mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-27 06:35:30 +00:00
89aeb02b71
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198115 91177308-0d34-0410-b5e6-96231b3b80d8
761 lines
26 KiB
C++
761 lines
26 KiB
C++
//===-- Type.cpp - Implement the Type class -------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Type class for the IR library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Type.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include <algorithm>
|
|
#include <cstdarg>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
|
|
switch (IDNumber) {
|
|
case VoidTyID : return getVoidTy(C);
|
|
case HalfTyID : return getHalfTy(C);
|
|
case FloatTyID : return getFloatTy(C);
|
|
case DoubleTyID : return getDoubleTy(C);
|
|
case X86_FP80TyID : return getX86_FP80Ty(C);
|
|
case FP128TyID : return getFP128Ty(C);
|
|
case PPC_FP128TyID : return getPPC_FP128Ty(C);
|
|
case LabelTyID : return getLabelTy(C);
|
|
case MetadataTyID : return getMetadataTy(C);
|
|
case X86_MMXTyID : return getX86_MMXTy(C);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// getScalarType - If this is a vector type, return the element type,
|
|
/// otherwise return this.
|
|
Type *Type::getScalarType() {
|
|
if (VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType();
|
|
return this;
|
|
}
|
|
|
|
const Type *Type::getScalarType() const {
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType();
|
|
return this;
|
|
}
|
|
|
|
/// isIntegerTy - Return true if this is an IntegerType of the specified width.
|
|
bool Type::isIntegerTy(unsigned Bitwidth) const {
|
|
return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
|
|
}
|
|
|
|
// canLosslesslyBitCastTo - Return true if this type can be converted to
|
|
// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
|
|
//
|
|
bool Type::canLosslesslyBitCastTo(Type *Ty) const {
|
|
// Identity cast means no change so return true
|
|
if (this == Ty)
|
|
return true;
|
|
|
|
// They are not convertible unless they are at least first class types
|
|
if (!this->isFirstClassType() || !Ty->isFirstClassType())
|
|
return false;
|
|
|
|
// Vector -> Vector conversions are always lossless if the two vector types
|
|
// have the same size, otherwise not. Also, 64-bit vector types can be
|
|
// converted to x86mmx.
|
|
if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
|
|
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
|
|
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
|
|
if (Ty->getTypeID() == Type::X86_MMXTyID &&
|
|
thisPTy->getBitWidth() == 64)
|
|
return true;
|
|
}
|
|
|
|
if (this->getTypeID() == Type::X86_MMXTyID)
|
|
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
|
|
if (thatPTy->getBitWidth() == 64)
|
|
return true;
|
|
|
|
// At this point we have only various mismatches of the first class types
|
|
// remaining and ptr->ptr. Just select the lossless conversions. Everything
|
|
// else is not lossless.
|
|
if (this->isPointerTy())
|
|
return Ty->isPointerTy();
|
|
return false; // Other types have no identity values
|
|
}
|
|
|
|
bool Type::isEmptyTy() const {
|
|
const ArrayType *ATy = dyn_cast<ArrayType>(this);
|
|
if (ATy) {
|
|
unsigned NumElements = ATy->getNumElements();
|
|
return NumElements == 0 || ATy->getElementType()->isEmptyTy();
|
|
}
|
|
|
|
const StructType *STy = dyn_cast<StructType>(this);
|
|
if (STy) {
|
|
unsigned NumElements = STy->getNumElements();
|
|
for (unsigned i = 0; i < NumElements; ++i)
|
|
if (!STy->getElementType(i)->isEmptyTy())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned Type::getPrimitiveSizeInBits() const {
|
|
switch (getTypeID()) {
|
|
case Type::HalfTyID: return 16;
|
|
case Type::FloatTyID: return 32;
|
|
case Type::DoubleTyID: return 64;
|
|
case Type::X86_FP80TyID: return 80;
|
|
case Type::FP128TyID: return 128;
|
|
case Type::PPC_FP128TyID: return 128;
|
|
case Type::X86_MMXTyID: return 64;
|
|
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
|
|
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
/// getScalarSizeInBits - If this is a vector type, return the
|
|
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
|
|
/// getPrimitiveSizeInBits value for this type.
|
|
unsigned Type::getScalarSizeInBits() const {
|
|
return getScalarType()->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
|
|
/// is only valid on floating point types. If the FP type does not
|
|
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
|
|
int Type::getFPMantissaWidth() const {
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType()->getFPMantissaWidth();
|
|
assert(isFloatingPointTy() && "Not a floating point type!");
|
|
if (getTypeID() == HalfTyID) return 11;
|
|
if (getTypeID() == FloatTyID) return 24;
|
|
if (getTypeID() == DoubleTyID) return 53;
|
|
if (getTypeID() == X86_FP80TyID) return 64;
|
|
if (getTypeID() == FP128TyID) return 113;
|
|
assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
|
|
return -1;
|
|
}
|
|
|
|
/// isSizedDerivedType - Derived types like structures and arrays are sized
|
|
/// iff all of the members of the type are sized as well. Since asking for
|
|
/// their size is relatively uncommon, move this operation out of line.
|
|
bool Type::isSizedDerivedType(SmallPtrSet<const Type*, 4> *Visited) const {
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy->getElementType()->isSized(Visited);
|
|
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType()->isSized(Visited);
|
|
|
|
return cast<StructType>(this)->isSized(Visited);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subclass Helper Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned Type::getIntegerBitWidth() const {
|
|
return cast<IntegerType>(this)->getBitWidth();
|
|
}
|
|
|
|
bool Type::isFunctionVarArg() const {
|
|
return cast<FunctionType>(this)->isVarArg();
|
|
}
|
|
|
|
Type *Type::getFunctionParamType(unsigned i) const {
|
|
return cast<FunctionType>(this)->getParamType(i);
|
|
}
|
|
|
|
unsigned Type::getFunctionNumParams() const {
|
|
return cast<FunctionType>(this)->getNumParams();
|
|
}
|
|
|
|
StringRef Type::getStructName() const {
|
|
return cast<StructType>(this)->getName();
|
|
}
|
|
|
|
unsigned Type::getStructNumElements() const {
|
|
return cast<StructType>(this)->getNumElements();
|
|
}
|
|
|
|
Type *Type::getStructElementType(unsigned N) const {
|
|
return cast<StructType>(this)->getElementType(N);
|
|
}
|
|
|
|
Type *Type::getSequentialElementType() const {
|
|
return cast<SequentialType>(this)->getElementType();
|
|
}
|
|
|
|
uint64_t Type::getArrayNumElements() const {
|
|
return cast<ArrayType>(this)->getNumElements();
|
|
}
|
|
|
|
unsigned Type::getVectorNumElements() const {
|
|
return cast<VectorType>(this)->getNumElements();
|
|
}
|
|
|
|
unsigned Type::getPointerAddressSpace() const {
|
|
return cast<PointerType>(getScalarType())->getAddressSpace();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primitive 'Type' data
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
|
|
Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
|
|
Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
|
|
Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
|
|
Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
|
|
Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
|
|
Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
|
|
Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
|
|
Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
|
|
Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
|
|
|
|
IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
|
|
IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
|
|
IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
|
|
IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
|
|
IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
|
|
|
|
IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
|
|
return IntegerType::get(C, N);
|
|
}
|
|
|
|
PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
|
|
return getHalfTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
|
|
return getFloatTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
|
|
return getDoubleTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getX86_FP80Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getFP128Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getPPC_FP128Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
|
|
return getX86_MMXTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
|
|
return getIntNTy(C, N)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt1Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt8Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt16Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt32Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt64Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntegerType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
|
|
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
|
|
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
|
|
|
|
// Check for the built-in integer types
|
|
switch (NumBits) {
|
|
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
|
|
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
|
|
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
|
|
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
|
|
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
|
|
default:
|
|
break;
|
|
}
|
|
|
|
IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
|
|
|
|
return Entry;
|
|
}
|
|
|
|
bool IntegerType::isPowerOf2ByteWidth() const {
|
|
unsigned BitWidth = getBitWidth();
|
|
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
|
|
}
|
|
|
|
APInt IntegerType::getMask() const {
|
|
return APInt::getAllOnesValue(getBitWidth());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
|
|
bool IsVarArgs)
|
|
: Type(Result->getContext(), FunctionTyID) {
|
|
Type **SubTys = reinterpret_cast<Type**>(this+1);
|
|
assert(isValidReturnType(Result) && "invalid return type for function");
|
|
setSubclassData(IsVarArgs);
|
|
|
|
SubTys[0] = const_cast<Type*>(Result);
|
|
|
|
for (unsigned i = 0, e = Params.size(); i != e; ++i) {
|
|
assert(isValidArgumentType(Params[i]) &&
|
|
"Not a valid type for function argument!");
|
|
SubTys[i+1] = Params[i];
|
|
}
|
|
|
|
ContainedTys = SubTys;
|
|
NumContainedTys = Params.size() + 1; // + 1 for result type
|
|
}
|
|
|
|
// FunctionType::get - The factory function for the FunctionType class.
|
|
FunctionType *FunctionType::get(Type *ReturnType,
|
|
ArrayRef<Type*> Params, bool isVarArg) {
|
|
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
|
|
FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
|
|
LLVMContextImpl::FunctionTypeMap::iterator I =
|
|
pImpl->FunctionTypes.find_as(Key);
|
|
FunctionType *FT;
|
|
|
|
if (I == pImpl->FunctionTypes.end()) {
|
|
FT = (FunctionType*) pImpl->TypeAllocator.
|
|
Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
|
|
AlignOf<FunctionType>::Alignment);
|
|
new (FT) FunctionType(ReturnType, Params, isVarArg);
|
|
pImpl->FunctionTypes[FT] = true;
|
|
} else {
|
|
FT = I->first;
|
|
}
|
|
|
|
return FT;
|
|
}
|
|
|
|
FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
|
|
return get(Result, None, isVarArg);
|
|
}
|
|
|
|
/// isValidReturnType - Return true if the specified type is valid as a return
|
|
/// type.
|
|
bool FunctionType::isValidReturnType(Type *RetTy) {
|
|
return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
|
|
!RetTy->isMetadataTy();
|
|
}
|
|
|
|
/// isValidArgumentType - Return true if the specified type is valid as an
|
|
/// argument type.
|
|
bool FunctionType::isValidArgumentType(Type *ArgTy) {
|
|
return ArgTy->isFirstClassType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StructType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Primitive Constructors.
|
|
|
|
StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
|
|
bool isPacked) {
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
|
|
LLVMContextImpl::StructTypeMap::iterator I =
|
|
pImpl->AnonStructTypes.find_as(Key);
|
|
StructType *ST;
|
|
|
|
if (I == pImpl->AnonStructTypes.end()) {
|
|
// Value not found. Create a new type!
|
|
ST = new (Context.pImpl->TypeAllocator) StructType(Context);
|
|
ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
|
|
ST->setBody(ETypes, isPacked);
|
|
Context.pImpl->AnonStructTypes[ST] = true;
|
|
} else {
|
|
ST = I->first;
|
|
}
|
|
|
|
return ST;
|
|
}
|
|
|
|
void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
|
|
assert(isOpaque() && "Struct body already set!");
|
|
|
|
setSubclassData(getSubclassData() | SCDB_HasBody);
|
|
if (isPacked)
|
|
setSubclassData(getSubclassData() | SCDB_Packed);
|
|
|
|
unsigned NumElements = Elements.size();
|
|
Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
|
|
memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
|
|
|
|
ContainedTys = Elts;
|
|
NumContainedTys = NumElements;
|
|
}
|
|
|
|
void StructType::setName(StringRef Name) {
|
|
if (Name == getName()) return;
|
|
|
|
StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
|
|
typedef StringMap<StructType *>::MapEntryTy EntryTy;
|
|
|
|
// If this struct already had a name, remove its symbol table entry. Don't
|
|
// delete the data yet because it may be part of the new name.
|
|
if (SymbolTableEntry)
|
|
SymbolTable.remove((EntryTy *)SymbolTableEntry);
|
|
|
|
// If this is just removing the name, we're done.
|
|
if (Name.empty()) {
|
|
if (SymbolTableEntry) {
|
|
// Delete the old string data.
|
|
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
|
|
SymbolTableEntry = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Look up the entry for the name.
|
|
EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
|
|
|
|
// While we have a name collision, try a random rename.
|
|
if (Entry->getValue()) {
|
|
SmallString<64> TempStr(Name);
|
|
TempStr.push_back('.');
|
|
raw_svector_ostream TmpStream(TempStr);
|
|
unsigned NameSize = Name.size();
|
|
|
|
do {
|
|
TempStr.resize(NameSize + 1);
|
|
TmpStream.resync();
|
|
TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
|
|
|
|
Entry = &getContext().pImpl->
|
|
NamedStructTypes.GetOrCreateValue(TmpStream.str());
|
|
} while (Entry->getValue());
|
|
}
|
|
|
|
// Okay, we found an entry that isn't used. It's us!
|
|
Entry->setValue(this);
|
|
|
|
// Delete the old string data.
|
|
if (SymbolTableEntry)
|
|
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
|
|
SymbolTableEntry = Entry;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StructType Helper functions.
|
|
|
|
StructType *StructType::create(LLVMContext &Context, StringRef Name) {
|
|
StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
|
|
if (!Name.empty())
|
|
ST->setName(Name);
|
|
return ST;
|
|
}
|
|
|
|
StructType *StructType::get(LLVMContext &Context, bool isPacked) {
|
|
return get(Context, None, isPacked);
|
|
}
|
|
|
|
StructType *StructType::get(Type *type, ...) {
|
|
assert(type != 0 && "Cannot create a struct type with no elements with this");
|
|
LLVMContext &Ctx = type->getContext();
|
|
va_list ap;
|
|
SmallVector<llvm::Type*, 8> StructFields;
|
|
va_start(ap, type);
|
|
while (type) {
|
|
StructFields.push_back(type);
|
|
type = va_arg(ap, llvm::Type*);
|
|
}
|
|
return llvm::StructType::get(Ctx, StructFields);
|
|
}
|
|
|
|
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
|
|
StringRef Name, bool isPacked) {
|
|
StructType *ST = create(Context, Name);
|
|
ST->setBody(Elements, isPacked);
|
|
return ST;
|
|
}
|
|
|
|
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
|
|
return create(Context, Elements, StringRef());
|
|
}
|
|
|
|
StructType *StructType::create(LLVMContext &Context) {
|
|
return create(Context, StringRef());
|
|
}
|
|
|
|
StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
|
|
bool isPacked) {
|
|
assert(!Elements.empty() &&
|
|
"This method may not be invoked with an empty list");
|
|
return create(Elements[0]->getContext(), Elements, Name, isPacked);
|
|
}
|
|
|
|
StructType *StructType::create(ArrayRef<Type*> Elements) {
|
|
assert(!Elements.empty() &&
|
|
"This method may not be invoked with an empty list");
|
|
return create(Elements[0]->getContext(), Elements, StringRef());
|
|
}
|
|
|
|
StructType *StructType::create(StringRef Name, Type *type, ...) {
|
|
assert(type != 0 && "Cannot create a struct type with no elements with this");
|
|
LLVMContext &Ctx = type->getContext();
|
|
va_list ap;
|
|
SmallVector<llvm::Type*, 8> StructFields;
|
|
va_start(ap, type);
|
|
while (type) {
|
|
StructFields.push_back(type);
|
|
type = va_arg(ap, llvm::Type*);
|
|
}
|
|
return llvm::StructType::create(Ctx, StructFields, Name);
|
|
}
|
|
|
|
bool StructType::isSized(SmallPtrSet<const Type*, 4> *Visited) const {
|
|
if ((getSubclassData() & SCDB_IsSized) != 0)
|
|
return true;
|
|
if (isOpaque())
|
|
return false;
|
|
|
|
if (Visited && !Visited->insert(this))
|
|
return false;
|
|
|
|
// Okay, our struct is sized if all of the elements are, but if one of the
|
|
// elements is opaque, the struct isn't sized *yet*, but may become sized in
|
|
// the future, so just bail out without caching.
|
|
for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
|
|
if (!(*I)->isSized(Visited))
|
|
return false;
|
|
|
|
// Here we cheat a bit and cast away const-ness. The goal is to memoize when
|
|
// we find a sized type, as types can only move from opaque to sized, not the
|
|
// other way.
|
|
const_cast<StructType*>(this)->setSubclassData(
|
|
getSubclassData() | SCDB_IsSized);
|
|
return true;
|
|
}
|
|
|
|
StringRef StructType::getName() const {
|
|
assert(!isLiteral() && "Literal structs never have names");
|
|
if (SymbolTableEntry == 0) return StringRef();
|
|
|
|
return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
|
|
}
|
|
|
|
void StructType::setBody(Type *type, ...) {
|
|
assert(type != 0 && "Cannot create a struct type with no elements with this");
|
|
va_list ap;
|
|
SmallVector<llvm::Type*, 8> StructFields;
|
|
va_start(ap, type);
|
|
while (type) {
|
|
StructFields.push_back(type);
|
|
type = va_arg(ap, llvm::Type*);
|
|
}
|
|
setBody(StructFields);
|
|
}
|
|
|
|
bool StructType::isValidElementType(Type *ElemTy) {
|
|
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
|
|
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
|
|
}
|
|
|
|
/// isLayoutIdentical - Return true if this is layout identical to the
|
|
/// specified struct.
|
|
bool StructType::isLayoutIdentical(StructType *Other) const {
|
|
if (this == Other) return true;
|
|
|
|
if (isPacked() != Other->isPacked() ||
|
|
getNumElements() != Other->getNumElements())
|
|
return false;
|
|
|
|
return std::equal(element_begin(), element_end(), Other->element_begin());
|
|
}
|
|
|
|
/// getTypeByName - Return the type with the specified name, or null if there
|
|
/// is none by that name.
|
|
StructType *Module::getTypeByName(StringRef Name) const {
|
|
return getContext().pImpl->NamedStructTypes.lookup(Name);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CompositeType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type *CompositeType::getTypeAtIndex(const Value *V) {
|
|
if (StructType *STy = dyn_cast<StructType>(this)) {
|
|
unsigned Idx =
|
|
(unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
|
|
assert(indexValid(Idx) && "Invalid structure index!");
|
|
return STy->getElementType(Idx);
|
|
}
|
|
|
|
return cast<SequentialType>(this)->getElementType();
|
|
}
|
|
Type *CompositeType::getTypeAtIndex(unsigned Idx) {
|
|
if (StructType *STy = dyn_cast<StructType>(this)) {
|
|
assert(indexValid(Idx) && "Invalid structure index!");
|
|
return STy->getElementType(Idx);
|
|
}
|
|
|
|
return cast<SequentialType>(this)->getElementType();
|
|
}
|
|
bool CompositeType::indexValid(const Value *V) const {
|
|
if (const StructType *STy = dyn_cast<StructType>(this)) {
|
|
// Structure indexes require (vectors of) 32-bit integer constants. In the
|
|
// vector case all of the indices must be equal.
|
|
if (!V->getType()->getScalarType()->isIntegerTy(32))
|
|
return false;
|
|
const Constant *C = dyn_cast<Constant>(V);
|
|
if (C && V->getType()->isVectorTy())
|
|
C = C->getSplatValue();
|
|
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
|
|
return CU && CU->getZExtValue() < STy->getNumElements();
|
|
}
|
|
|
|
// Sequential types can be indexed by any integer.
|
|
return V->getType()->isIntOrIntVectorTy();
|
|
}
|
|
|
|
bool CompositeType::indexValid(unsigned Idx) const {
|
|
if (const StructType *STy = dyn_cast<StructType>(this))
|
|
return Idx < STy->getNumElements();
|
|
// Sequential types can be indexed by any integer.
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArrayType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
|
|
: SequentialType(ArrayTyID, ElType) {
|
|
NumElements = NumEl;
|
|
}
|
|
|
|
ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
|
|
Type *ElementType = const_cast<Type*>(elementType);
|
|
assert(isValidElementType(ElementType) && "Invalid type for array element!");
|
|
|
|
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
|
|
ArrayType *&Entry =
|
|
pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
|
|
return Entry;
|
|
}
|
|
|
|
bool ArrayType::isValidElementType(Type *ElemTy) {
|
|
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
|
|
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
VectorType::VectorType(Type *ElType, unsigned NumEl)
|
|
: SequentialType(VectorTyID, ElType) {
|
|
NumElements = NumEl;
|
|
}
|
|
|
|
VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
|
|
Type *ElementType = const_cast<Type*>(elementType);
|
|
assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
|
|
assert(isValidElementType(ElementType) &&
|
|
"Elements of a VectorType must be a primitive type");
|
|
|
|
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
|
|
VectorType *&Entry = ElementType->getContext().pImpl
|
|
->VectorTypes[std::make_pair(ElementType, NumElements)];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
|
|
return Entry;
|
|
}
|
|
|
|
bool VectorType::isValidElementType(Type *ElemTy) {
|
|
return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
|
|
ElemTy->isPointerTy();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PointerType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
|
|
assert(EltTy && "Can't get a pointer to <null> type!");
|
|
assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
|
|
|
|
LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
|
|
|
|
// Since AddressSpace #0 is the common case, we special case it.
|
|
PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
|
|
: CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
|
|
return Entry;
|
|
}
|
|
|
|
|
|
PointerType::PointerType(Type *E, unsigned AddrSpace)
|
|
: SequentialType(PointerTyID, E) {
|
|
#ifndef NDEBUG
|
|
const unsigned oldNCT = NumContainedTys;
|
|
#endif
|
|
setSubclassData(AddrSpace);
|
|
// Check for miscompile. PR11652.
|
|
assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
|
|
}
|
|
|
|
PointerType *Type::getPointerTo(unsigned addrs) {
|
|
return PointerType::get(this, addrs);
|
|
}
|
|
|
|
bool PointerType::isValidElementType(Type *ElemTy) {
|
|
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
|
|
!ElemTy->isMetadataTy();
|
|
}
|