mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 09:18:30 +00:00
25961b469a
Untill now we detected the vectorizable tree and evaluated the cost of the entire tree. With this patch we can decide to trim-out branches of the tree that are not profitable to vectorizer. Also, increase the max depth from 6 to 12. In the worse possible case where all of the code is made of diamond-shaped graph this can bring the cost to 2**10, but diamonds are not very common. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184681 91177308-0d34-0410-b5e6-96231b3b80d8
1542 lines
49 KiB
C++
1542 lines
49 KiB
C++
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
|
|
// stores that can be put together into vector-stores. Next, it attempts to
|
|
// construct vectorizable tree using the use-def chains. If a profitable tree
|
|
// was found, the SLP vectorizer performs vectorization on the tree.
|
|
//
|
|
// The pass is inspired by the work described in the paper:
|
|
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#define SV_NAME "slp-vectorizer"
|
|
#define DEBUG_TYPE "SLP"
|
|
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<int>
|
|
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
|
|
cl::desc("Only vectorize trees if the gain is above this "
|
|
"number. (gain = -cost of vectorization)"));
|
|
namespace {
|
|
|
|
static const unsigned MinVecRegSize = 128;
|
|
|
|
static const unsigned RecursionMaxDepth = 12;
|
|
|
|
/// RAII pattern to save the insertion point of the IR builder.
|
|
class BuilderLocGuard {
|
|
public:
|
|
BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {}
|
|
~BuilderLocGuard() { Builder.SetInsertPoint(Loc); }
|
|
|
|
private:
|
|
// Prevent copying.
|
|
BuilderLocGuard(const BuilderLocGuard &);
|
|
BuilderLocGuard &operator=(const BuilderLocGuard &);
|
|
IRBuilder<> &Builder;
|
|
BasicBlock::iterator Loc;
|
|
};
|
|
|
|
/// A helper class for numbering instructions in multible blocks.
|
|
/// Numbers starts at zero for each basic block.
|
|
struct BlockNumbering {
|
|
|
|
BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
|
|
|
|
BlockNumbering() : BB(0), Valid(false) {}
|
|
|
|
void numberInstructions() {
|
|
unsigned Loc = 0;
|
|
InstrIdx.clear();
|
|
InstrVec.clear();
|
|
// Number the instructions in the block.
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
InstrIdx[it] = Loc++;
|
|
InstrVec.push_back(it);
|
|
assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
|
|
}
|
|
Valid = true;
|
|
}
|
|
|
|
int getIndex(Instruction *I) {
|
|
if (!Valid)
|
|
numberInstructions();
|
|
assert(InstrIdx.count(I) && "Unknown instruction");
|
|
return InstrIdx[I];
|
|
}
|
|
|
|
Instruction *getInstruction(unsigned loc) {
|
|
if (!Valid)
|
|
numberInstructions();
|
|
assert(InstrVec.size() > loc && "Invalid Index");
|
|
return InstrVec[loc];
|
|
}
|
|
|
|
void forget() { Valid = false; }
|
|
|
|
private:
|
|
/// The block we are numbering.
|
|
BasicBlock *BB;
|
|
/// Is the block numbered.
|
|
bool Valid;
|
|
/// Maps instructions to numbers and back.
|
|
SmallDenseMap<Instruction *, int> InstrIdx;
|
|
/// Maps integers to Instructions.
|
|
std::vector<Instruction *> InstrVec;
|
|
};
|
|
|
|
class FuncSLP {
|
|
typedef SmallVector<Value *, 8> ValueList;
|
|
typedef SmallVector<Instruction *, 16> InstrList;
|
|
typedef SmallPtrSet<Value *, 16> ValueSet;
|
|
typedef SmallVector<StoreInst *, 8> StoreList;
|
|
|
|
public:
|
|
static const int MAX_COST = INT_MIN;
|
|
|
|
FuncSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
|
|
TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
|
|
DominatorTree *Dt) :
|
|
F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
|
|
Builder(Se->getContext()) {
|
|
for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
|
|
BasicBlock *BB = it;
|
|
BlocksNumbers[BB] = BlockNumbering(BB);
|
|
}
|
|
}
|
|
|
|
/// \brief Take the pointer operand from the Load/Store instruction.
|
|
/// \returns NULL if this is not a valid Load/Store instruction.
|
|
static Value *getPointerOperand(Value *I);
|
|
|
|
/// \brief Take the address space operand from the Load/Store instruction.
|
|
/// \returns -1 if this is not a valid Load/Store instruction.
|
|
static unsigned getAddressSpaceOperand(Value *I);
|
|
|
|
/// \returns true if the memory operations A and B are consecutive.
|
|
bool isConsecutiveAccess(Value *A, Value *B);
|
|
|
|
/// \brief Vectorize the tree that starts with the elements in \p VL.
|
|
/// \returns the vectorized value.
|
|
Value *vectorizeTree(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the vectorization cost of the subtree that starts at \p VL.
|
|
/// A negative number means that this is profitable.
|
|
int getTreeCost(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the scalarization cost for this list of values. Assuming that
|
|
/// this subtree gets vectorized, we may need to extract the values from the
|
|
/// roots. This method calculates the cost of extracting the values.
|
|
int getGatherCost(ArrayRef<Value *> VL);
|
|
|
|
/// \brief Attempts to order and vectorize a sequence of stores. This
|
|
/// function does a quadratic scan of the given stores.
|
|
/// \returns true if the basic block was modified.
|
|
bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold);
|
|
|
|
/// \brief Vectorize a group of scalars into a vector tree.
|
|
/// \returns the vectorized value.
|
|
Value *vectorizeArith(ArrayRef<Value *> Operands);
|
|
|
|
/// \brief This method contains the recursive part of getTreeCost.
|
|
int getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth);
|
|
|
|
/// \brief This recursive method looks for vectorization hazards such as
|
|
/// values that are used by multiple users and checks that values are used
|
|
/// by only one vector lane. It updates the variables LaneMap, MultiUserVals.
|
|
void getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth);
|
|
|
|
/// \brief This method contains the recursive part of vectorizeTree.
|
|
Value *vectorizeTree_rec(ArrayRef<Value *> VL);
|
|
|
|
/// \brief Vectorize a sorted sequence of stores.
|
|
bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold);
|
|
|
|
/// \returns the scalarization cost for this type. Scalarization in this
|
|
/// context means the creation of vectors from a group of scalars.
|
|
int getGatherCost(Type *Ty);
|
|
|
|
/// \returns the AA location that is being access by the instruction.
|
|
AliasAnalysis::Location getLocation(Instruction *I);
|
|
|
|
/// \brief Checks if it is possible to sink an instruction from
|
|
/// \p Src to \p Dst.
|
|
/// \returns the pointer to the barrier instruction if we can't sink.
|
|
Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
|
|
|
|
/// \returns the index of the last instrucion in the BB from \p VL.
|
|
int getLastIndex(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the Instrucion in the bundle \p VL.
|
|
Instruction *getLastInstruction(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the Instruction at index \p Index which is in Block \p BB.
|
|
Instruction *getInstructionForIndex(unsigned Index, BasicBlock *BB);
|
|
|
|
/// \returns the index of the first User of \p VL.
|
|
int getFirstUserIndex(ArrayRef<Value *> VL);
|
|
|
|
/// \returns a vector from a collection of scalars in \p VL.
|
|
Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
|
|
|
|
/// \brief Perform LICM and CSE on the newly generated gather sequences.
|
|
void optimizeGatherSequence();
|
|
|
|
bool needToGatherAny(ArrayRef<Value *> VL) {
|
|
for (int i = 0, e = VL.size(); i < e; ++i)
|
|
if (MustGather.count(VL[i]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// -- Vectorization State --
|
|
|
|
/// Maps values in the tree to the vector lanes that uses them. This map must
|
|
/// be reset between runs of getCost.
|
|
std::map<Value *, int> LaneMap;
|
|
/// A list of instructions to ignore while sinking
|
|
/// memory instructions. This map must be reset between runs of getCost.
|
|
ValueSet MemBarrierIgnoreList;
|
|
|
|
/// Maps between the first scalar to the vector. This map must be reset
|
|
/// between runs.
|
|
DenseMap<Value *, Value *> VectorizedValues;
|
|
|
|
/// Contains values that must be gathered because they are used
|
|
/// by multiple lanes, or by users outside the tree.
|
|
/// NOTICE: The vectorization methods also use this set.
|
|
ValueSet MustGather;
|
|
|
|
/// Contains a list of values that are used outside the current tree. This
|
|
/// set must be reset between runs.
|
|
SetVector<Value *> MultiUserVals;
|
|
|
|
/// Holds all of the instructions that we gathered.
|
|
SetVector<Instruction *> GatherSeq;
|
|
|
|
/// Numbers instructions in different blocks.
|
|
std::map<BasicBlock *, BlockNumbering> BlocksNumbers;
|
|
|
|
// Analysis and block reference.
|
|
Function *F;
|
|
ScalarEvolution *SE;
|
|
DataLayout *DL;
|
|
TargetTransformInfo *TTI;
|
|
AliasAnalysis *AA;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
/// Instruction builder to construct the vectorized tree.
|
|
IRBuilder<> Builder;
|
|
};
|
|
|
|
int FuncSLP::getGatherCost(Type *Ty) {
|
|
int Cost = 0;
|
|
for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
|
|
Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
return Cost;
|
|
}
|
|
|
|
int FuncSLP::getGatherCost(ArrayRef<Value *> VL) {
|
|
// Find the type of the operands in VL.
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
// Find the cost of inserting/extracting values from the vector.
|
|
return getGatherCost(VecTy);
|
|
}
|
|
|
|
AliasAnalysis::Location FuncSLP::getLocation(Instruction *I) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return AA->getLocation(SI);
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return AA->getLocation(LI);
|
|
return AliasAnalysis::Location();
|
|
}
|
|
|
|
Value *FuncSLP::getPointerOperand(Value *I) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return LI->getPointerOperand();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->getPointerOperand();
|
|
return 0;
|
|
}
|
|
|
|
unsigned FuncSLP::getAddressSpaceOperand(Value *I) {
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I))
|
|
return L->getPointerAddressSpace();
|
|
if (StoreInst *S = dyn_cast<StoreInst>(I))
|
|
return S->getPointerAddressSpace();
|
|
return -1;
|
|
}
|
|
|
|
bool FuncSLP::isConsecutiveAccess(Value *A, Value *B) {
|
|
Value *PtrA = getPointerOperand(A);
|
|
Value *PtrB = getPointerOperand(B);
|
|
unsigned ASA = getAddressSpaceOperand(A);
|
|
unsigned ASB = getAddressSpaceOperand(B);
|
|
|
|
// Check that the address spaces match and that the pointers are valid.
|
|
if (!PtrA || !PtrB || (ASA != ASB))
|
|
return false;
|
|
|
|
// Check that A and B are of the same type.
|
|
if (PtrA->getType() != PtrB->getType())
|
|
return false;
|
|
|
|
// Calculate the distance.
|
|
const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
|
|
const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
|
|
const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
|
|
const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);
|
|
|
|
// Non constant distance.
|
|
if (!ConstOffSCEV)
|
|
return false;
|
|
|
|
int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
|
|
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
|
|
// The Instructions are connsecutive if the size of the first load/store is
|
|
// the same as the offset.
|
|
int64_t Sz = DL->getTypeStoreSize(Ty);
|
|
return ((-Offset) == Sz);
|
|
}
|
|
|
|
Value *FuncSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
|
|
assert(Src->getParent() == Dst->getParent() && "Not the same BB");
|
|
BasicBlock::iterator I = Src, E = Dst;
|
|
/// Scan all of the instruction from SRC to DST and check if
|
|
/// the source may alias.
|
|
for (++I; I != E; ++I) {
|
|
// Ignore store instructions that are marked as 'ignore'.
|
|
if (MemBarrierIgnoreList.count(I))
|
|
continue;
|
|
if (Src->mayWriteToMemory()) /* Write */ {
|
|
if (!I->mayReadOrWriteMemory())
|
|
continue;
|
|
} else /* Read */ {
|
|
if (!I->mayWriteToMemory())
|
|
continue;
|
|
}
|
|
AliasAnalysis::Location A = getLocation(&*I);
|
|
AliasAnalysis::Location B = getLocation(Src);
|
|
|
|
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
|
|
return I;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
|
|
BasicBlock *BB = 0;
|
|
for (int i = 0, e = VL.size(); i < e; i++) {
|
|
Instruction *I = dyn_cast<Instruction>(VL[i]);
|
|
if (!I)
|
|
return 0;
|
|
|
|
if (!BB) {
|
|
BB = I->getParent();
|
|
continue;
|
|
}
|
|
|
|
if (BB != I->getParent())
|
|
return 0;
|
|
}
|
|
return BB;
|
|
}
|
|
|
|
static bool allConstant(ArrayRef<Value *> VL) {
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i)
|
|
if (!isa<Constant>(VL[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool isSplat(ArrayRef<Value *> VL) {
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i)
|
|
if (VL[i] != VL[0])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static unsigned getSameOpcode(ArrayRef<Value *> VL) {
|
|
unsigned Opcode = 0;
|
|
for (int i = 0, e = VL.size(); i < e; i++) {
|
|
if (Instruction *I = dyn_cast<Instruction>(VL[i])) {
|
|
if (!Opcode) {
|
|
Opcode = I->getOpcode();
|
|
continue;
|
|
}
|
|
if (Opcode != I->getOpcode())
|
|
return 0;
|
|
}
|
|
}
|
|
return Opcode;
|
|
}
|
|
|
|
static bool CanReuseExtract(ArrayRef<Value *> VL, unsigned VF,
|
|
VectorType *VecTy) {
|
|
assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
|
|
// Check if all of the extracts come from the same vector and from the
|
|
// correct offset.
|
|
Value *VL0 = VL[0];
|
|
ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
|
|
Value *Vec = E0->getOperand(0);
|
|
|
|
// We have to extract from the same vector type.
|
|
if (Vec->getType() != VecTy)
|
|
return false;
|
|
|
|
// Check that all of the indices extract from the correct offset.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
|
|
if (!CI || CI->getZExtValue())
|
|
return false;
|
|
|
|
for (unsigned i = 1, e = VF; i < e; ++i) {
|
|
ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
|
|
|
|
if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FuncSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
|
|
if (Depth == RecursionMaxDepth)
|
|
return MustGather.insert(VL.begin(), VL.end());
|
|
|
|
// Don't handle vectors.
|
|
if (VL[0]->getType()->isVectorTy())
|
|
return;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
if (SI->getValueOperand()->getType()->isVectorTy())
|
|
return;
|
|
|
|
// If all of the operands are identical or constant we have a simple solution.
|
|
if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL))
|
|
return MustGather.insert(VL.begin(), VL.end());
|
|
|
|
// Stop the scan at unknown IR.
|
|
Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
|
|
assert(VL0 && "Invalid instruction");
|
|
|
|
// Mark instructions with multiple users.
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
Instruction *I = dyn_cast<Instruction>(VL[i]);
|
|
// Remember to check if all of the users of this instruction are vectorized
|
|
// within our tree. At depth zero we have no local users, only external
|
|
// users that we don't care about.
|
|
if (Depth && I && I->getNumUses() > 1) {
|
|
DEBUG(dbgs() << "SLP: Adding to MultiUserVals "
|
|
"because it has multiple users:" << *I << " \n");
|
|
MultiUserVals.insert(I);
|
|
}
|
|
}
|
|
|
|
// Check that the instruction is only used within one lane.
|
|
for (int i = 0, e = VL.size(); i < e; ++i) {
|
|
if (LaneMap.count(VL[i]) && LaneMap[VL[i]] != i) {
|
|
DEBUG(dbgs() << "SLP: Value used by multiple lanes:" << *VL[i] << "\n");
|
|
return MustGather.insert(VL.begin(), VL.end());
|
|
}
|
|
// Make this instruction as 'seen' and remember the lane.
|
|
LaneMap[VL[i]] = i;
|
|
}
|
|
|
|
unsigned Opcode = getSameOpcode(VL);
|
|
if (!Opcode)
|
|
return MustGather.insert(VL.begin(), VL.end());
|
|
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement: {
|
|
VectorType *VecTy = VectorType::get(VL[0]->getType(), VL.size());
|
|
// No need to follow ExtractElements that are going to be optimized away.
|
|
if (CanReuseExtract(VL, VL.size(), VecTy))
|
|
return;
|
|
// Fall through.
|
|
}
|
|
case Instruction::Load:
|
|
return;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast:
|
|
case Instruction::Select:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
|
|
|
|
getTreeUses_rec(Operands, Depth + 1);
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::Store: {
|
|
ValueList Operands;
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
|
|
getTreeUses_rec(Operands, Depth + 1);
|
|
return;
|
|
}
|
|
default:
|
|
return MustGather.insert(VL.begin(), VL.end());
|
|
}
|
|
}
|
|
|
|
int FuncSLP::getLastIndex(ArrayRef<Value *> VL) {
|
|
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
|
|
assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
|
|
int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i)
|
|
MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
|
|
return MaxIdx;
|
|
}
|
|
|
|
Instruction *FuncSLP::getLastInstruction(ArrayRef<Value *> VL) {
|
|
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
|
|
assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
|
|
int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i)
|
|
MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
|
|
return BN.getInstruction(MaxIdx);
|
|
}
|
|
|
|
Instruction *FuncSLP::getInstructionForIndex(unsigned Index, BasicBlock *BB) {
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
return BN.getInstruction(Index);
|
|
}
|
|
|
|
int FuncSLP::getFirstUserIndex(ArrayRef<Value *> VL) {
|
|
BasicBlock *BB = getSameBlock(VL);
|
|
assert(BB && "All instructions must come from the same block");
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
|
|
// Find the first user of the values.
|
|
int FirstUser = BN.getIndex(BB->getTerminator());
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
|
|
U != UE; ++U) {
|
|
Instruction *Instr = dyn_cast<Instruction>(*U);
|
|
|
|
if (!Instr || Instr->getParent() != BB)
|
|
continue;
|
|
|
|
FirstUser = std::min(FirstUser, BN.getIndex(Instr));
|
|
}
|
|
}
|
|
return FirstUser;
|
|
}
|
|
|
|
int FuncSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
|
|
Type *ScalarTy = VL[0]->getType();
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
|
|
/// Don't mess with vectors.
|
|
if (ScalarTy->isVectorTy())
|
|
return FuncSLP::MAX_COST;
|
|
|
|
if (allConstant(VL))
|
|
return 0;
|
|
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
|
|
if (isSplat(VL))
|
|
return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
|
|
|
|
int GatherCost = getGatherCost(VecTy);
|
|
if (Depth == RecursionMaxDepth || needToGatherAny(VL))
|
|
return GatherCost;
|
|
|
|
BasicBlock *BB = getSameBlock(VL);
|
|
unsigned Opcode = getSameOpcode(VL);
|
|
assert(Opcode && BB && "Invalid Instruction Value");
|
|
|
|
// Check if it is safe to sink the loads or the stores.
|
|
if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
|
|
int MaxIdx = getLastIndex(VL);
|
|
Instruction *Last = getInstructionForIndex(MaxIdx, BB);
|
|
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
if (VL[i] == Last)
|
|
continue;
|
|
Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
|
|
if (Barrier) {
|
|
DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
|
|
<< "\n because of " << *Barrier << "\n");
|
|
return MAX_COST;
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *VL0 = cast<Instruction>(VL[0]);
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement: {
|
|
if (CanReuseExtract(VL, VL.size(), VecTy))
|
|
return 0;
|
|
return getGatherCost(VecTy);
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
ValueList Operands;
|
|
Type *SrcTy = VL0->getOperand(0)->getType();
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j) {
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
|
|
// Check that the casted type is the same for all users.
|
|
if (cast<Instruction>(VL[j])->getOperand(0)->getType() != SrcTy)
|
|
return getGatherCost(VecTy);
|
|
}
|
|
|
|
int Cost = getTreeCost_rec(Operands, Depth + 1);
|
|
if (Cost == FuncSLP::MAX_COST)
|
|
return Cost;
|
|
|
|
// Calculate the cost of this instruction.
|
|
int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
|
|
VL0->getType(), SrcTy);
|
|
|
|
VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
|
|
int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
|
|
Cost += (VecCost - ScalarCost);
|
|
|
|
if (Cost > GatherCost) {
|
|
MustGather.insert(VL.begin(), VL.end());
|
|
return GatherCost;
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
case Instruction::FCmp:
|
|
case Instruction::ICmp: {
|
|
// Check that all of the compares have the same predicate.
|
|
CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i) {
|
|
CmpInst *Cmp = cast<CmpInst>(VL[i]);
|
|
if (Cmp->getPredicate() != P0)
|
|
return getGatherCost(VecTy);
|
|
}
|
|
// Fall through.
|
|
}
|
|
case Instruction::Select:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
int TotalCost = 0;
|
|
// Calculate the cost of all of the operands.
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
|
|
|
|
int Cost = getTreeCost_rec(Operands, Depth + 1);
|
|
if (Cost == MAX_COST)
|
|
return MAX_COST;
|
|
TotalCost += TotalCost;
|
|
}
|
|
|
|
// Calculate the cost of this instruction.
|
|
int ScalarCost = 0;
|
|
int VecCost = 0;
|
|
if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
|
|
Opcode == Instruction::Select) {
|
|
VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
|
|
ScalarCost =
|
|
VecTy->getNumElements() *
|
|
TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
|
|
VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
|
|
} else {
|
|
ScalarCost = VecTy->getNumElements() *
|
|
TTI->getArithmeticInstrCost(Opcode, ScalarTy);
|
|
VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
|
|
}
|
|
TotalCost += (VecCost - ScalarCost);
|
|
|
|
if (TotalCost > GatherCost) {
|
|
MustGather.insert(VL.begin(), VL.end());
|
|
return GatherCost;
|
|
}
|
|
|
|
return TotalCost;
|
|
}
|
|
case Instruction::Load: {
|
|
// If we are scalarize the loads, add the cost of forming the vector.
|
|
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
|
|
if (!isConsecutiveAccess(VL[i], VL[i + 1]))
|
|
return getGatherCost(VecTy);
|
|
|
|
// Cost of wide load - cost of scalar loads.
|
|
int ScalarLdCost = VecTy->getNumElements() *
|
|
TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
|
|
int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
|
|
int TotalCost = VecLdCost - ScalarLdCost;
|
|
|
|
if (TotalCost > GatherCost) {
|
|
MustGather.insert(VL.begin(), VL.end());
|
|
return GatherCost;
|
|
}
|
|
|
|
return TotalCost;
|
|
}
|
|
case Instruction::Store: {
|
|
// We know that we can merge the stores. Calculate the cost.
|
|
int ScalarStCost = VecTy->getNumElements() *
|
|
TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
|
|
int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
|
|
int StoreCost = VecStCost - ScalarStCost;
|
|
|
|
ValueList Operands;
|
|
for (unsigned j = 0; j < VL.size(); ++j) {
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
|
|
MemBarrierIgnoreList.insert(VL[j]);
|
|
}
|
|
|
|
int Cost = getTreeCost_rec(Operands, Depth + 1);
|
|
if (Cost == MAX_COST)
|
|
return MAX_COST;
|
|
|
|
int TotalCost = StoreCost + Cost;
|
|
return TotalCost;
|
|
}
|
|
default:
|
|
// Unable to vectorize unknown instructions.
|
|
return getGatherCost(VecTy);
|
|
}
|
|
}
|
|
|
|
int FuncSLP::getTreeCost(ArrayRef<Value *> VL) {
|
|
// Get rid of the list of stores that were removed, and from the
|
|
// lists of instructions with multiple users.
|
|
MemBarrierIgnoreList.clear();
|
|
LaneMap.clear();
|
|
MultiUserVals.clear();
|
|
MustGather.clear();
|
|
|
|
if (!getSameBlock(VL))
|
|
return MAX_COST;
|
|
|
|
// Find the location of the last root.
|
|
int LastRootIndex = getLastIndex(VL);
|
|
int FirstUserIndex = getFirstUserIndex(VL);
|
|
|
|
// Don't vectorize if there are users of the tree roots inside the tree
|
|
// itself.
|
|
if (LastRootIndex > FirstUserIndex)
|
|
return MAX_COST;
|
|
|
|
// Scan the tree and find which value is used by which lane, and which values
|
|
// must be scalarized.
|
|
getTreeUses_rec(VL, 0);
|
|
|
|
// Check that instructions with multiple users can be vectorized. Mark unsafe
|
|
// instructions.
|
|
for (SetVector<Value *>::iterator it = MultiUserVals.begin(),
|
|
e = MultiUserVals.end();
|
|
it != e; ++it) {
|
|
// Check that all of the users of this instr are within the tree.
|
|
for (Value::use_iterator I = (*it)->use_begin(), E = (*it)->use_end();
|
|
I != E; ++I) {
|
|
if (LaneMap.find(*I) == LaneMap.end()) {
|
|
DEBUG(dbgs() << "SLP: Adding to MustExtract "
|
|
"because of an out of tree usage.\n");
|
|
MustGather.insert(*it);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now calculate the cost of vectorizing the tree.
|
|
return getTreeCost_rec(VL, 0);
|
|
}
|
|
bool FuncSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
|
|
unsigned ChainLen = Chain.size();
|
|
DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
|
|
<< "\n");
|
|
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
|
|
unsigned Sz = DL->getTypeSizeInBits(StoreTy);
|
|
unsigned VF = MinVecRegSize / Sz;
|
|
|
|
if (!isPowerOf2_32(Sz) || VF < 2)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
// Look for profitable vectorizable trees at all offsets, starting at zero.
|
|
for (unsigned i = 0, e = ChainLen; i < e; ++i) {
|
|
if (i + VF > e)
|
|
break;
|
|
DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
|
|
<< "\n");
|
|
ArrayRef<Value *> Operands = Chain.slice(i, VF);
|
|
|
|
int Cost = getTreeCost(Operands);
|
|
if (Cost == FuncSLP::MAX_COST)
|
|
continue;
|
|
DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
|
|
if (Cost < CostThreshold) {
|
|
DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
|
|
vectorizeTree(Operands);
|
|
|
|
// Remove the scalar stores.
|
|
for (int i = 0, e = VF; i < e; ++i)
|
|
cast<Instruction>(Operands[i])->eraseFromParent();
|
|
|
|
// Move to the next bundle.
|
|
i += VF - 1;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (Changed || ChainLen > VF)
|
|
return Changed;
|
|
|
|
// Handle short chains. This helps us catch types such as <3 x float> that
|
|
// are smaller than vector size.
|
|
int Cost = getTreeCost(Chain);
|
|
if (Cost == FuncSLP::MAX_COST)
|
|
return false;
|
|
if (Cost < CostThreshold) {
|
|
DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost
|
|
<< " for size = " << ChainLen << "\n");
|
|
vectorizeTree(Chain);
|
|
|
|
// Remove all of the scalar stores.
|
|
for (int i = 0, e = Chain.size(); i < e; ++i)
|
|
cast<Instruction>(Chain[i])->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FuncSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
|
|
SetVector<Value *> Heads, Tails;
|
|
SmallDenseMap<Value *, Value *> ConsecutiveChain;
|
|
|
|
// We may run into multiple chains that merge into a single chain. We mark the
|
|
// stores that we vectorized so that we don't visit the same store twice.
|
|
ValueSet VectorizedStores;
|
|
bool Changed = false;
|
|
|
|
// Do a quadratic search on all of the given stores and find
|
|
// all of the pairs of loads that follow each other.
|
|
for (unsigned i = 0, e = Stores.size(); i < e; ++i)
|
|
for (unsigned j = 0; j < e; ++j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
if (isConsecutiveAccess(Stores[i], Stores[j])) {
|
|
Tails.insert(Stores[j]);
|
|
Heads.insert(Stores[i]);
|
|
ConsecutiveChain[Stores[i]] = Stores[j];
|
|
}
|
|
}
|
|
|
|
// For stores that start but don't end a link in the chain:
|
|
for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
|
|
it != e; ++it) {
|
|
if (Tails.count(*it))
|
|
continue;
|
|
|
|
// We found a store instr that starts a chain. Now follow the chain and try
|
|
// to vectorize it.
|
|
ValueList Operands;
|
|
Value *I = *it;
|
|
// Collect the chain into a list.
|
|
while (Tails.count(I) || Heads.count(I)) {
|
|
if (VectorizedStores.count(I))
|
|
break;
|
|
Operands.push_back(I);
|
|
// Move to the next value in the chain.
|
|
I = ConsecutiveChain[I];
|
|
}
|
|
|
|
bool Vectorized = vectorizeStoreChain(Operands, costThreshold);
|
|
|
|
// Mark the vectorized stores so that we don't vectorize them again.
|
|
if (Vectorized)
|
|
VectorizedStores.insert(Operands.begin(), Operands.end());
|
|
Changed |= Vectorized;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
Value *FuncSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
|
|
Value *Vec = UndefValue::get(Ty);
|
|
// Generate the 'InsertElement' instruction.
|
|
for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
|
|
Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
|
|
if (Instruction *I = dyn_cast<Instruction>(Vec))
|
|
GatherSeq.insert(I);
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
Value *FuncSLP::vectorizeTree_rec(ArrayRef<Value *> VL) {
|
|
BuilderLocGuard Guard(Builder);
|
|
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
|
|
if (needToGatherAny(VL))
|
|
return Gather(VL, VecTy);
|
|
|
|
if (VectorizedValues.count(VL[0])) {
|
|
DEBUG(dbgs() << "SLP: Diamond merged at depth.\n");
|
|
return VectorizedValues[VL[0]];
|
|
}
|
|
|
|
Instruction *VL0 = cast<Instruction>(VL[0]);
|
|
unsigned Opcode = VL0->getOpcode();
|
|
assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
|
|
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement: {
|
|
if (CanReuseExtract(VL, VL.size(), VecTy))
|
|
return VL0->getOperand(0);
|
|
return Gather(VL, VecTy);
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
ValueList INVL;
|
|
for (int i = 0, e = VL.size(); i < e; ++i)
|
|
INVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
|
|
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
Value *InVec = vectorizeTree_rec(INVL);
|
|
CastInst *CI = dyn_cast<CastInst>(VL0);
|
|
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
|
|
VectorizedValues[VL0] = V;
|
|
return V;
|
|
}
|
|
case Instruction::FCmp:
|
|
case Instruction::ICmp: {
|
|
// Check that all of the compares have the same predicate.
|
|
CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i) {
|
|
CmpInst *Cmp = cast<CmpInst>(VL[i]);
|
|
if (Cmp->getPredicate() != P0)
|
|
return Gather(VL, VecTy);
|
|
}
|
|
|
|
ValueList LHSV, RHSV;
|
|
for (int i = 0, e = VL.size(); i < e; ++i) {
|
|
LHSV.push_back(cast<Instruction>(VL[i])->getOperand(0));
|
|
RHSV.push_back(cast<Instruction>(VL[i])->getOperand(1));
|
|
}
|
|
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
Value *L = vectorizeTree_rec(LHSV);
|
|
Value *R = vectorizeTree_rec(RHSV);
|
|
Value *V;
|
|
|
|
if (Opcode == Instruction::FCmp)
|
|
V = Builder.CreateFCmp(P0, L, R);
|
|
else
|
|
V = Builder.CreateICmp(P0, L, R);
|
|
|
|
VectorizedValues[VL0] = V;
|
|
return V;
|
|
}
|
|
case Instruction::Select: {
|
|
ValueList TrueVec, FalseVec, CondVec;
|
|
for (int i = 0, e = VL.size(); i < e; ++i) {
|
|
CondVec.push_back(cast<Instruction>(VL[i])->getOperand(0));
|
|
TrueVec.push_back(cast<Instruction>(VL[i])->getOperand(1));
|
|
FalseVec.push_back(cast<Instruction>(VL[i])->getOperand(2));
|
|
}
|
|
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
Value *True = vectorizeTree_rec(TrueVec);
|
|
Value *False = vectorizeTree_rec(FalseVec);
|
|
Value *Cond = vectorizeTree_rec(CondVec);
|
|
Value *V = Builder.CreateSelect(Cond, True, False);
|
|
VectorizedValues[VL0] = V;
|
|
return V;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
ValueList LHSVL, RHSVL;
|
|
for (int i = 0, e = VL.size(); i < e; ++i) {
|
|
LHSVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
|
|
RHSVL.push_back(cast<Instruction>(VL[i])->getOperand(1));
|
|
}
|
|
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
Value *LHS = vectorizeTree_rec(LHSVL);
|
|
Value *RHS = vectorizeTree_rec(RHSVL);
|
|
|
|
if (LHS == RHS) {
|
|
assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
|
|
}
|
|
|
|
BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
|
|
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
|
|
VectorizedValues[VL0] = V;
|
|
return V;
|
|
}
|
|
case Instruction::Load: {
|
|
// Check if all of the loads are consecutive.
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i)
|
|
if (!isConsecutiveAccess(VL[i - 1], VL[i]))
|
|
return Gather(VL, VecTy);
|
|
|
|
// Loads are inserted at the head of the tree because we don't want to
|
|
// sink them all the way down past store instructions.
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
LoadInst *LI = cast<LoadInst>(VL0);
|
|
Value *VecPtr =
|
|
Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
|
|
unsigned Alignment = LI->getAlignment();
|
|
LI = Builder.CreateLoad(VecPtr);
|
|
LI->setAlignment(Alignment);
|
|
|
|
VectorizedValues[VL0] = LI;
|
|
return LI;
|
|
}
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(VL0);
|
|
unsigned Alignment = SI->getAlignment();
|
|
|
|
ValueList ValueOp;
|
|
for (int i = 0, e = VL.size(); i < e; ++i)
|
|
ValueOp.push_back(cast<StoreInst>(VL[i])->getValueOperand());
|
|
|
|
Value *VecValue = vectorizeTree_rec(ValueOp);
|
|
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
Value *VecPtr =
|
|
Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
|
|
Builder.CreateStore(VecValue, VecPtr)->setAlignment(Alignment);
|
|
return 0;
|
|
}
|
|
default:
|
|
return Gather(VL, VecTy);
|
|
}
|
|
}
|
|
|
|
Value *FuncSLP::vectorizeTree(ArrayRef<Value *> VL) {
|
|
Builder.SetInsertPoint(getLastInstruction(VL));
|
|
Value *V = vectorizeTree_rec(VL);
|
|
|
|
// We moved some instructions around. We have to number them again
|
|
// before we can do any analysis.
|
|
for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it)
|
|
BlocksNumbers[it].forget();
|
|
// Clear the state.
|
|
MustGather.clear();
|
|
VectorizedValues.clear();
|
|
MemBarrierIgnoreList.clear();
|
|
return V;
|
|
}
|
|
|
|
Value *FuncSLP::vectorizeArith(ArrayRef<Value *> Operands) {
|
|
Value *Vec = vectorizeTree(Operands);
|
|
// After vectorizing the operands we need to generate extractelement
|
|
// instructions and replace all of the uses of the scalar values with
|
|
// the values that we extracted from the vectorized tree.
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
Value *S = Builder.CreateExtractElement(Vec, Builder.getInt32(i));
|
|
Operands[i]->replaceAllUsesWith(S);
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
void FuncSLP::optimizeGatherSequence() {
|
|
// LICM InsertElementInst sequences.
|
|
for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
|
|
e = GatherSeq.end(); it != e; ++it) {
|
|
InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
|
|
|
|
if (!Insert)
|
|
continue;
|
|
|
|
// Check if this block is inside a loop.
|
|
Loop *L = LI->getLoopFor(Insert->getParent());
|
|
if (!L)
|
|
continue;
|
|
|
|
// Check if it has a preheader.
|
|
BasicBlock *PreHeader = L->getLoopPreheader();
|
|
if (!PreHeader)
|
|
return;
|
|
|
|
// If the vector or the element that we insert into it are
|
|
// instructions that are defined in this basic block then we can't
|
|
// hoist this instruction.
|
|
Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
|
|
Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
|
|
if (CurrVec && L->contains(CurrVec))
|
|
continue;
|
|
if (NewElem && L->contains(NewElem))
|
|
continue;
|
|
|
|
// We can hoist this instruction. Move it to the pre-header.
|
|
Insert->moveBefore(PreHeader->getTerminator());
|
|
}
|
|
|
|
// Perform O(N^2) search over the gather sequences and merge identical
|
|
// instructions. TODO: We can further optimize this scan if we split the
|
|
// instructions into different buckets based on the insert lane.
|
|
SmallPtrSet<Instruction*, 16> Visited;
|
|
ReversePostOrderTraversal<Function*> RPOT(F);
|
|
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
|
|
E = RPOT.end(); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
// For all instructions in the function:
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
|
|
if (!Insert || !GatherSeq.count(Insert))
|
|
continue;
|
|
|
|
// Check if we can replace this instruction with any of the
|
|
// visited instructions.
|
|
for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
|
|
ve = Visited.end(); v != ve; ++v) {
|
|
if (Insert->isIdenticalTo(*v) &&
|
|
DT->dominates((*v)->getParent(), Insert->getParent())) {
|
|
Insert->replaceAllUsesWith(*v);
|
|
break;
|
|
}
|
|
}
|
|
Visited.insert(Insert);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The SLPVectorizer Pass.
|
|
struct SLPVectorizer : public FunctionPass {
|
|
typedef SmallVector<StoreInst *, 8> StoreList;
|
|
typedef MapVector<Value *, StoreList> StoreListMap;
|
|
|
|
/// Pass identification, replacement for typeid
|
|
static char ID;
|
|
|
|
explicit SLPVectorizer() : FunctionPass(ID) {
|
|
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
ScalarEvolution *SE;
|
|
DataLayout *DL;
|
|
TargetTransformInfo *TTI;
|
|
AliasAnalysis *AA;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
|
|
virtual bool runOnFunction(Function &F) {
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
DL = getAnalysisIfAvailable<DataLayout>();
|
|
TTI = &getAnalysis<TargetTransformInfo>();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
StoreRefs.clear();
|
|
bool Changed = false;
|
|
|
|
// Must have DataLayout. We can't require it because some tests run w/o
|
|
// triple.
|
|
if (!DL)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
|
|
|
|
// Use the bollom up slp vectorizer to construct chains that start with
|
|
// he store instructions.
|
|
FuncSLP R(&F, SE, DL, TTI, AA, LI, DT);
|
|
|
|
for (Function::iterator it = F.begin(), e = F.end(); it != e; ++it) {
|
|
BasicBlock *BB = it;
|
|
|
|
// Vectorize trees that end at reductions.
|
|
Changed |= vectorizeChainsInBlock(BB, R);
|
|
|
|
// Vectorize trees that end at stores.
|
|
if (unsigned count = collectStores(BB, R)) {
|
|
(void)count;
|
|
DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
|
|
Changed |= vectorizeStoreChains(R);
|
|
}
|
|
}
|
|
|
|
if (Changed) {
|
|
R.optimizeGatherSequence();
|
|
DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
|
|
DEBUG(verifyFunction(F));
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<TargetTransformInfo>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorTree>();
|
|
}
|
|
|
|
private:
|
|
|
|
/// \brief Collect memory references and sort them according to their base
|
|
/// object. We sort the stores to their base objects to reduce the cost of the
|
|
/// quadratic search on the stores. TODO: We can further reduce this cost
|
|
/// if we flush the chain creation every time we run into a memory barrier.
|
|
unsigned collectStores(BasicBlock *BB, FuncSLP &R);
|
|
|
|
/// \brief Try to vectorize a chain that starts at two arithmetic instrs.
|
|
bool tryToVectorizePair(Value *A, Value *B, FuncSLP &R);
|
|
|
|
/// \brief Try to vectorize a list of operands. If \p NeedExtracts is true
|
|
/// then we calculate the cost of extracting the scalars from the vector.
|
|
/// \returns true if a value was vectorized.
|
|
bool tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R, bool NeedExtracts);
|
|
|
|
/// \brief Try to vectorize a chain that may start at the operands of \V;
|
|
bool tryToVectorize(BinaryOperator *V, FuncSLP &R);
|
|
|
|
/// \brief Vectorize the stores that were collected in StoreRefs.
|
|
bool vectorizeStoreChains(FuncSLP &R);
|
|
|
|
/// \brief Scan the basic block and look for patterns that are likely to start
|
|
/// a vectorization chain.
|
|
bool vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R);
|
|
|
|
private:
|
|
StoreListMap StoreRefs;
|
|
};
|
|
|
|
unsigned SLPVectorizer::collectStores(BasicBlock *BB, FuncSLP &R) {
|
|
unsigned count = 0;
|
|
StoreRefs.clear();
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
StoreInst *SI = dyn_cast<StoreInst>(it);
|
|
if (!SI)
|
|
continue;
|
|
|
|
// Check that the pointer points to scalars.
|
|
Type *Ty = SI->getValueOperand()->getType();
|
|
if (Ty->isAggregateType() || Ty->isVectorTy())
|
|
return 0;
|
|
|
|
// Find the base of the GEP.
|
|
Value *Ptr = SI->getPointerOperand();
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
|
|
Ptr = GEP->getPointerOperand();
|
|
|
|
// Save the store locations.
|
|
StoreRefs[Ptr].push_back(SI);
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, FuncSLP &R) {
|
|
if (!A || !B)
|
|
return false;
|
|
Value *VL[] = { A, B };
|
|
return tryToVectorizeList(VL, R, true);
|
|
}
|
|
|
|
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R,
|
|
bool NeedExtracts) {
|
|
if (VL.size() < 2)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
|
|
|
|
// Check that all of the parts are scalar instructions of the same type.
|
|
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
|
|
if (!I0)
|
|
return 0;
|
|
|
|
unsigned Opcode0 = I0->getOpcode();
|
|
|
|
for (int i = 0, e = VL.size(); i < e; ++i) {
|
|
Type *Ty = VL[i]->getType();
|
|
if (Ty->isAggregateType() || Ty->isVectorTy())
|
|
return 0;
|
|
Instruction *Inst = dyn_cast<Instruction>(VL[i]);
|
|
if (!Inst || Inst->getOpcode() != Opcode0)
|
|
return 0;
|
|
}
|
|
|
|
int Cost = R.getTreeCost(VL);
|
|
if (Cost == FuncSLP::MAX_COST)
|
|
return false;
|
|
|
|
int ExtrCost = NeedExtracts ? R.getGatherCost(VL) : 0;
|
|
DEBUG(dbgs() << "SLP: Cost of pair:" << Cost
|
|
<< " Cost of extract:" << ExtrCost << ".\n");
|
|
if ((Cost + ExtrCost) >= -SLPCostThreshold)
|
|
return false;
|
|
DEBUG(dbgs() << "SLP: Vectorizing pair.\n");
|
|
R.vectorizeArith(VL);
|
|
return true;
|
|
}
|
|
|
|
bool SLPVectorizer::tryToVectorize(BinaryOperator *V, FuncSLP &R) {
|
|
if (!V)
|
|
return false;
|
|
|
|
// Try to vectorize V.
|
|
if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
|
|
return true;
|
|
|
|
BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
|
|
BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
|
|
// Try to skip B.
|
|
if (B && B->hasOneUse()) {
|
|
BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
|
|
BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
|
|
if (tryToVectorizePair(A, B0, R)) {
|
|
B->moveBefore(V);
|
|
return true;
|
|
}
|
|
if (tryToVectorizePair(A, B1, R)) {
|
|
B->moveBefore(V);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Try to skip A.
|
|
if (A && A->hasOneUse()) {
|
|
BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
|
|
BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
|
|
if (tryToVectorizePair(A0, B, R)) {
|
|
A->moveBefore(V);
|
|
return true;
|
|
}
|
|
if (tryToVectorizePair(A1, B, R)) {
|
|
A->moveBefore(V);
|
|
return true;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R) {
|
|
bool Changed = false;
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
if (isa<DbgInfoIntrinsic>(it))
|
|
continue;
|
|
|
|
// Try to vectorize reductions that use PHINodes.
|
|
if (PHINode *P = dyn_cast<PHINode>(it)) {
|
|
// Check that the PHI is a reduction PHI.
|
|
if (P->getNumIncomingValues() != 2)
|
|
return Changed;
|
|
Value *Rdx =
|
|
(P->getIncomingBlock(0) == BB
|
|
? (P->getIncomingValue(0))
|
|
: (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
|
|
// Check if this is a Binary Operator.
|
|
BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
|
|
if (!BI)
|
|
continue;
|
|
|
|
Value *Inst = BI->getOperand(0);
|
|
if (Inst == P)
|
|
Inst = BI->getOperand(1);
|
|
|
|
Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
|
|
continue;
|
|
}
|
|
|
|
// Try to vectorize trees that start at compare instructions.
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
|
|
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
|
|
Changed |= true;
|
|
continue;
|
|
}
|
|
for (int i = 0; i < 2; ++i)
|
|
if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
|
|
Changed |=
|
|
tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Scan the PHINodes in our successors in search for pairing hints.
|
|
for (succ_iterator it = succ_begin(BB), e = succ_end(BB); it != e; ++it) {
|
|
BasicBlock *Succ = *it;
|
|
SmallVector<Value *, 4> Incoming;
|
|
|
|
// Collect the incoming values from the PHIs.
|
|
for (BasicBlock::iterator instr = Succ->begin(), ie = Succ->end();
|
|
instr != ie; ++instr) {
|
|
PHINode *P = dyn_cast<PHINode>(instr);
|
|
|
|
if (!P)
|
|
break;
|
|
|
|
Value *V = P->getIncomingValueForBlock(BB);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getParent() == BB)
|
|
Incoming.push_back(I);
|
|
}
|
|
|
|
if (Incoming.size() > 1)
|
|
Changed |= tryToVectorizeList(Incoming, R, true);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizer::vectorizeStoreChains(FuncSLP &R) {
|
|
bool Changed = false;
|
|
// Attempt to sort and vectorize each of the store-groups.
|
|
for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
|
|
it != e; ++it) {
|
|
if (it->second.size() < 2)
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
|
|
<< it->second.size() << ".\n");
|
|
|
|
Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
char SLPVectorizer::ID = 0;
|
|
static const char lv_name[] = "SLP Vectorizer";
|
|
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
|
|
|
|
namespace llvm {
|
|
Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
|
|
}
|