llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
Hans Wennborg b82f8a28e8 Revert "X86 memcpy lowering: use "rep movs" even when esi is used as base pointer" (r204174)
>  For functions where esi is used as base pointer, we would previously fall ba
>  from lowering memcpy with "rep movs" because that clobbers esi.
>
>  With this patch, we just store esi in another physical register, and restore
>  it afterwards. This adds a little bit of register preassure, but the more
>  efficient memcpy should be worth it.
>
>  Differential Revision: http://llvm-reviews.chandlerc.com/D2968

This didn't work. I was ending up with code like this:

  lea     edi,[esi+38h]
  mov     ecx,0Fh
  mov     edx,esi
  mov     esi,ebx
  rep movs dword ptr es:[edi],dword ptr [esi]
  lea     ecx,[esi+74h] <-- Ooops, we're now using esi before restoring it from edx.
  add     ebx,3Ch
  mov     esi,edx

I guess if we want to do this we need stronger glue or something, or doing the expansion
much later.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204829 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 16:30:54 +00:00

269 lines
10 KiB
C++

//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-selectiondag-info"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
X86SelectionDAGInfo::X86SelectionDAGInfo(const X86TargetMachine &TM) :
TargetSelectionDAGInfo(TM),
Subtarget(&TM.getSubtarget<X86Subtarget>()),
TLI(*TM.getTargetLowering()) {
}
X86SelectionDAGInfo::~X86SelectionDAGInfo() {
}
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if ((Align & 3) != 0 ||
!ConstantSize ||
ConstantSize->getZExtValue() >
Subtarget->getMaxInlineSizeThreshold()) {
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
if (const char *bzeroEntry = V &&
V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
EVT IntPtr = TLI.getPointerTy();
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::
CallLoweringInfo CLI(Chain, Type::getVoidTy(*DAG.getContext()),
false, false, false, false,
0, CallingConv::C, /*isTailCall=*/false,
/*doesNotRet=*/false, /*isReturnValueUsed=*/false,
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args,
DAG, dl);
std::pair<SDValue,SDValue> CallResult =
TLI.LowerCallTo(CLI);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag(0, 0);
EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
unsigned BytesLeft = 0;
bool TwoRepStos = false;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal);
break;
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
if (TwoRepStos) {
InFlag = Chain.getValue(1);
Count = Size;
EVT CVT = Count.getValueType();
SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
} else if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, AddrVT)),
Src,
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, DstPtrInfo.getWithOffset(Offset));
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget->getMaxInlineSizeThreshold())
return SDValue();
/// If not DWORD aligned, it is more efficient to call the library. However
/// if calling the library is not allowed (AlwaysInline), then soldier on as
/// the code generated here is better than the long load-store sequence we
/// would otherwise get.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 ||
SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// ESI might be used as a base pointer, in that case we can't simply overwrite
// the register. Fall back to generic code.
const X86RegisterInfo *TRI =
static_cast<const X86RegisterInfo *>(DAG.getTarget().getRegisterInfo());
if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
TRI->getBaseRegister() == X86::ESI)
return SDValue();
MVT AVT;
if (Align & 1)
AVT = MVT::i8;
else if (Align & 2)
AVT = MVT::i16;
else if (Align & 4)
// DWORD aligned
AVT = MVT::i32;
else
// QWORD aligned
AVT = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
unsigned UBytes = AVT.getSizeInBits() / 8;
unsigned CountVal = SizeVal / UBytes;
SDValue Count = DAG.getIntPtrConstant(CountVal);
unsigned BytesLeft = SizeVal % UBytes;
SDValue InFlag(0, 0);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
array_lengthof(Ops));
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
EVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
DAG.getConstant(Offset, SrcVT)),
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, AlwaysInline,
DstPtrInfo.getWithOffset(Offset),
SrcPtrInfo.getWithOffset(Offset)));
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&Results[0], Results.size());
}