llvm/lib/Target/Mips/MipsFastISel.cpp
Reed Kotler c02fc3d30d Add basic functionality for assignment of ints.
This creates a lot of core infrastructure in which to add, with little
effort, quite a bit more to mips fast-isel

Test Plan: simplestore.ll

Reviewers: dsanders

Reviewed By: dsanders

Differential Revision: http://reviews.llvm.org/D3527

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207790 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-01 20:39:21 +00:00

251 lines
7.2 KiB
C++

//===-- MipsastISel.cpp - Mips FastISel implementation
//---------------------===//
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "MipsRegisterInfo.h"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
using namespace llvm;
namespace {
// All possible address modes.
typedef struct Address {
enum { RegBase, FrameIndexBase } BaseType;
union {
unsigned Reg;
int FI;
} Base;
int64_t Offset;
// Innocuous defaults for our address.
Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; }
} Address;
class MipsFastISel final : public FastISel {
/// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
/// make the right decision when generating code for different targets.
const MipsSubtarget *Subtarget;
Module &M;
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
MipsFunctionInfo *MFI;
// Convenience variables to avoid some queries.
LLVMContext *Context;
bool TargetSupported;
public:
explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo)
: FastISel(funcInfo, libInfo),
M(const_cast<Module &>(*funcInfo.Fn->getParent())),
TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()) {
Subtarget = &TM.getSubtarget<MipsSubtarget>();
MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
Context = &funcInfo.Fn->getContext();
TargetSupported = ((Subtarget->getRelocationModel() == Reloc::PIC_) &&
(Subtarget->hasMips32r2() && (Subtarget->isABI_O32())));
}
bool TargetSelectInstruction(const Instruction *I) override;
unsigned TargetMaterializeConstant(const Constant *C) override;
bool ComputeAddress(const Value *Obj, Address &Addr);
private:
bool EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment = 0);
bool SelectRet(const Instruction *I);
bool SelectStore(const Instruction *I);
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadTypeLegal(Type *Ty, MVT &VT);
unsigned MaterializeFP(const ConstantFP *CFP, MVT VT);
unsigned MaterializeGV(const GlobalValue *GV, MVT VT);
unsigned MaterializeInt(const Constant *C, MVT VT);
};
bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// Handle all legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
if (isTypeLegal(Ty, VT))
return true;
// We will extend this in a later patch:
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
return false;
}
bool MipsFastISel::ComputeAddress(const Value *Obj, Address &Addr) {
// This construct looks a big awkward but it is how other ports handle this
// and as this function is more fully completed, these cases which
// return false will have additional code in them.
//
if (isa<Instruction>(Obj))
return false;
else if (isa<ConstantExpr>(Obj))
return false;
Addr.Base.Reg = getRegForValue(Obj);
return Addr.Base.Reg != 0;
}
// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
unsigned MipsFastISel::TargetMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return MaterializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return MaterializeGV(GV, VT);
else if (isa<ConstantInt>(C))
return MaterializeInt(C, VT);
return 0;
}
bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
if (VT != MVT::i32)
return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::SW))
.addReg(SrcReg)
.addReg(Addr.Base.Reg)
.addImm(Addr.Offset);
return true;
}
bool MipsFastISel::SelectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
// Atomic stores need special handling.
if (cast<StoreInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
return false;
// Get the value to be stored into a register.
SrcReg = getRegForValue(Op0);
if (SrcReg == 0)
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(1), Addr))
return false;
if (!EmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
return false;
return true;
}
bool MipsFastISel::SelectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
if (!FuncInfo.CanLowerReturn)
return false;
if (Ret->getNumOperands() > 0) {
return false;
}
unsigned RetOpc = Mips::RetRA;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(RetOpc));
return true;
}
bool MipsFastISel::TargetSelectInstruction(const Instruction *I) {
if (!TargetSupported)
return false;
switch (I->getOpcode()) {
default:
break;
case Instruction::Store:
return SelectStore(I);
case Instruction::Ret:
return SelectRet(I);
}
return false;
}
}
unsigned MipsFastISel::MaterializeFP(const ConstantFP *CFP, MVT VT) {
return 0;
}
unsigned MipsFastISel::MaterializeGV(const GlobalValue *GV, MVT VT) {
// For now 32-bit only.
if (VT != MVT::i32)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
unsigned DestReg = createResultReg(RC);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
bool IsThreadLocal = GVar && GVar->isThreadLocal();
// TLS not supported at this time.
if (IsThreadLocal)
return 0;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LW), DestReg)
.addReg(MFI->getGlobalBaseReg())
.addGlobalAddress(GV, 0, MipsII::MO_GOT);
return DestReg;
}
unsigned MipsFastISel::MaterializeInt(const Constant *C, MVT VT) {
if (VT != MVT::i32)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
// If the constant is in range, use a load-immediate.
const ConstantInt *CI = cast<ConstantInt>(C);
if (isInt<16>(CI->getSExtValue())) {
unsigned Opc = Mips::ADDiu;
unsigned ImmReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
.addReg(Mips::ZERO)
.addImm(CI->getSExtValue());
return ImmReg;
}
return 0;
}
namespace llvm {
FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) {
return new MipsFastISel(funcInfo, libInfo);
}
}