mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-27 06:35:30 +00:00
0b8c9a80f2
into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
576 lines
24 KiB
C++
576 lines
24 KiB
C++
//===- CloneFunction.cpp - Clone a function into another function ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the CloneFunctionInto interface, which is used as the
|
|
// low-level function cloner. This is used by the CloneFunction and function
|
|
// inliner to do the dirty work of copying the body of a function around.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/DebugInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
// CloneBasicBlock - See comments in Cloning.h
|
|
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
|
|
ValueToValueMapTy &VMap,
|
|
const Twine &NameSuffix, Function *F,
|
|
ClonedCodeInfo *CodeInfo) {
|
|
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
|
|
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
|
|
|
|
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
|
|
|
|
// Loop over all instructions, and copy them over.
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
|
|
II != IE; ++II) {
|
|
Instruction *NewInst = II->clone();
|
|
if (II->hasName())
|
|
NewInst->setName(II->getName()+NameSuffix);
|
|
NewBB->getInstList().push_back(NewInst);
|
|
VMap[II] = NewInst; // Add instruction map to value.
|
|
|
|
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
hasStaticAllocas = true;
|
|
else
|
|
hasDynamicAllocas = true;
|
|
}
|
|
}
|
|
|
|
if (CodeInfo) {
|
|
CodeInfo->ContainsCalls |= hasCalls;
|
|
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
|
|
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
|
|
BB != &BB->getParent()->getEntryBlock();
|
|
}
|
|
return NewBB;
|
|
}
|
|
|
|
// Clone OldFunc into NewFunc, transforming the old arguments into references to
|
|
// VMap values.
|
|
//
|
|
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|
ValueToValueMapTy &VMap,
|
|
bool ModuleLevelChanges,
|
|
SmallVectorImpl<ReturnInst*> &Returns,
|
|
const char *NameSuffix, ClonedCodeInfo *CodeInfo,
|
|
ValueMapTypeRemapper *TypeMapper) {
|
|
assert(NameSuffix && "NameSuffix cannot be null!");
|
|
|
|
#ifndef NDEBUG
|
|
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
|
|
E = OldFunc->arg_end(); I != E; ++I)
|
|
assert(VMap.count(I) && "No mapping from source argument specified!");
|
|
#endif
|
|
|
|
// Clone any attributes.
|
|
if (NewFunc->arg_size() == OldFunc->arg_size())
|
|
NewFunc->copyAttributesFrom(OldFunc);
|
|
else {
|
|
//Some arguments were deleted with the VMap. Copy arguments one by one
|
|
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
|
|
E = OldFunc->arg_end(); I != E; ++I)
|
|
if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
|
|
Anew->addAttr( OldFunc->getAttributes()
|
|
.getParamAttributes(I->getArgNo() + 1));
|
|
NewFunc->setAttributes(NewFunc->getAttributes()
|
|
.addAttr(NewFunc->getContext(),
|
|
AttributeSet::ReturnIndex,
|
|
OldFunc->getAttributes()
|
|
.getRetAttributes()));
|
|
NewFunc->setAttributes(NewFunc->getAttributes()
|
|
.addAttr(NewFunc->getContext(),
|
|
AttributeSet::FunctionIndex,
|
|
OldFunc->getAttributes()
|
|
.getFnAttributes()));
|
|
|
|
}
|
|
|
|
// Loop over all of the basic blocks in the function, cloning them as
|
|
// appropriate. Note that we save BE this way in order to handle cloning of
|
|
// recursive functions into themselves.
|
|
//
|
|
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
|
BI != BE; ++BI) {
|
|
const BasicBlock &BB = *BI;
|
|
|
|
// Create a new basic block and copy instructions into it!
|
|
BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
|
|
|
|
// Add basic block mapping.
|
|
VMap[&BB] = CBB;
|
|
|
|
// It is only legal to clone a function if a block address within that
|
|
// function is never referenced outside of the function. Given that, we
|
|
// want to map block addresses from the old function to block addresses in
|
|
// the clone. (This is different from the generic ValueMapper
|
|
// implementation, which generates an invalid blockaddress when
|
|
// cloning a function.)
|
|
if (BB.hasAddressTaken()) {
|
|
Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
|
|
const_cast<BasicBlock*>(&BB));
|
|
VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
|
|
}
|
|
|
|
// Note return instructions for the caller.
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
|
|
Returns.push_back(RI);
|
|
}
|
|
|
|
// Loop over all of the instructions in the function, fixing up operand
|
|
// references as we go. This uses VMap to do all the hard work.
|
|
for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
|
|
BE = NewFunc->end(); BB != BE; ++BB)
|
|
// Loop over all instructions, fixing each one as we find it...
|
|
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
|
|
RemapInstruction(II, VMap,
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
|
|
TypeMapper);
|
|
}
|
|
|
|
/// CloneFunction - Return a copy of the specified function, but without
|
|
/// embedding the function into another module. Also, any references specified
|
|
/// in the VMap are changed to refer to their mapped value instead of the
|
|
/// original one. If any of the arguments to the function are in the VMap,
|
|
/// the arguments are deleted from the resultant function. The VMap is
|
|
/// updated to include mappings from all of the instructions and basicblocks in
|
|
/// the function from their old to new values.
|
|
///
|
|
Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
|
|
bool ModuleLevelChanges,
|
|
ClonedCodeInfo *CodeInfo) {
|
|
std::vector<Type*> ArgTypes;
|
|
|
|
// The user might be deleting arguments to the function by specifying them in
|
|
// the VMap. If so, we need to not add the arguments to the arg ty vector
|
|
//
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet?
|
|
ArgTypes.push_back(I->getType());
|
|
|
|
// Create a new function type...
|
|
FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
|
|
ArgTypes, F->getFunctionType()->isVarArg());
|
|
|
|
// Create the new function...
|
|
Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
|
|
|
|
// Loop over the arguments, copying the names of the mapped arguments over...
|
|
Function::arg_iterator DestI = NewF->arg_begin();
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
if (VMap.count(I) == 0) { // Is this argument preserved?
|
|
DestI->setName(I->getName()); // Copy the name over...
|
|
VMap[I] = DestI++; // Add mapping to VMap
|
|
}
|
|
|
|
SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
|
|
CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
|
|
return NewF;
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
/// PruningFunctionCloner - This class is a private class used to implement
|
|
/// the CloneAndPruneFunctionInto method.
|
|
struct PruningFunctionCloner {
|
|
Function *NewFunc;
|
|
const Function *OldFunc;
|
|
ValueToValueMapTy &VMap;
|
|
bool ModuleLevelChanges;
|
|
const char *NameSuffix;
|
|
ClonedCodeInfo *CodeInfo;
|
|
const DataLayout *TD;
|
|
public:
|
|
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
|
|
ValueToValueMapTy &valueMap,
|
|
bool moduleLevelChanges,
|
|
const char *nameSuffix,
|
|
ClonedCodeInfo *codeInfo,
|
|
const DataLayout *td)
|
|
: NewFunc(newFunc), OldFunc(oldFunc),
|
|
VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
|
|
NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
|
|
}
|
|
|
|
/// CloneBlock - The specified block is found to be reachable, clone it and
|
|
/// anything that it can reach.
|
|
void CloneBlock(const BasicBlock *BB,
|
|
std::vector<const BasicBlock*> &ToClone);
|
|
};
|
|
}
|
|
|
|
/// CloneBlock - The specified block is found to be reachable, clone it and
|
|
/// anything that it can reach.
|
|
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
|
|
std::vector<const BasicBlock*> &ToClone){
|
|
WeakVH &BBEntry = VMap[BB];
|
|
|
|
// Have we already cloned this block?
|
|
if (BBEntry) return;
|
|
|
|
// Nope, clone it now.
|
|
BasicBlock *NewBB;
|
|
BBEntry = NewBB = BasicBlock::Create(BB->getContext());
|
|
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
|
|
|
|
// It is only legal to clone a function if a block address within that
|
|
// function is never referenced outside of the function. Given that, we
|
|
// want to map block addresses from the old function to block addresses in
|
|
// the clone. (This is different from the generic ValueMapper
|
|
// implementation, which generates an invalid blockaddress when
|
|
// cloning a function.)
|
|
//
|
|
// Note that we don't need to fix the mapping for unreachable blocks;
|
|
// the default mapping there is safe.
|
|
if (BB->hasAddressTaken()) {
|
|
Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
|
|
const_cast<BasicBlock*>(BB));
|
|
VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
|
|
}
|
|
|
|
|
|
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
|
|
|
|
// Loop over all instructions, and copy them over, DCE'ing as we go. This
|
|
// loop doesn't include the terminator.
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
|
|
II != IE; ++II) {
|
|
Instruction *NewInst = II->clone();
|
|
|
|
// Eagerly remap operands to the newly cloned instruction, except for PHI
|
|
// nodes for which we defer processing until we update the CFG.
|
|
if (!isa<PHINode>(NewInst)) {
|
|
RemapInstruction(NewInst, VMap,
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
|
|
|
|
// If we can simplify this instruction to some other value, simply add
|
|
// a mapping to that value rather than inserting a new instruction into
|
|
// the basic block.
|
|
if (Value *V = SimplifyInstruction(NewInst, TD)) {
|
|
// On the off-chance that this simplifies to an instruction in the old
|
|
// function, map it back into the new function.
|
|
if (Value *MappedV = VMap.lookup(V))
|
|
V = MappedV;
|
|
|
|
VMap[II] = V;
|
|
delete NewInst;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (II->hasName())
|
|
NewInst->setName(II->getName()+NameSuffix);
|
|
VMap[II] = NewInst; // Add instruction map to value.
|
|
NewBB->getInstList().push_back(NewInst);
|
|
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
hasStaticAllocas = true;
|
|
else
|
|
hasDynamicAllocas = true;
|
|
}
|
|
}
|
|
|
|
// Finally, clone over the terminator.
|
|
const TerminatorInst *OldTI = BB->getTerminator();
|
|
bool TerminatorDone = false;
|
|
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
|
|
if (BI->isConditional()) {
|
|
// If the condition was a known constant in the callee...
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
// Or is a known constant in the caller...
|
|
if (Cond == 0) {
|
|
Value *V = VMap[BI->getCondition()];
|
|
Cond = dyn_cast_or_null<ConstantInt>(V);
|
|
}
|
|
|
|
// Constant fold to uncond branch!
|
|
if (Cond) {
|
|
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
|
|
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
|
|
ToClone.push_back(Dest);
|
|
TerminatorDone = true;
|
|
}
|
|
}
|
|
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
|
|
// If switching on a value known constant in the caller.
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
|
|
if (Cond == 0) { // Or known constant after constant prop in the callee...
|
|
Value *V = VMap[SI->getCondition()];
|
|
Cond = dyn_cast_or_null<ConstantInt>(V);
|
|
}
|
|
if (Cond) { // Constant fold to uncond branch!
|
|
SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
|
|
BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
|
|
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
|
|
ToClone.push_back(Dest);
|
|
TerminatorDone = true;
|
|
}
|
|
}
|
|
|
|
if (!TerminatorDone) {
|
|
Instruction *NewInst = OldTI->clone();
|
|
if (OldTI->hasName())
|
|
NewInst->setName(OldTI->getName()+NameSuffix);
|
|
NewBB->getInstList().push_back(NewInst);
|
|
VMap[OldTI] = NewInst; // Add instruction map to value.
|
|
|
|
// Recursively clone any reachable successor blocks.
|
|
const TerminatorInst *TI = BB->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
ToClone.push_back(TI->getSuccessor(i));
|
|
}
|
|
|
|
if (CodeInfo) {
|
|
CodeInfo->ContainsCalls |= hasCalls;
|
|
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
|
|
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
|
|
BB != &BB->getParent()->front();
|
|
}
|
|
}
|
|
|
|
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
|
|
/// except that it does some simple constant prop and DCE on the fly. The
|
|
/// effect of this is to copy significantly less code in cases where (for
|
|
/// example) a function call with constant arguments is inlined, and those
|
|
/// constant arguments cause a significant amount of code in the callee to be
|
|
/// dead. Since this doesn't produce an exact copy of the input, it can't be
|
|
/// used for things like CloneFunction or CloneModule.
|
|
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|
ValueToValueMapTy &VMap,
|
|
bool ModuleLevelChanges,
|
|
SmallVectorImpl<ReturnInst*> &Returns,
|
|
const char *NameSuffix,
|
|
ClonedCodeInfo *CodeInfo,
|
|
const DataLayout *TD,
|
|
Instruction *TheCall) {
|
|
assert(NameSuffix && "NameSuffix cannot be null!");
|
|
|
|
#ifndef NDEBUG
|
|
for (Function::const_arg_iterator II = OldFunc->arg_begin(),
|
|
E = OldFunc->arg_end(); II != E; ++II)
|
|
assert(VMap.count(II) && "No mapping from source argument specified!");
|
|
#endif
|
|
|
|
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
|
|
NameSuffix, CodeInfo, TD);
|
|
|
|
// Clone the entry block, and anything recursively reachable from it.
|
|
std::vector<const BasicBlock*> CloneWorklist;
|
|
CloneWorklist.push_back(&OldFunc->getEntryBlock());
|
|
while (!CloneWorklist.empty()) {
|
|
const BasicBlock *BB = CloneWorklist.back();
|
|
CloneWorklist.pop_back();
|
|
PFC.CloneBlock(BB, CloneWorklist);
|
|
}
|
|
|
|
// Loop over all of the basic blocks in the old function. If the block was
|
|
// reachable, we have cloned it and the old block is now in the value map:
|
|
// insert it into the new function in the right order. If not, ignore it.
|
|
//
|
|
// Defer PHI resolution until rest of function is resolved.
|
|
SmallVector<const PHINode*, 16> PHIToResolve;
|
|
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
|
BI != BE; ++BI) {
|
|
Value *V = VMap[BI];
|
|
BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
|
|
if (NewBB == 0) continue; // Dead block.
|
|
|
|
// Add the new block to the new function.
|
|
NewFunc->getBasicBlockList().push_back(NewBB);
|
|
|
|
// Handle PHI nodes specially, as we have to remove references to dead
|
|
// blocks.
|
|
for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
|
|
if (const PHINode *PN = dyn_cast<PHINode>(I))
|
|
PHIToResolve.push_back(PN);
|
|
else
|
|
break;
|
|
|
|
// Finally, remap the terminator instructions, as those can't be remapped
|
|
// until all BBs are mapped.
|
|
RemapInstruction(NewBB->getTerminator(), VMap,
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
|
|
}
|
|
|
|
// Defer PHI resolution until rest of function is resolved, PHI resolution
|
|
// requires the CFG to be up-to-date.
|
|
for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
|
|
const PHINode *OPN = PHIToResolve[phino];
|
|
unsigned NumPreds = OPN->getNumIncomingValues();
|
|
const BasicBlock *OldBB = OPN->getParent();
|
|
BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
|
|
|
|
// Map operands for blocks that are live and remove operands for blocks
|
|
// that are dead.
|
|
for (; phino != PHIToResolve.size() &&
|
|
PHIToResolve[phino]->getParent() == OldBB; ++phino) {
|
|
OPN = PHIToResolve[phino];
|
|
PHINode *PN = cast<PHINode>(VMap[OPN]);
|
|
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
|
|
Value *V = VMap[PN->getIncomingBlock(pred)];
|
|
if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
|
|
Value *InVal = MapValue(PN->getIncomingValue(pred),
|
|
VMap,
|
|
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
|
|
assert(InVal && "Unknown input value?");
|
|
PN->setIncomingValue(pred, InVal);
|
|
PN->setIncomingBlock(pred, MappedBlock);
|
|
} else {
|
|
PN->removeIncomingValue(pred, false);
|
|
--pred, --e; // Revisit the next entry.
|
|
}
|
|
}
|
|
}
|
|
|
|
// The loop above has removed PHI entries for those blocks that are dead
|
|
// and has updated others. However, if a block is live (i.e. copied over)
|
|
// but its terminator has been changed to not go to this block, then our
|
|
// phi nodes will have invalid entries. Update the PHI nodes in this
|
|
// case.
|
|
PHINode *PN = cast<PHINode>(NewBB->begin());
|
|
NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
|
|
if (NumPreds != PN->getNumIncomingValues()) {
|
|
assert(NumPreds < PN->getNumIncomingValues());
|
|
// Count how many times each predecessor comes to this block.
|
|
std::map<BasicBlock*, unsigned> PredCount;
|
|
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
|
|
PI != E; ++PI)
|
|
--PredCount[*PI];
|
|
|
|
// Figure out how many entries to remove from each PHI.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
++PredCount[PN->getIncomingBlock(i)];
|
|
|
|
// At this point, the excess predecessor entries are positive in the
|
|
// map. Loop over all of the PHIs and remove excess predecessor
|
|
// entries.
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
for (; (PN = dyn_cast<PHINode>(I)); ++I) {
|
|
for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
|
|
E = PredCount.end(); PCI != E; ++PCI) {
|
|
BasicBlock *Pred = PCI->first;
|
|
for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
|
|
PN->removeIncomingValue(Pred, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the loops above have made these phi nodes have 0 or 1 operand,
|
|
// replace them with undef or the input value. We must do this for
|
|
// correctness, because 0-operand phis are not valid.
|
|
PN = cast<PHINode>(NewBB->begin());
|
|
if (PN->getNumIncomingValues() == 0) {
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
BasicBlock::const_iterator OldI = OldBB->begin();
|
|
while ((PN = dyn_cast<PHINode>(I++))) {
|
|
Value *NV = UndefValue::get(PN->getType());
|
|
PN->replaceAllUsesWith(NV);
|
|
assert(VMap[OldI] == PN && "VMap mismatch");
|
|
VMap[OldI] = NV;
|
|
PN->eraseFromParent();
|
|
++OldI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make a second pass over the PHINodes now that all of them have been
|
|
// remapped into the new function, simplifying the PHINode and performing any
|
|
// recursive simplifications exposed. This will transparently update the
|
|
// WeakVH in the VMap. Notably, we rely on that so that if we coalesce
|
|
// two PHINodes, the iteration over the old PHIs remains valid, and the
|
|
// mapping will just map us to the new node (which may not even be a PHI
|
|
// node).
|
|
for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
|
|
if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
|
|
recursivelySimplifyInstruction(PN, TD);
|
|
|
|
// Now that the inlined function body has been fully constructed, go through
|
|
// and zap unconditional fall-through branches. This happen all the time when
|
|
// specializing code: code specialization turns conditional branches into
|
|
// uncond branches, and this code folds them.
|
|
Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
|
|
Function::iterator I = Begin;
|
|
while (I != NewFunc->end()) {
|
|
// Check if this block has become dead during inlining or other
|
|
// simplifications. Note that the first block will appear dead, as it has
|
|
// not yet been wired up properly.
|
|
if (I != Begin && (pred_begin(I) == pred_end(I) ||
|
|
I->getSinglePredecessor() == I)) {
|
|
BasicBlock *DeadBB = I++;
|
|
DeleteDeadBlock(DeadBB);
|
|
continue;
|
|
}
|
|
|
|
// We need to simplify conditional branches and switches with a constant
|
|
// operand. We try to prune these out when cloning, but if the
|
|
// simplification required looking through PHI nodes, those are only
|
|
// available after forming the full basic block. That may leave some here,
|
|
// and we still want to prune the dead code as early as possible.
|
|
ConstantFoldTerminator(I);
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
|
|
if (!BI || BI->isConditional()) { ++I; continue; }
|
|
|
|
BasicBlock *Dest = BI->getSuccessor(0);
|
|
if (!Dest->getSinglePredecessor()) {
|
|
++I; continue;
|
|
}
|
|
|
|
// We shouldn't be able to get single-entry PHI nodes here, as instsimplify
|
|
// above should have zapped all of them..
|
|
assert(!isa<PHINode>(Dest->begin()));
|
|
|
|
// We know all single-entry PHI nodes in the inlined function have been
|
|
// removed, so we just need to splice the blocks.
|
|
BI->eraseFromParent();
|
|
|
|
// Make all PHI nodes that referred to Dest now refer to I as their source.
|
|
Dest->replaceAllUsesWith(I);
|
|
|
|
// Move all the instructions in the succ to the pred.
|
|
I->getInstList().splice(I->end(), Dest->getInstList());
|
|
|
|
// Remove the dest block.
|
|
Dest->eraseFromParent();
|
|
|
|
// Do not increment I, iteratively merge all things this block branches to.
|
|
}
|
|
|
|
// Make a final pass over the basic blocks from theh old function to gather
|
|
// any return instructions which survived folding. We have to do this here
|
|
// because we can iteratively remove and merge returns above.
|
|
for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
|
|
E = NewFunc->end();
|
|
I != E; ++I)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
|
|
Returns.push_back(RI);
|
|
}
|