple blocks or multiple backedges.
|
|
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
|
return false;
|
|
|
|
BasicBlock *LoopBody = *(CurLoop->block_begin());
|
|
if (LoopBody->size() >= 20) {
|
|
// The loop is too big, bail out.
|
|
return false;
|
|
}
|
|
|
|
// It should have a preheader containing nothing but a goto instruction.
|
|
BasicBlock *PreHead = CurLoop->getLoopPreheader();
|
|
if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
|
|
return false;
|
|
|
|
// It should have a precondition block where the generated popcount instrinsic
|
|
// function will be inserted.
|
|
PreCondBB = LIRUtil::getPrecondBb(PreHead);
|
|
if (!PreCondBB)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
Value *NclPopcountRecognize::matchCondition(BranchInst *Br,
|
|
BasicBlock *LoopEntry) const {
|
|
if (!Br || !Br->isConditional())
|
|
return nullptr;
|
|
|
|
ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
|
|
if (!Cond)
|
|
return nullptr;
|
|
|
|
ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
|
|
if (!CmpZero || !CmpZero->isZero())
|
|
return nullptr;
|
|
|
|
ICmpInst::Predicate Pred = Cond->getPredicate();
|
|
if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
|
|
(Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
|
|
return Cond->getOperand(0);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
|
|
PHINode *&CntPhi,
|
|
Value *&Var) const {
|
|
// Following code tries to detect this idiom:
|
|
//
|
|
// if (x0 != 0)
|
|
// goto loop-exit // the precondition of the loop
|
|
// cnt0 = init-val;
|
|
// do {
|
|
// x1 = phi (x0, x2);
|
|
// cnt1 = phi(cnt0, cnt2);
|
|
//
|
|
// cnt2 = cnt1 + 1;
|
|
// ...
|
|
// x2 = x1 & (x1 - 1);
|
|
// ...
|
|
// } while(x != 0);
|
|
//
|
|
// loop-exit:
|
|
//
|
|
|
|
// step 1: Check to see if the look-back branch match this pattern:
|
|
// "if (a!=0) goto loop-entry".
|
|
BasicBlock *LoopEntry;
|
|
Instruction *DefX2, *CountInst;
|
|
Value *VarX1, *VarX0;
|
|
PHINode *PhiX, *CountPhi;
|
|
|
|
DefX2 = CountInst = nullptr;
|
|
VarX1 = VarX0 = nullptr;
|
|
PhiX = CountPhi = nullptr;
|
|
LoopEntry = *(CurLoop->block_begin());
|
|
|
|
// step 1: Check if the loop-back branch is in desirable form.
|
|
{
|
|
if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
|
|
DefX2 = dyn_cast<Instruction>(T);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
|
|
{
|
|
if (!DefX2 || DefX2->getOpcode() != Instruction::And)
|
|
return false;
|
|
|
|
BinaryOperator *SubOneOp;
|
|
|
|
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
|
|
VarX1 = DefX2->getOperand(1);
|
|
else {
|
|
VarX1 = DefX2->getOperand(0);
|
|
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
|
|
}
|
|
if (!SubOneOp)
|
|
return false;
|
|
|
|
Instruction *SubInst = cast<Instruction>(SubOneOp);
|
|
ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
|
|
if (!Dec ||
|
|
!((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
|
|
(SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// step 3: Check the recurrence of variable X
|
|
{
|
|
PhiX = dyn_cast<PHINode>(VarX1);
|
|
if (!PhiX ||
|
|
(PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
|
|
{
|
|
CountInst = nullptr;
|
|
for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
|
|
IterE = LoopEntry->end(); Iter != IterE; Iter++) {
|
|
Instruction *Inst = Iter;
|
|
if (Inst->getOpcode() != Instruction::Add)
|
|
continue;
|
|
|
|
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
|
|
if (!Inc || !Inc->isOne())
|
|
continue;
|
|
|
|
PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
|
|
if (!Phi || Phi->getParent() != LoopEntry)
|
|
continue;
|
|
|
|
// Check if the result of the instruction is live of the loop.
|
|
bool LiveOutLoop = false;
|
|
for (User *U : Inst->users()) {
|
|
if ((cast<Instruction>(U))->getParent() != LoopEntry) {
|
|
LiveOutLoop = true; break;
|
|
}
|
|
}
|
|
|
|
if (LiveOutLoop) {
|
|
CountInst = Inst;
|
|
CountPhi = Phi;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!CountInst)
|
|
return false;
|
|
}
|
|
|
|
// step 5: check if the precondition is in this form:
|
|
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
|
|
{
|
|
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
|
|
Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
|
|
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
|
|
return false;
|
|
|
|
CntInst = CountInst;
|
|
CntPhi = CountPhi;
|
|
Var = T;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void NclPopcountRecognize::transform(Instruction *CntInst,
|
|
PHINode *CntPhi, Value *Var) {
|
|
|
|
ScalarEvolution *SE = LIR.getScalarEvolution();
|
|
TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
|
|
BasicBlock *PreHead = CurLoop->getLoopPreheader();
|
|
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
|
|
const DebugLoc DL = CntInst->getDebugLoc();
|
|
|
|
// Assuming before transformation, the loop is following:
|
|
// if (x) // the precondition
|
|
// do { cnt++; x &= x - 1; } while(x);
|
|
|
|
// Step 1: Insert the ctpop instruction at the end of the precondition block
|
|
IRBuilderTy Builder(PreCondBr);
|
|
Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
|
|
{
|
|
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
|
|
NewCount = PopCntZext =
|
|
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
|
|
|
|
if (NewCount != PopCnt)
|
|
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
|
|
|
// TripCnt is exactly the number of iterations the loop has
|
|
TripCnt = NewCount;
|
|
|
|
// If the population counter's initial value is not zero, insert Add Inst.
|
|
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
|
|
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
|
|
if (!InitConst || !InitConst->isZero()) {
|
|
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
|
|
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
|
}
|
|
}
|
|
|
|
// Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
|
|
// "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
|
|
// function would be partial dead code, and downstream passes will drag
|
|
// it back from the precondition block to the preheader.
|
|
{
|
|
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
|
|
|
|
Value *Opnd0 = PopCntZext;
|
|
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
|
|
if (PreCond->getOperand(0) != Var)
|
|
std::swap(Opnd0, Opnd1);
|
|
|
|
ICmpInst *NewPreCond =
|
|
cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
|
|
PreCond->replaceAllUsesWith(NewPreCond);
|
|
|
|
deleteDeadInstruction(PreCond, *SE, TLI);
|
|
}
|
|
|
|
// Step 3: Note that the population count is exactly the trip count of the
|
|
// loop in question, which enble us to to convert the loop from noncountable
|
|
// loop into a countable one. The benefit is twofold:
|
|
//
|
|
// - If the loop only counts population, the entire loop become dead after
|
|
// the transformation. It is lots easier to prove a countable loop dead
|
|
// than to prove a noncountable one. (In some C dialects, a infite loop
|
|
// isn't dead even if it computes nothing useful. In general, DCE needs
|
|
// to prove a noncountable loop finite before safely delete it.)
|
|
//
|
|
// - If the loop also performs something else, it remains alive.
|
|
// Since it is transformed to countable form, it can be aggressively
|
|
// optimized by some optimizations which are in general not applicable
|
|
// to a noncountable loop.
|
|
//
|
|
// After this step, this loop (conceptually) would look like following:
|
|
// newcnt = __builtin_ctpop(x);
|
|
// t = newcnt;
|
|
// if (x)
|
|
// do { cnt++; x &= x-1; t--) } while (t > 0);
|
|
BasicBlock *Body = *(CurLoop->block_begin());
|
|
{
|
|
BranchInst *LbBr = LIRUtil::getBranch(Body);
|
|
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
|
|
Type *Ty = TripCnt->getType();
|
|
|
|
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
|
|
|
|
Builder.SetInsertPoint(LbCond);
|
|
Value *Opnd1 = cast<Value>(TcPhi);
|
|
Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
|
|
Instruction *TcDec =
|
|
cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
|
|
|
|
TcPhi->addIncoming(TripCnt, PreHead);
|
|
TcPhi->addIncoming(TcDec, Body);
|
|
|
|
CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
|
|
CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
|
|
LbCond->setPredicate(Pred);
|
|
LbCond->setOperand(0, TcDec);
|
|
LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
|
|
}
|
|
|
|
// Step 4: All the references to the original population counter outside
|
|
// the loop are replaced with the NewCount -- the value returned from
|
|
// __builtin_ctpop().
|
|
{
|
|
SmallVector<Value *, 4> CntUses;
|
|
for (User *U : CntInst->users())
|
|
if (cast<Instruction>(U)->getParent() != Body)
|
|
CntUses.push_back(U);
|
|
for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
|
|
(cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
|
|
}
|
|
}
|
|
|
|
// step 5: Forget the "non-computable" trip-count SCEV associated with the
|
|
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
|
SE->forgetLoop(CurLoop);
|
|
}
|
|
|
|
CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
|
|
Value *Val, DebugLoc DL) {
|
|
Value *Ops[] = { Val };
|
|
Type *Tys[] = { Val->getType() };
|
|
|
|
Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
|
|
Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
|
|
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
|
|
CI->setDebugLoc(DL);
|
|
|
|
return CI;
|
|
}
|
|
|
|
/// recognize - detect population count idiom in a non-countable loop. If
|
|
/// detected, transform the relevant code to popcount intrinsic function
|
|
/// call, and return true; otherwise, return false.
|
|
bool NclPopcountRecognize::recognize() {
|
|
|
|
if (!LIR.getTargetTransformInfo())
|
|
return false;
|
|
|
|
LIR.getScalarEvolution();
|
|
|
|
if (!preliminaryScreen())
|
|
return false;
|
|
|
|
Instruction *CntInst;
|
|
PHINode *CntPhi;
|
|
Value *Val;
|
|
if (!detectIdiom(CntInst, CntPhi, Val))
|
|
return false;
|
|
|
|
transform(CntInst, CntPhi, Val);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of LoopIdiomRecognize
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LoopIdiomRecognize::runOnCountableLoop() {
|
|
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
|
|
if (isa<SCEVCouldNotCompute>(BECount)) return false;
|
|
|
|
// If this loop executes exactly one time, then it should be peeled, not
|
|
// optimized by this pass.
|
|
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
|
if (BECst->getValue()->getValue() == 0)
|
|
return false;
|
|
|
|
// We require target data for now.
|
|
if (!getDataLayout())
|
|
return false;
|
|
|
|
// set DT
|
|
(void)getDominatorTree();
|
|
|
|
LoopInfo &LI = getAnalysis<LoopInfo>();
|
|
TLI = &getAnalysis<TargetLibraryInfo>();
|
|
|
|
// set TLI
|
|
(void)getTargetLibraryInfo();
|
|
|
|
SmallVector<BasicBlock*, 8> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
DEBUG(dbgs() << "loop-idiom Scanning: F["
|
|
<< CurLoop->getHeader()->getParent()->getName()
|
|
<< "] Loop %" << CurLoop->getHeader()->getName() << "\n");
|
|
|
|
bool MadeChange = false;
|
|
// Scan all the blocks in the loop that are not in subloops.
|
|
for (Loop::block_iterator BI = CurLoop->block_begin(),
|
|
E = CurLoop->block_end(); BI != E; ++BI) {
|
|
// Ignore blocks in subloops.
|
|
if (LI.getLoopFor(*BI) != CurLoop)
|
|
continue;
|
|
|
|
MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool LoopIdiomRecognize::runOnNoncountableLoop() {
|
|
NclPopcountRecognize Popcount(*this);
|
|
if (Popcount.recognize())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
if (skipOptnoneFunction(L))
|
|
return false;
|
|
|
|
CurLoop = L;
|
|
|
|
// If the loop could not be converted to canonical form, it must have an
|
|
// indirectbr in it, just give up.
|
|
if (!L->getLoopPreheader())
|
|
return false;
|
|
|
|
// Disable loop idiom recognition if the function's name is a common idiom.
|
|
StringRef Name = L->getHeader()->getParent()->getName();
|
|
if (Name == "memset" || Name == "memcpy")
|
|
return false;
|
|
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
if (SE->hasLoopInvariantBackedgeTakenCount(L))
|
|
return runOnCountableLoop();
|
|
return runOnNoncountableLoop();
|
|
}
|
|
|
|
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
|
|
/// with the specified backedge count. This block is known to be in the current
|
|
/// loop and not in any subloops.
|
|
bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
|
|
SmallVectorImpl<BasicBlock*> &ExitBlocks) {
|
|
// We can only promote stores in this block if they are unconditionally
|
|
// executed in the loop. For a block to be unconditionally executed, it has
|
|
// to dominate all the exit blocks of the loop. Verify this now.
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (!DT->dominates(BB, ExitBlocks[i]))
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
|
Instruction *Inst = I++;
|
|
// Look for store instructions, which may be optimized to memset/memcpy.
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
WeakVH InstPtr(I);
|
|
if (!processLoopStore(SI, BECount)) continue;
|
|
MadeChange = true;
|
|
|
|
// If processing the store invalidated our iterator, start over from the
|
|
// top of the block.
|
|
if (!InstPtr)
|
|
I = BB->begin();
|
|
continue;
|
|
}
|
|
|
|
// Look for memset instructions, which may be optimized to a larger memset.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
|
|
WeakVH InstPtr(I);
|
|
if (!processLoopMemSet(MSI, BECount)) continue;
|
|
MadeChange = true;
|
|
|
|
// If processing the memset invalidated our iterator, start over from the
|
|
// top of the block.
|
|
if (!InstPtr)
|
|
I = BB->begin();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
/// processLoopStore - See if this store can be promoted to a memset or memcpy.
|
|
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
|
|
if (!SI->isSimple()) return false;
|
|
|
|
Value *StoredVal = SI->getValueOperand();
|
|
Value *StorePtr = SI->getPointerOperand();
|
|
|
|
// Reject stores that are so large that they overflow an unsigned.
|
|
uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
|
|
if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
|
|
return false;
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided store. If we have something else, it's a
|
|
// random store we can't handle.
|
|
const SCEVAddRecExpr *StoreEv =
|
|
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
|
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
|
|
return false;
|
|
|
|
// Check to see if the stride matches the size of the store. If so, then we
|
|
// know that every byte is touched in the loop.
|
|
unsigned StoreSize = (unsigned)SizeInBits >> 3;
|
|
const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
|
|
|
|
if (!Stride || StoreSize != Stride->getValue()->getValue()) {
|
|
// TODO: Could also handle negative stride here someday, that will require
|
|
// the validity check in mayLoopAccessLocation to be updated though.
|
|
// Enable this to print exact negative strides.
|
|
if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
|
|
dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
|
|
dbgs() << "BB: " << *SI->getParent();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// See if we can optimize just this store in isolation.
|
|
if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
|
|
StoredVal, SI, StoreEv, BECount))
|
|
return true;
|
|
|
|
// If the stored value is a strided load in the same loop with the same stride
|
|
// this this may be transformable into a memcpy. This kicks in for stuff like
|
|
// for (i) A[i] = B[i];
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
|
|
const SCEVAddRecExpr *LoadEv =
|
|
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
|
|
if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
|
|
StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
|
|
if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
|
|
return true;
|
|
}
|
|
//errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
|
|
|
|
return false;
|
|
}
|
|
|
|
/// processLoopMemSet - See if this memset can be promoted to a large memset.
|
|
bool LoopIdiomRecognize::
|
|
processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
|
|
// We can only handle non-volatile memsets with a constant size.
|
|
if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
|
|
|
|
// If we're not allowed to hack on memset, we fail.
|
|
if (!TLI->has(LibFunc::memset))
|
|
return false;
|
|
|
|
Value *Pointer = MSI->getDest();
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided store. If we have something else, it's a
|
|
// random store we can't handle.
|
|
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
|
|
if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
|
|
return false;
|
|
|
|
// Reject memsets that are so large that they overflow an unsigned.
|
|
uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
|
if ((SizeInBytes >> 32) != 0)
|
|
return false;
|
|
|
|
// Check to see if the stride matches the size of the memset. If so, then we
|
|
// know that every byte is touched in the loop.
|
|
const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
|
|
|
|
// TODO: Could also handle negative stride here someday, that will require the
|
|
// validity check in mayLoopAccessLocation to be updated though.
|
|
if (!Stride || MSI->getLength() != Stride->getValue())
|
|
return false;
|
|
|
|
return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
|
|
MSI->getAlignment(), MSI->getValue(),
|
|
MSI, Ev, BECount);
|
|
}
|
|
|
|
|
|
/// mayLoopAccessLocation - Return true if the specified loop might access the
|
|
/// specified pointer location, which is a loop-strided access. The 'Access'
|
|
/// argument specifies what the verboten forms of access are (read or write).
|
|
static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
|
|
Loop *L, const SCEV *BECount,
|
|
unsigned StoreSize, AliasAnalysis &AA,
|
|
Instruction *IgnoredStore) {
|
|
// Get the location that may be stored across the loop. Since the access is
|
|
// strided positively through memory, we say that the modified location starts
|
|
// at the pointer and has infinite size.
|
|
uint64_t AccessSize = AliasAnalysis::UnknownSize;
|
|
|
|
// If the loop iterates a fixed number of times, we can refine the access size
|
|
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
|
|
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
|
AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
|
|
|
|
// TODO: For this to be really effective, we have to dive into the pointer
|
|
// operand in the store. Store to &A[i] of 100 will always return may alias
|
|
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
|
|
// which will then no-alias a store to &A[100].
|
|
AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
|
|
|
|
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
|
|
++BI)
|
|
for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
|
|
if (&*I != IgnoredStore &&
|
|
(AA.getModRefInfo(I, StoreLoc) & Access))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getMemSetPatternValue - If a strided store of the specified value is safe to
|
|
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
|
|
/// be passed in. Otherwise, return null.
|
|
///
|
|
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
|
|
/// just replicate their input array and then pass on to memset_pattern16.
|
|
static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
|
|
// If the value isn't a constant, we can't promote it to being in a constant
|
|
// array. We could theoretically do a store to an alloca or something, but
|
|
// that doesn't seem worthwhile.
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (!C) return nullptr;
|
|
|
|
// Only handle simple values that are a power of two bytes in size.
|
|
uint64_t Size = DL.getTypeSizeInBits(V->getType());
|
|
if (Size == 0 || (Size & 7) || (Size & (Size-1)))
|
|
return nullptr;
|
|
|
|
// Don't care enough about darwin/ppc to implement this.
|
|
if (DL.isBigEndian())
|
|
return nullptr;
|
|
|
|
// Convert to size in bytes.
|
|
Size /= 8;
|
|
|
|
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
|
|
// if the top and bottom are the same (e.g. for vectors and large integers).
|
|
if (Size > 16) return nullptr;
|
|
|
|
// If the constant is exactly 16 bytes, just use it.
|
|
if (Size == 16) return C;
|
|
|
|
// Otherwise, we'll use an array of the constants.
|
|
unsigned ArraySize = 16/Size;
|
|
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
|
|
return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
|
|
}
|
|
|
|
|
|
/// processLoopStridedStore - We see a strided store of some value. If we can
|
|
/// transform this into a memset or memset_pattern in the loop preheader, do so.
|
|
bool LoopIdiomRecognize::
|
|
processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
|
|
unsigned StoreAlignment, Value *StoredVal,
|
|
Instruction *TheStore, const SCEVAddRecExpr *Ev,
|
|
const SCEV *BECount) {
|
|
|
|
// If the stored value is a byte-wise value (like i32 -1), then it may be
|
|
// turned into a memset of i8 -1, assuming that all the consecutive bytes
|
|
// are stored. A store of i32 0x01020304 can never be turned into a memset,
|
|
// but it can be turned into memset_pattern if the target supports it.
|
|
Value *SplatValue = isBytewiseValue(StoredVal);
|
|
Constant *PatternValue = nullptr;
|
|
|
|
unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
|
|
|
|
// If we're allowed to form a memset, and the stored value would be acceptable
|
|
// for memset, use it.
|
|
if (SplatValue && TLI->has(LibFunc::memset) &&
|
|
// Verify that the stored value is loop invariant. If not, we can't
|
|
// promote the memset.
|
|
CurLoop->isLoopInvariant(SplatValue)) {
|
|
// Keep and use SplatValue.
|
|
PatternValue = nullptr;
|
|
} else if (DestAS == 0 &&
|
|
TLI->has(LibFunc::memset_pattern16) &&
|
|
(PatternValue = getMemSetPatternValue(StoredVal, *DL))) {
|
|
// Don't create memset_pattern16s with address spaces.
|
|
// It looks like we can use PatternValue!
|
|
SplatValue = nullptr;
|
|
} else {
|
|
// Otherwise, this isn't an idiom we can transform. For example, we can't
|
|
// do anything with a 3-byte store.
|
|
return false;
|
|
}
|
|
|
|
// The trip count of the loop and the base pointer of the addrec SCEV is
|
|
// guaranteed to be loop invariant, which means that it should dominate the
|
|
// header. This allows us to insert code for it in the preheader.
|
|
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
|
IRBuilder<> Builder(Preheader->getTerminator());
|
|
SCEVExpander Expander(*SE, "loop-idiom");
|
|
|
|
Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
|
|
|
|
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
|
|
// this into a memset in the loop preheader now if we want. However, this
|
|
// would be unsafe to do if there is anything else in the loop that may read
|
|
// or write to the aliased location. Check for any overlap by generating the
|
|
// base pointer and checking the region.
|
|
Value *BasePtr =
|
|
Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
|
|
Preheader->getTerminator());
|
|
|
|
if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
|
|
CurLoop, BECount,
|
|
StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
|
|
Expander.clear();
|
|
// If we generated new code for the base pointer, clean up.
|
|
deleteIfDeadInstruction(BasePtr, *SE, TLI);
|
|
return false;
|
|
}
|
|
|
|
// Okay, everything looks good, insert the memset.
|
|
|
|
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
|
|
// pointer size if it isn't already.
|
|
Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
|
|
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
|
|
|
|
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
|
|
SCEV::FlagNUW);
|
|
if (StoreSize != 1) {
|
|
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
|
|
SCEV::FlagNUW);
|
|
}
|
|
|
|
Value *NumBytes =
|
|
Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
|
|
|
|
CallInst *NewCall;
|
|
if (SplatValue) {
|
|
NewCall = Builder.CreateMemSet(BasePtr,
|
|
SplatValue,
|
|
NumBytes,
|
|
StoreAlignment);
|
|
} else {
|
|
// Everything is emitted in default address space
|
|
Type *Int8PtrTy = DestInt8PtrTy;
|
|
|
|
Module *M = TheStore->getParent()->getParent()->getParent();
|
|
Value *MSP = M->getOrInsertFunction("memset_pattern16",
|
|
Builder.getVoidTy(),
|
|
Int8PtrTy,
|
|
Int8PtrTy,
|
|
IntPtr,
|
|
(void*)nullptr);
|
|
|
|
// Otherwise we should form a memset_pattern16. PatternValue is known to be
|
|
// an constant array of 16-bytes. Plop the value into a mergable global.
|
|
GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
|
|
GlobalValue::InternalLinkage,
|
|
PatternValue, ".memset_pattern");
|
|
GV->setUnnamedAddr(true); // Ok to merge these.
|
|
GV->setAlignment(16);
|
|
Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
|
|
NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
|
|
}
|
|
|
|
DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
|
|
<< " from store to: " << *Ev << " at: " << *TheStore << "\n");
|
|
NewCall->setDebugLoc(TheStore->getDebugLoc());
|
|
|
|
// Okay, the memset has been formed. Zap the original store and anything that
|
|
// feeds into it.
|
|
deleteDeadInstruction(TheStore, *SE, TLI);
|
|
++NumMemSet;
|
|
return true;
|
|
}
|
|
|
|
/// processLoopStoreOfLoopLoad - We see a strided store whose value is a
|
|
/// same-strided load.
|
|
bool LoopIdiomRecognize::
|
|
processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
|
|
const SCEVAddRecExpr *StoreEv,
|
|
const SCEVAddRecExpr *LoadEv,
|
|
const SCEV *BECount) {
|
|
// If we're not allowed to form memcpy, we fail.
|
|
if (!TLI->has(LibFunc::memcpy))
|
|
return false;
|
|
|
|
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
|
|
|
|
// The trip count of the loop and the base pointer of the addrec SCEV is
|
|
// guaranteed to be loop invariant, which means that it should dominate the
|
|
// header. This allows us to insert code for it in the preheader.
|
|
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
|
IRBuilder<> Builder(Preheader->getTerminator());
|
|
SCEVExpander Expander(*SE, "loop-idiom");
|
|
|
|
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
|
|
// this into a memcpy in the loop preheader now if we want. However, this
|
|
// would be unsafe to do if there is anything else in the loop that may read
|
|
// or write the memory region we're storing to. This includes the load that
|
|
// feeds the stores. Check for an alias by generating the base address and
|
|
// checking everything.
|
|
Value *StoreBasePtr =
|
|
Expander.expandCodeFor(StoreEv->getStart(),
|
|
Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
|
|
Preheader->getTerminator());
|
|
|
|
if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
|
|
CurLoop, BECount, StoreSize,
|
|
getAnalysis<AliasAnalysis>(), SI)) {
|
|
Expander.clear();
|
|
// If we generated new code for the base pointer, clean up.
|
|
deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
|
|
return false;
|
|
}
|
|
|
|
// For a memcpy, we have to make sure that the input array is not being
|
|
// mutated by the loop.
|
|
Value *LoadBasePtr =
|
|
Expander.expandCodeFor(LoadEv->getStart(),
|
|
Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
|
|
Preheader->getTerminator());
|
|
|
|
if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
|
|
StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
|
|
Expander.clear();
|
|
// If we generated new code for the base pointer, clean up.
|
|
deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
|
|
deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
|
|
return false;
|
|
}
|
|
|
|
// Okay, everything is safe, we can transform this!
|
|
|
|
|
|
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
|
|
// pointer size if it isn't already.
|
|
Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
|
|
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
|
|
|
|
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
|
|
SCEV::FlagNUW);
|
|
if (StoreSize != 1)
|
|
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
|
|
SCEV::FlagNUW);
|
|
|
|
Value *NumBytes =
|
|
Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
|
|
|
|
CallInst *NewCall =
|
|
Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
|
|
std::min(SI->getAlignment(), LI->getAlignment()));
|
|
NewCall->setDebugLoc(SI->getDebugLoc());
|
|
|
|
DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
|
|
<< " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
|
|
<< " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
|
|
|
|
|
|
// Okay, the memset has been formed. Zap the original store and anything that
|
|
// feeds into it.
|
|
deleteDeadInstruction(SI, *SE, TLI);
|
|
++NumMemCpy;
|
|
return true;
|
|
}
|