mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-11 13:44:28 +00:00
3c39cd8491
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152581 91177308-0d34-0410-b5e6-96231b3b80d8
513 lines
15 KiB
C++
513 lines
15 KiB
C++
//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This class parses the Schedule.td file and produces an API that can be used
|
|
// to reason about whether an instruction can be added to a packet on a VLIW
|
|
// architecture. The class internally generates a deterministic finite
|
|
// automaton (DFA) that models all possible mappings of machine instructions
|
|
// to functional units as instructions are added to a packet.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "DFAPacketizerEmitter.h"
|
|
#include <list>
|
|
|
|
using namespace llvm;
|
|
|
|
//
|
|
//
|
|
// State represents the usage of machine resources if the packet contains
|
|
// a set of instruction classes.
|
|
//
|
|
// Specifically, currentState is a set of bit-masks.
|
|
// The nth bit in a bit-mask indicates whether the nth resource is being used
|
|
// by this state. The set of bit-masks in a state represent the different
|
|
// possible outcomes of transitioning to this state.
|
|
// For example: consider a two resource architecture: resource L and resource M
|
|
// with three instruction classes: L, M, and L_or_M.
|
|
// From the initial state (currentState = 0x00), if we add instruction class
|
|
// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
|
|
// represents the possible resource states that can result from adding a L_or_M
|
|
// instruction
|
|
//
|
|
// Another way of thinking about this transition is we are mapping a NDFA with
|
|
// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
|
|
//
|
|
//
|
|
namespace {
|
|
class State {
|
|
public:
|
|
static int currentStateNum;
|
|
int stateNum;
|
|
bool isInitial;
|
|
std::set<unsigned> stateInfo;
|
|
|
|
State();
|
|
State(const State &S);
|
|
|
|
//
|
|
// canAddInsnClass - Returns true if an instruction of type InsnClass is a
|
|
// valid transition from this state, i.e., can an instruction of type InsnClass
|
|
// be added to the packet represented by this state.
|
|
//
|
|
// PossibleStates is the set of valid resource states that ensue from valid
|
|
// transitions.
|
|
//
|
|
bool canAddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
|
|
};
|
|
} // End anonymous namespace.
|
|
|
|
|
|
namespace {
|
|
struct Transition {
|
|
public:
|
|
static int currentTransitionNum;
|
|
int transitionNum;
|
|
State *from;
|
|
unsigned input;
|
|
State *to;
|
|
|
|
Transition(State *from_, unsigned input_, State *to_);
|
|
};
|
|
} // End anonymous namespace.
|
|
|
|
|
|
//
|
|
// Comparators to keep set of states sorted.
|
|
//
|
|
namespace {
|
|
struct ltState {
|
|
bool operator()(const State *s1, const State *s2) const;
|
|
};
|
|
} // End anonymous namespace.
|
|
|
|
|
|
//
|
|
// class DFA: deterministic finite automaton for processor resource tracking.
|
|
//
|
|
namespace {
|
|
class DFA {
|
|
public:
|
|
DFA();
|
|
|
|
// Set of states. Need to keep this sorted to emit the transition table.
|
|
std::set<State*, ltState> states;
|
|
|
|
// Map from a state to the list of transitions with that state as source.
|
|
std::map<State*, SmallVector<Transition*, 16>, ltState> stateTransitions;
|
|
State *currentState;
|
|
|
|
// Highest valued Input seen.
|
|
unsigned LargestInput;
|
|
|
|
//
|
|
// Modify the DFA.
|
|
//
|
|
void initialize();
|
|
void addState(State *);
|
|
void addTransition(Transition *);
|
|
|
|
//
|
|
// getTransition - Return the state when a transition is made from
|
|
// State From with Input I. If a transition is not found, return NULL.
|
|
//
|
|
State *getTransition(State *, unsigned);
|
|
|
|
//
|
|
// isValidTransition: Predicate that checks if there is a valid transition
|
|
// from state From on input InsnClass.
|
|
//
|
|
bool isValidTransition(State *From, unsigned InsnClass);
|
|
|
|
//
|
|
// writeTable: Print out a table representing the DFA.
|
|
//
|
|
void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
|
|
};
|
|
} // End anonymous namespace.
|
|
|
|
|
|
//
|
|
// Constructors for State, Transition, and DFA
|
|
//
|
|
State::State() :
|
|
stateNum(currentStateNum++), isInitial(false) {}
|
|
|
|
|
|
State::State(const State &S) :
|
|
stateNum(currentStateNum++), isInitial(S.isInitial),
|
|
stateInfo(S.stateInfo) {}
|
|
|
|
|
|
Transition::Transition(State *from_, unsigned input_, State *to_) :
|
|
transitionNum(currentTransitionNum++), from(from_), input(input_),
|
|
to(to_) {}
|
|
|
|
|
|
DFA::DFA() :
|
|
LargestInput(0) {}
|
|
|
|
|
|
bool ltState::operator()(const State *s1, const State *s2) const {
|
|
return (s1->stateNum < s2->stateNum);
|
|
}
|
|
|
|
|
|
//
|
|
// canAddInsnClass - Returns true if an instruction of type InsnClass is a
|
|
// valid transition from this state i.e., can an instruction of type InsnClass
|
|
// be added to the packet represented by this state.
|
|
//
|
|
// PossibleStates is the set of valid resource states that ensue from valid
|
|
// transitions.
|
|
//
|
|
bool State::canAddInsnClass(unsigned InsnClass,
|
|
std::set<unsigned> &PossibleStates) {
|
|
//
|
|
// Iterate over all resource states in currentState.
|
|
//
|
|
bool AddedState = false;
|
|
|
|
for (std::set<unsigned>::iterator SI = stateInfo.begin();
|
|
SI != stateInfo.end(); ++SI) {
|
|
unsigned thisState = *SI;
|
|
|
|
//
|
|
// Iterate over all possible resources used in InsnClass.
|
|
// For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
|
|
//
|
|
|
|
DenseSet<unsigned> VisitedResourceStates;
|
|
for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
|
|
if ((0x1 << j) & InsnClass) {
|
|
//
|
|
// For each possible resource used in InsnClass, generate the
|
|
// resource state if that resource was used.
|
|
//
|
|
unsigned ResultingResourceState = thisState | (0x1 << j);
|
|
//
|
|
// Check if the resulting resource state can be accommodated in this
|
|
// packet.
|
|
// We compute ResultingResourceState OR thisState.
|
|
// If the result of the OR is different than thisState, it implies
|
|
// that there is at least one resource that can be used to schedule
|
|
// InsnClass in the current packet.
|
|
// Insert ResultingResourceState into PossibleStates only if we haven't
|
|
// processed ResultingResourceState before.
|
|
//
|
|
if ((ResultingResourceState != thisState) &&
|
|
(VisitedResourceStates.count(ResultingResourceState) == 0)) {
|
|
VisitedResourceStates.insert(ResultingResourceState);
|
|
PossibleStates.insert(ResultingResourceState);
|
|
AddedState = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return AddedState;
|
|
}
|
|
|
|
|
|
void DFA::initialize() {
|
|
currentState->isInitial = true;
|
|
}
|
|
|
|
|
|
void DFA::addState(State *S) {
|
|
assert(!states.count(S) && "State already exists");
|
|
states.insert(S);
|
|
}
|
|
|
|
|
|
void DFA::addTransition(Transition *T) {
|
|
// Update LargestInput.
|
|
if (T->input > LargestInput)
|
|
LargestInput = T->input;
|
|
|
|
// Add the new transition.
|
|
stateTransitions[T->from].push_back(T);
|
|
}
|
|
|
|
|
|
//
|
|
// getTransition - Return the state when a transition is made from
|
|
// State From with Input I. If a transition is not found, return NULL.
|
|
//
|
|
State *DFA::getTransition(State *From, unsigned I) {
|
|
// Do we have a transition from state From?
|
|
if (!stateTransitions.count(From))
|
|
return NULL;
|
|
|
|
// Do we have a transition from state From with Input I?
|
|
for (SmallVector<Transition*, 16>::iterator VI =
|
|
stateTransitions[From].begin();
|
|
VI != stateTransitions[From].end(); ++VI)
|
|
if ((*VI)->input == I)
|
|
return (*VI)->to;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool DFA::isValidTransition(State *From, unsigned InsnClass) {
|
|
return (getTransition(From, InsnClass) != NULL);
|
|
}
|
|
|
|
|
|
int State::currentStateNum = 0;
|
|
int Transition::currentTransitionNum = 0;
|
|
|
|
DFAGen::DFAGen(RecordKeeper &R):
|
|
TargetName(CodeGenTarget(R).getName()),
|
|
allInsnClasses(), Records(R) {}
|
|
|
|
|
|
//
|
|
// writeTableAndAPI - Print out a table representing the DFA and the
|
|
// associated API to create a DFA packetizer.
|
|
//
|
|
// Format:
|
|
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
|
|
// transitions.
|
|
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
|
|
// the ith state.
|
|
//
|
|
//
|
|
void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
|
|
std::set<State*, ltState>::iterator SI = states.begin();
|
|
// This table provides a map to the beginning of the transitions for State s
|
|
// in DFAStateInputTable.
|
|
std::vector<int> StateEntry(states.size());
|
|
|
|
OS << "namespace llvm {\n\n";
|
|
OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
|
|
|
|
// Tracks the total valid transitions encountered so far. It is used
|
|
// to construct the StateEntry table.
|
|
int ValidTransitions = 0;
|
|
for (unsigned i = 0; i < states.size(); ++i, ++SI) {
|
|
StateEntry[i] = ValidTransitions;
|
|
for (unsigned j = 0; j <= LargestInput; ++j) {
|
|
assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
|
|
if (!isValidTransition(*SI, j))
|
|
continue;
|
|
|
|
OS << "{" << j << ", "
|
|
<< getTransition(*SI, j)->stateNum
|
|
<< "}, ";
|
|
++ValidTransitions;
|
|
}
|
|
|
|
// If there are no valid transitions from this stage, we need a sentinel
|
|
// transition.
|
|
if (ValidTransitions == StateEntry[i]) {
|
|
OS << "{-1, -1},";
|
|
++ValidTransitions;
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
OS << "};\n\n";
|
|
OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
|
|
|
|
// Multiply i by 2 since each entry in DFAStateInputTable is a set of
|
|
// two numbers.
|
|
for (unsigned i = 0; i < states.size(); ++i)
|
|
OS << StateEntry[i] << ", ";
|
|
|
|
OS << "\n};\n";
|
|
OS << "} // namespace\n";
|
|
|
|
|
|
//
|
|
// Emit DFA Packetizer tables if the target is a VLIW machine.
|
|
//
|
|
std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
|
|
OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
|
|
OS << "namespace llvm {\n";
|
|
OS << "DFAPacketizer *" << SubTargetClassName << "::"
|
|
<< "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
|
|
<< " return new DFAPacketizer(IID, " << TargetName
|
|
<< "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
|
|
OS << "} // End llvm namespace \n";
|
|
}
|
|
|
|
|
|
//
|
|
// collectAllInsnClasses - Populate allInsnClasses which is a set of units
|
|
// used in each stage.
|
|
//
|
|
void DFAGen::collectAllInsnClasses(const std::string &Name,
|
|
Record *ItinData,
|
|
unsigned &NStages,
|
|
raw_ostream &OS) {
|
|
// Collect processor itineraries.
|
|
std::vector<Record*> ProcItinList =
|
|
Records.getAllDerivedDefinitions("ProcessorItineraries");
|
|
|
|
// If just no itinerary then don't bother.
|
|
if (ProcItinList.size() < 2)
|
|
return;
|
|
std::map<std::string, unsigned> NameToBitsMap;
|
|
|
|
// Parse functional units for all the itineraries.
|
|
for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
|
|
Record *Proc = ProcItinList[i];
|
|
std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
|
|
|
|
// Convert macros to bits for each stage.
|
|
for (unsigned i = 0, N = FUs.size(); i < N; ++i)
|
|
NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
|
|
}
|
|
|
|
const std::vector<Record*> &StageList =
|
|
ItinData->getValueAsListOfDefs("Stages");
|
|
|
|
// The number of stages.
|
|
NStages = StageList.size();
|
|
|
|
// For each unit.
|
|
unsigned UnitBitValue = 0;
|
|
|
|
// Compute the bitwise or of each unit used in this stage.
|
|
for (unsigned i = 0; i < NStages; ++i) {
|
|
const Record *Stage = StageList[i];
|
|
|
|
// Get unit list.
|
|
const std::vector<Record*> &UnitList =
|
|
Stage->getValueAsListOfDefs("Units");
|
|
|
|
for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
|
|
// Conduct bitwise or.
|
|
std::string UnitName = UnitList[j]->getName();
|
|
assert(NameToBitsMap.count(UnitName));
|
|
UnitBitValue |= NameToBitsMap[UnitName];
|
|
}
|
|
|
|
if (UnitBitValue != 0)
|
|
allInsnClasses.insert(UnitBitValue);
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Run the worklist algorithm to generate the DFA.
|
|
//
|
|
void DFAGen::run(raw_ostream &OS) {
|
|
EmitSourceFileHeader("Target DFA Packetizer Tables", OS);
|
|
|
|
// Collect processor iteraries.
|
|
std::vector<Record*> ProcItinList =
|
|
Records.getAllDerivedDefinitions("ProcessorItineraries");
|
|
|
|
//
|
|
// Collect the instruction classes.
|
|
//
|
|
for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
|
|
Record *Proc = ProcItinList[i];
|
|
|
|
// Get processor itinerary name.
|
|
const std::string &Name = Proc->getName();
|
|
|
|
// Skip default.
|
|
if (Name == "NoItineraries")
|
|
continue;
|
|
|
|
// Sanity check for at least one instruction itinerary class.
|
|
unsigned NItinClasses =
|
|
Records.getAllDerivedDefinitions("InstrItinClass").size();
|
|
if (NItinClasses == 0)
|
|
return;
|
|
|
|
// Get itinerary data list.
|
|
std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
|
|
|
|
// Collect instruction classes for all itinerary data.
|
|
for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
|
|
Record *ItinData = ItinDataList[j];
|
|
unsigned NStages;
|
|
collectAllInsnClasses(Name, ItinData, NStages, OS);
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Run a worklist algorithm to generate the DFA.
|
|
//
|
|
DFA D;
|
|
State *Initial = new State;
|
|
Initial->isInitial = true;
|
|
Initial->stateInfo.insert(0x0);
|
|
D.addState(Initial);
|
|
SmallVector<State*, 32> WorkList;
|
|
std::map<std::set<unsigned>, State*> Visited;
|
|
|
|
WorkList.push_back(Initial);
|
|
|
|
//
|
|
// Worklist algorithm to create a DFA for processor resource tracking.
|
|
// C = {set of InsnClasses}
|
|
// Begin with initial node in worklist. Initial node does not have
|
|
// any consumed resources,
|
|
// ResourceState = 0x0
|
|
// Visited = {}
|
|
// While worklist != empty
|
|
// S = first element of worklist
|
|
// For every instruction class C
|
|
// if we can accommodate C in S:
|
|
// S' = state with resource states = {S Union C}
|
|
// Add a new transition: S x C -> S'
|
|
// If S' is not in Visited:
|
|
// Add S' to worklist
|
|
// Add S' to Visited
|
|
//
|
|
while (!WorkList.empty()) {
|
|
State *current = WorkList.pop_back_val();
|
|
for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
|
|
CE = allInsnClasses.end(); CI != CE; ++CI) {
|
|
unsigned InsnClass = *CI;
|
|
|
|
std::set<unsigned> NewStateResources;
|
|
//
|
|
// If we haven't already created a transition for this input
|
|
// and the state can accommodate this InsnClass, create a transition.
|
|
//
|
|
if (!D.getTransition(current, InsnClass) &&
|
|
current->canAddInsnClass(InsnClass, NewStateResources)) {
|
|
State *NewState = NULL;
|
|
|
|
//
|
|
// If we have seen this state before, then do not create a new state.
|
|
//
|
|
//
|
|
std::map<std::set<unsigned>, State*>::iterator VI;
|
|
if ((VI = Visited.find(NewStateResources)) != Visited.end())
|
|
NewState = VI->second;
|
|
else {
|
|
NewState = new State;
|
|
NewState->stateInfo = NewStateResources;
|
|
D.addState(NewState);
|
|
Visited[NewStateResources] = NewState;
|
|
WorkList.push_back(NewState);
|
|
}
|
|
|
|
Transition *NewTransition = new Transition(current, InsnClass,
|
|
NewState);
|
|
D.addTransition(NewTransition);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print out the table.
|
|
D.writeTableAndAPI(OS, TargetName);
|
|
}
|