mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 09:18:30 +00:00
05ce489871
were overspecified when inheriting sub-subregisters, for instance: R0Q:subreg_even32 = R0Q:subreg_32bit = R0Q:subreg_even:subreg_32bit. This meant that composeSubRegIndices(subreg_even, subreg_32bit) was ambiguous. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105063 91177308-0d34-0410-b5e6-96231b3b80d8
783 lines
27 KiB
C++
783 lines
27 KiB
C++
//==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the SystemZ target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZ.h"
|
|
#include "SystemZTargetMachine.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
|
|
/// instead of register numbers for the leaves of the matched tree.
|
|
struct SystemZRRIAddressMode {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
struct { // This is really a union, discriminated by BaseType!
|
|
SDValue Reg;
|
|
int FrameIndex;
|
|
} Base;
|
|
|
|
SDValue IndexReg;
|
|
int64_t Disp;
|
|
bool isRI;
|
|
|
|
SystemZRRIAddressMode(bool RI = false)
|
|
: BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
|
|
}
|
|
|
|
void dump() {
|
|
errs() << "SystemZRRIAddressMode " << this << '\n';
|
|
if (BaseType == RegBase) {
|
|
errs() << "Base.Reg ";
|
|
if (Base.Reg.getNode() != 0)
|
|
Base.Reg.getNode()->dump();
|
|
else
|
|
errs() << "nul";
|
|
errs() << '\n';
|
|
} else {
|
|
errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
|
|
}
|
|
if (!isRI) {
|
|
errs() << "IndexReg ";
|
|
if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
|
|
else errs() << "nul";
|
|
}
|
|
errs() << " Disp " << Disp << '\n';
|
|
}
|
|
};
|
|
}
|
|
|
|
/// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
class SystemZDAGToDAGISel : public SelectionDAGISel {
|
|
const SystemZTargetLowering &Lowering;
|
|
const SystemZSubtarget &Subtarget;
|
|
|
|
void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
|
|
SDValue &Base, SDValue &Disp);
|
|
void getAddressOperands(const SystemZRRIAddressMode &AM,
|
|
SDValue &Base, SDValue &Disp,
|
|
SDValue &Index);
|
|
|
|
public:
|
|
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(TM, OptLevel),
|
|
Lowering(*TM.getTargetLowering()),
|
|
Subtarget(*TM.getSubtargetImpl()) { }
|
|
|
|
virtual const char *getPassName() const {
|
|
return "SystemZ DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
/// getI8Imm - Return a target constant with the specified value, of type
|
|
/// i8.
|
|
inline SDValue getI8Imm(uint64_t Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i8);
|
|
}
|
|
|
|
/// getI16Imm - Return a target constant with the specified value, of type
|
|
/// i16.
|
|
inline SDValue getI16Imm(uint64_t Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i16);
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDValue getI32Imm(uint64_t Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "SystemZGenDAGISel.inc"
|
|
|
|
private:
|
|
bool SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
|
|
SDValue &Base, SDValue &Disp);
|
|
bool SelectAddrRI12(SDNode *Op, SDValue& Addr,
|
|
SDValue &Base, SDValue &Disp,
|
|
bool is12BitOnly = false);
|
|
bool SelectAddrRI(SDNode *Op, SDValue& Addr,
|
|
SDValue &Base, SDValue &Disp);
|
|
bool SelectAddrRRI12(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index);
|
|
bool SelectAddrRRI20(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index);
|
|
bool SelectLAAddr(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index);
|
|
|
|
SDNode *Select(SDNode *Node);
|
|
|
|
bool TryFoldLoad(SDNode *P, SDValue N,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index);
|
|
|
|
bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
|
|
bool is12Bit, unsigned Depth = 0);
|
|
bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
|
|
bool MatchAddressRI(SDValue N, SystemZRRIAddressMode &AM,
|
|
bool is12Bit);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// createSystemZISelDag - This pass converts a legalized DAG into a
|
|
/// SystemZ-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new SystemZDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
|
|
/// isImmSExt20 - This method tests to see if the node is either a 32-bit
|
|
/// or 64-bit immediate, and if the value can be accurately represented as a
|
|
/// sign extension from a 20-bit value. If so, this returns true and the
|
|
/// immediate.
|
|
static bool isImmSExt20(int64_t Val, int64_t &Imm) {
|
|
if (Val >= -524288 && Val <= 524287) {
|
|
Imm = Val;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isImmZExt12 - This method tests to see if the node is either a 32-bit
|
|
/// or 64-bit immediate, and if the value can be accurately represented as a
|
|
/// zero extension from a 12-bit value. If so, this returns true and the
|
|
/// immediate.
|
|
static bool isImmZExt12(int64_t Val, int64_t &Imm) {
|
|
if (Val >= 0 && Val <= 0xFFF) {
|
|
Imm = Val;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// MatchAddress - Add the specified node to the specified addressing mode,
|
|
/// returning true if it cannot be done. This just pattern matches for the
|
|
/// addressing mode.
|
|
bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
|
|
bool is12Bit, unsigned Depth) {
|
|
DebugLoc dl = N.getDebugLoc();
|
|
DEBUG(errs() << "MatchAddress: "; AM.dump());
|
|
// Limit recursion.
|
|
if (Depth > 5)
|
|
return MatchAddressBase(N, AM);
|
|
|
|
// FIXME: We can perform better here. If we have something like
|
|
// (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
|
|
// imm into addressing mode.
|
|
switch (N.getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant: {
|
|
int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
int64_t Imm = 0;
|
|
bool Match = (is12Bit ?
|
|
isImmZExt12(AM.Disp + Val, Imm) :
|
|
isImmSExt20(AM.Disp + Val, Imm));
|
|
if (Match) {
|
|
AM.Disp = Imm;
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::FrameIndex:
|
|
if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
|
|
AM.Base.Reg.getNode() == 0) {
|
|
AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::SUB: {
|
|
// Given A-B, if A can be completely folded into the address and
|
|
// the index field with the index field unused, use -B as the index.
|
|
// This is a win if a has multiple parts that can be folded into
|
|
// the address. Also, this saves a mov if the base register has
|
|
// other uses, since it avoids a two-address sub instruction, however
|
|
// it costs an additional mov if the index register has other uses.
|
|
|
|
// Test if the LHS of the sub can be folded.
|
|
SystemZRRIAddressMode Backup = AM;
|
|
if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
// Test if the index field is free for use.
|
|
if (AM.IndexReg.getNode() || AM.isRI) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
|
|
// If the base is a register with multiple uses, this transformation may
|
|
// save a mov. Otherwise it's probably better not to do it.
|
|
if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
|
|
(!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
|
|
// Ok, the transformation is legal and appears profitable. Go for it.
|
|
SDValue RHS = N.getNode()->getOperand(1);
|
|
SDValue Zero = CurDAG->getConstant(0, N.getValueType());
|
|
SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
|
|
AM.IndexReg = Neg;
|
|
|
|
// Insert the new nodes into the topological ordering.
|
|
if (Zero.getNode()->getNodeId() == -1 ||
|
|
Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), Zero.getNode());
|
|
Zero.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
if (Neg.getNode()->getNodeId() == -1 ||
|
|
Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
|
|
CurDAG->RepositionNode(N.getNode(), Neg.getNode());
|
|
Neg.getNode()->setNodeId(N.getNode()->getNodeId());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
SystemZRRIAddressMode Backup = AM;
|
|
if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
|
|
!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
|
|
!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
|
|
// If we couldn't fold both operands into the address at the same time,
|
|
// see if we can just put each operand into a register and fold at least
|
|
// the add.
|
|
if (!AM.isRI &&
|
|
AM.BaseType == SystemZRRIAddressMode::RegBase &&
|
|
!AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
|
|
AM.Base.Reg = N.getNode()->getOperand(0);
|
|
AM.IndexReg = N.getNode()->getOperand(1);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::OR:
|
|
// Handle "X | C" as "X + C" iff X is known to have C bits clear.
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
SystemZRRIAddressMode Backup = AM;
|
|
int64_t Offset = CN->getSExtValue();
|
|
int64_t Imm = 0;
|
|
bool MatchOffset = (is12Bit ?
|
|
isImmZExt12(AM.Disp + Offset, Imm) :
|
|
isImmSExt20(AM.Disp + Offset, Imm));
|
|
// The resultant disp must fit in 12 or 20-bits.
|
|
if (MatchOffset &&
|
|
// LHS should be an addr mode.
|
|
!MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
|
|
// Check to see if the LHS & C is zero.
|
|
CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
|
|
AM.Disp = Imm;
|
|
return false;
|
|
}
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return MatchAddressBase(N, AM);
|
|
}
|
|
|
|
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
|
|
/// specified addressing mode without any further recursion.
|
|
bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
|
|
SystemZRRIAddressMode &AM) {
|
|
// Is the base register already occupied?
|
|
if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
|
|
// If so, check to see if the index register is set.
|
|
if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
|
|
AM.IndexReg = N;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot select it.
|
|
return true;
|
|
}
|
|
|
|
// Default, generate it as a register.
|
|
AM.BaseType = SystemZRRIAddressMode::RegBase;
|
|
AM.Base.Reg = N;
|
|
return false;
|
|
}
|
|
|
|
void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
|
|
SDValue &Base, SDValue &Disp) {
|
|
if (AM.BaseType == SystemZRRIAddressMode::RegBase)
|
|
Base = AM.Base.Reg;
|
|
else
|
|
Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
|
|
Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
|
|
}
|
|
|
|
void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
|
|
SDValue &Base, SDValue &Disp,
|
|
SDValue &Index) {
|
|
getAddressOperandsRI(AM, Base, Disp);
|
|
Index = AM.IndexReg;
|
|
}
|
|
|
|
/// Returns true if the address can be represented by a base register plus
|
|
/// an unsigned 12-bit displacement [r+imm].
|
|
bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
|
|
SDValue &Base, SDValue &Disp) {
|
|
return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
|
|
}
|
|
|
|
bool SystemZDAGToDAGISel::SelectAddrRI12(SDNode *Op, SDValue& Addr,
|
|
SDValue &Base, SDValue &Disp,
|
|
bool is12BitOnly) {
|
|
SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
|
|
bool Done = false;
|
|
|
|
if (!Addr.hasOneUse()) {
|
|
unsigned Opcode = Addr.getOpcode();
|
|
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
|
|
// If we are able to fold N into addressing mode, then we'll allow it even
|
|
// if N has multiple uses. In general, addressing computation is used as
|
|
// addresses by all of its uses. But watch out for CopyToReg uses, that
|
|
// means the address computation is liveout. It will be computed by a LA
|
|
// so we want to avoid computing the address twice.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI->getOpcode() == ISD::CopyToReg) {
|
|
MatchAddressBase(Addr, AM12);
|
|
Done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
|
|
return false;
|
|
|
|
// Check, whether we can match stuff using 20-bit displacements
|
|
if (!Done && !is12BitOnly &&
|
|
!MatchAddress(Addr, AM20, /* is12Bit */ false))
|
|
if (AM12.Disp == 0 && AM20.Disp != 0)
|
|
return false;
|
|
|
|
DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
|
|
|
|
EVT VT = Addr.getValueType();
|
|
if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
|
|
if (!AM12.Base.Reg.getNode())
|
|
AM12.Base.Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
|
|
|
|
getAddressOperandsRI(AM12, Base, Disp);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the address can be represented by a base register plus
|
|
/// a signed 20-bit displacement [r+imm].
|
|
bool SystemZDAGToDAGISel::SelectAddrRI(SDNode *Op, SDValue& Addr,
|
|
SDValue &Base, SDValue &Disp) {
|
|
SystemZRRIAddressMode AM(/*isRI*/true);
|
|
bool Done = false;
|
|
|
|
if (!Addr.hasOneUse()) {
|
|
unsigned Opcode = Addr.getOpcode();
|
|
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
|
|
// If we are able to fold N into addressing mode, then we'll allow it even
|
|
// if N has multiple uses. In general, addressing computation is used as
|
|
// addresses by all of its uses. But watch out for CopyToReg uses, that
|
|
// means the address computation is liveout. It will be computed by a LA
|
|
// so we want to avoid computing the address twice.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI->getOpcode() == ISD::CopyToReg) {
|
|
MatchAddressBase(Addr, AM);
|
|
Done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
|
|
return false;
|
|
|
|
DEBUG(errs() << "MatchAddress (final): "; AM.dump());
|
|
|
|
EVT VT = Addr.getValueType();
|
|
if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
|
|
if (!AM.Base.Reg.getNode())
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
|
|
|
|
getAddressOperandsRI(AM, Base, Disp);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the address can be represented by a base register plus
|
|
/// index register plus an unsigned 12-bit displacement [base + idx + imm].
|
|
bool SystemZDAGToDAGISel::SelectAddrRRI12(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index) {
|
|
SystemZRRIAddressMode AM20, AM12;
|
|
bool Done = false;
|
|
|
|
if (!Addr.hasOneUse()) {
|
|
unsigned Opcode = Addr.getOpcode();
|
|
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
|
|
// If we are able to fold N into addressing mode, then we'll allow it even
|
|
// if N has multiple uses. In general, addressing computation is used as
|
|
// addresses by all of its uses. But watch out for CopyToReg uses, that
|
|
// means the address computation is liveout. It will be computed by a LA
|
|
// so we want to avoid computing the address twice.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI->getOpcode() == ISD::CopyToReg) {
|
|
MatchAddressBase(Addr, AM12);
|
|
Done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
|
|
return false;
|
|
|
|
// Check, whether we can match stuff using 20-bit displacements
|
|
if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
|
|
if (AM12.Disp == 0 && AM20.Disp != 0)
|
|
return false;
|
|
|
|
DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
|
|
|
|
EVT VT = Addr.getValueType();
|
|
if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
|
|
if (!AM12.Base.Reg.getNode())
|
|
AM12.Base.Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
if (!AM12.IndexReg.getNode())
|
|
AM12.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
getAddressOperands(AM12, Base, Disp, Index);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the address can be represented by a base register plus
|
|
/// index register plus a signed 20-bit displacement [base + idx + imm].
|
|
bool SystemZDAGToDAGISel::SelectAddrRRI20(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index) {
|
|
SystemZRRIAddressMode AM;
|
|
bool Done = false;
|
|
|
|
if (!Addr.hasOneUse()) {
|
|
unsigned Opcode = Addr.getOpcode();
|
|
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
|
|
// If we are able to fold N into addressing mode, then we'll allow it even
|
|
// if N has multiple uses. In general, addressing computation is used as
|
|
// addresses by all of its uses. But watch out for CopyToReg uses, that
|
|
// means the address computation is liveout. It will be computed by a LA
|
|
// so we want to avoid computing the address twice.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI->getOpcode() == ISD::CopyToReg) {
|
|
MatchAddressBase(Addr, AM);
|
|
Done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
|
|
return false;
|
|
|
|
DEBUG(errs() << "MatchAddress (final): "; AM.dump());
|
|
|
|
EVT VT = Addr.getValueType();
|
|
if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
|
|
if (!AM.Base.Reg.getNode())
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
if (!AM.IndexReg.getNode())
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
getAddressOperands(AM, Base, Disp, Index);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
|
|
/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
|
|
bool SystemZDAGToDAGISel::SelectLAAddr(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index) {
|
|
SystemZRRIAddressMode AM;
|
|
|
|
if (MatchAddress(Addr, AM, false))
|
|
return false;
|
|
|
|
EVT VT = Addr.getValueType();
|
|
unsigned Complexity = 0;
|
|
if (AM.BaseType == SystemZRRIAddressMode::RegBase)
|
|
if (AM.Base.Reg.getNode())
|
|
Complexity = 1;
|
|
else
|
|
AM.Base.Reg = CurDAG->getRegister(0, VT);
|
|
else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
|
|
Complexity = 4;
|
|
|
|
if (AM.IndexReg.getNode())
|
|
Complexity += 1;
|
|
else
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
|
|
Complexity += 1;
|
|
|
|
if (Complexity > 2) {
|
|
getAddressOperands(AM, Base, Disp, Index);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
|
|
SDValue &Base, SDValue &Disp, SDValue &Index) {
|
|
if (ISD::isNON_EXTLoad(N.getNode()) &&
|
|
IsLegalToFold(N, P, P, OptLevel))
|
|
return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
|
|
return false;
|
|
}
|
|
|
|
SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
|
|
EVT NVT = Node->getValueType(0);
|
|
DebugLoc dl = Node->getDebugLoc();
|
|
unsigned Opcode = Node->getOpcode();
|
|
|
|
// Dump information about the Node being selected
|
|
DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
|
|
|
|
// If we have a custom node, we already have selected!
|
|
if (Node->isMachineOpcode()) {
|
|
DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
|
|
return NULL; // Already selected.
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::SDIVREM: {
|
|
unsigned Opc, MOpc;
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
EVT ResVT;
|
|
bool is32Bit = false;
|
|
switch (NVT.getSimpleVT().SimpleTy) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i32:
|
|
Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
|
|
ResVT = MVT::v2i64;
|
|
is32Bit = true;
|
|
break;
|
|
case MVT::i64:
|
|
Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
|
|
ResVT = MVT::v2i64;
|
|
break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2;
|
|
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
|
|
|
|
// Prepare the dividend
|
|
SDNode *Dividend;
|
|
if (is32Bit)
|
|
Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
|
|
else
|
|
Dividend = N0.getNode();
|
|
|
|
// Insert prepared dividend into suitable 'subreg'
|
|
SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
|
|
dl, ResVT);
|
|
Dividend =
|
|
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
|
|
SDValue(Tmp, 0), SDValue(Dividend, 0),
|
|
CurDAG->getTargetConstant(SystemZ::subreg_odd, MVT::i32));
|
|
|
|
SDNode *Result;
|
|
SDValue DivVal = SDValue(Dividend, 0);
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
|
|
Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
|
|
Ops, array_lengthof(Ops));
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(Result, 1));
|
|
} else {
|
|
Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
|
|
}
|
|
|
|
// Copy the division (odd subreg) result, if it is needed.
|
|
if (!SDValue(Node, 0).use_empty()) {
|
|
unsigned SubRegIdx = (is32Bit ?
|
|
SystemZ::subreg_odd32 : SystemZ::subreg_odd);
|
|
SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, NVT,
|
|
SDValue(Result, 0),
|
|
CurDAG->getTargetConstant(SubRegIdx,
|
|
MVT::i32));
|
|
|
|
ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
|
|
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
|
|
}
|
|
|
|
// Copy the remainder (even subreg) result, if it is needed.
|
|
if (!SDValue(Node, 1).use_empty()) {
|
|
unsigned SubRegIdx = (is32Bit ?
|
|
SystemZ::subreg_32bit : SystemZ::subreg_even);
|
|
SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, NVT,
|
|
SDValue(Result, 0),
|
|
CurDAG->getTargetConstant(SubRegIdx,
|
|
MVT::i32));
|
|
|
|
ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
|
|
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
case ISD::UDIVREM: {
|
|
unsigned Opc, MOpc, ClrOpc;
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
EVT ResVT;
|
|
|
|
bool is32Bit = false;
|
|
switch (NVT.getSimpleVT().SimpleTy) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i32:
|
|
Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
|
|
ClrOpc = SystemZ::MOV64Pr0_even;
|
|
ResVT = MVT::v2i32;
|
|
is32Bit = true;
|
|
break;
|
|
case MVT::i64:
|
|
Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
|
|
ClrOpc = SystemZ::MOV128r0_even;
|
|
ResVT = MVT::v2i64;
|
|
break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2;
|
|
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
|
|
|
|
// Prepare the dividend
|
|
SDNode *Dividend = N0.getNode();
|
|
|
|
// Insert prepared dividend into suitable 'subreg'
|
|
SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
|
|
dl, ResVT);
|
|
{
|
|
unsigned SubRegIdx = (is32Bit ?
|
|
SystemZ::subreg_odd32 : SystemZ::subreg_odd);
|
|
Dividend =
|
|
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
|
|
SDValue(Tmp, 0), SDValue(Dividend, 0),
|
|
CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
|
|
}
|
|
|
|
// Zero out even subreg
|
|
Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
|
|
|
|
SDValue DivVal = SDValue(Dividend, 0);
|
|
SDNode *Result;
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
|
|
Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
|
|
Ops, array_lengthof(Ops));
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(Result, 1));
|
|
} else {
|
|
Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
|
|
}
|
|
|
|
// Copy the division (odd subreg) result, if it is needed.
|
|
if (!SDValue(Node, 0).use_empty()) {
|
|
unsigned SubRegIdx = (is32Bit ?
|
|
SystemZ::subreg_odd32 : SystemZ::subreg_odd);
|
|
SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, NVT,
|
|
SDValue(Result, 0),
|
|
CurDAG->getTargetConstant(SubRegIdx,
|
|
MVT::i32));
|
|
ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
|
|
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
|
|
}
|
|
|
|
// Copy the remainder (even subreg) result, if it is needed.
|
|
if (!SDValue(Node, 1).use_empty()) {
|
|
unsigned SubRegIdx = (is32Bit ?
|
|
SystemZ::subreg_32bit : SystemZ::subreg_even);
|
|
SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, NVT,
|
|
SDValue(Result, 0),
|
|
CurDAG->getTargetConstant(SubRegIdx,
|
|
MVT::i32));
|
|
ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
|
|
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Select the default instruction
|
|
SDNode *ResNode = SelectCode(Node);
|
|
|
|
DEBUG(errs() << "=> ";
|
|
if (ResNode == NULL || ResNode == Node)
|
|
Node->dump(CurDAG);
|
|
else
|
|
ResNode->dump(CurDAG);
|
|
errs() << "\n";
|
|
);
|
|
return ResNode;
|
|
}
|