llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
Chandler Carruth 36b699f2b1 [C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
   detail
2) Change it to actually be a *Use* iterator rather than a *User*
   iterator.
3) Add an adaptor which is a User iterator that always looks through the
   Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
   they wanted a use_iterator (and to explicitly dig out the User when
   needed), or a user_iterator which makes the Use itself totally
   opaque.

Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.

The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.

However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-09 03:16:01 +00:00

177 lines
5.9 KiB
C++

//===- ProvenanceAnalysis.cpp - ObjC ARC Optimization ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a special form of Alias Analysis called ``Provenance
/// Analysis''. The word ``provenance'' refers to the history of the ownership
/// of an object. Thus ``Provenance Analysis'' is an analysis which attempts to
/// use various techniques to determine if locally
///
/// WARNING: This file knows about certain library functions. It recognizes them
/// by name, and hardwires knowledge of their semantics.
///
/// WARNING: This file knows about how certain Objective-C library functions are
/// used. Naive LLVM IR transformations which would otherwise be
/// behavior-preserving may break these assumptions.
///
//===----------------------------------------------------------------------===//
#include "ObjCARC.h"
#include "ProvenanceAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
using namespace llvm::objcarc;
bool ProvenanceAnalysis::relatedSelect(const SelectInst *A,
const Value *B) {
// If the values are Selects with the same condition, we can do a more precise
// check: just check for relations between the values on corresponding arms.
if (const SelectInst *SB = dyn_cast<SelectInst>(B))
if (A->getCondition() == SB->getCondition())
return related(A->getTrueValue(), SB->getTrueValue()) ||
related(A->getFalseValue(), SB->getFalseValue());
// Check both arms of the Select node individually.
return related(A->getTrueValue(), B) ||
related(A->getFalseValue(), B);
}
bool ProvenanceAnalysis::relatedPHI(const PHINode *A,
const Value *B) {
// If the values are PHIs in the same block, we can do a more precise as well
// as efficient check: just check for relations between the values on
// corresponding edges.
if (const PHINode *PNB = dyn_cast<PHINode>(B))
if (PNB->getParent() == A->getParent()) {
for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
if (related(A->getIncomingValue(i),
PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
return true;
return false;
}
// Check each unique source of the PHI node against B.
SmallPtrSet<const Value *, 4> UniqueSrc;
for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
const Value *PV1 = A->getIncomingValue(i);
if (UniqueSrc.insert(PV1) && related(PV1, B))
return true;
}
// All of the arms checked out.
return false;
}
/// Test if the value of P, or any value covered by its provenance, is ever
/// stored within the function (not counting callees).
static bool IsStoredObjCPointer(const Value *P) {
SmallPtrSet<const Value *, 8> Visited;
SmallVector<const Value *, 8> Worklist;
Worklist.push_back(P);
Visited.insert(P);
do {
P = Worklist.pop_back_val();
for (const Use &U : P->uses()) {
const User *Ur = U.getUser();
if (isa<StoreInst>(Ur)) {
if (U.getOperandNo() == 0)
// The pointer is stored.
return true;
// The pointed is stored through.
continue;
}
if (isa<CallInst>(Ur))
// The pointer is passed as an argument, ignore this.
continue;
if (isa<PtrToIntInst>(P))
// Assume the worst.
return true;
if (Visited.insert(Ur))
Worklist.push_back(Ur);
}
} while (!Worklist.empty());
// Everything checked out.
return false;
}
bool ProvenanceAnalysis::relatedCheck(const Value *A,
const Value *B) {
// Skip past provenance pass-throughs.
A = GetUnderlyingObjCPtr(A);
B = GetUnderlyingObjCPtr(B);
// Quick check.
if (A == B)
return true;
// Ask regular AliasAnalysis, for a first approximation.
switch (AA->alias(A, B)) {
case AliasAnalysis::NoAlias:
return false;
case AliasAnalysis::MustAlias:
case AliasAnalysis::PartialAlias:
return true;
case AliasAnalysis::MayAlias:
break;
}
bool AIsIdentified = IsObjCIdentifiedObject(A);
bool BIsIdentified = IsObjCIdentifiedObject(B);
// An ObjC-Identified object can't alias a load if it is never locally stored.
if (AIsIdentified) {
// Check for an obvious escape.
if (isa<LoadInst>(B))
return IsStoredObjCPointer(A);
if (BIsIdentified) {
// Check for an obvious escape.
if (isa<LoadInst>(A))
return IsStoredObjCPointer(B);
// Both pointers are identified and escapes aren't an evident problem.
return false;
}
} else if (BIsIdentified) {
// Check for an obvious escape.
if (isa<LoadInst>(A))
return IsStoredObjCPointer(B);
}
// Special handling for PHI and Select.
if (const PHINode *PN = dyn_cast<PHINode>(A))
return relatedPHI(PN, B);
if (const PHINode *PN = dyn_cast<PHINode>(B))
return relatedPHI(PN, A);
if (const SelectInst *S = dyn_cast<SelectInst>(A))
return relatedSelect(S, B);
if (const SelectInst *S = dyn_cast<SelectInst>(B))
return relatedSelect(S, A);
// Conservative.
return true;
}
bool ProvenanceAnalysis::related(const Value *A,
const Value *B) {
// Begin by inserting a conservative value into the map. If the insertion
// fails, we have the answer already. If it succeeds, leave it there until we
// compute the real answer to guard against recursive queries.
if (A > B) std::swap(A, B);
std::pair<CachedResultsTy::iterator, bool> Pair =
CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
if (!Pair.second)
return Pair.first->second;
bool Result = relatedCheck(A, B);
CachedResults[ValuePairTy(A, B)] = Result;
return Result;
}