llvm/lib/Target/X86/X86InstrInfo.td
Chris Lattner 36b689009d This is purely a formatting patch that gets us closer to the mecca of fitting
X86InstrInfo.td into 80 columns


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15629 91177308-0d34-0410-b5e6-96231b3b80d8
2004-08-10 21:21:30 +00:00

984 lines
54 KiB
C++

//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
bits<5> Value = val;
}
def Pseudo : Format<0>; def RawFrm : Format<1>;
def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
def MRMSrcMem : Format<6>;
def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
def MRM6r : Format<22>; def MRM7r : Format<23>;
def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
def MRM6m : Format<30>; def MRM7m : Format<31>;
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ImmType<bits<2> val> {
bits<2> Value = val;
}
def NoImm : ImmType<0>;
def Imm8 : ImmType<1>;
def Imm16 : ImmType<2>;
def Imm32 : ImmType<3>;
// MemType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class MemType<bits<3> val> {
bits<3> Value = val;
}
def NoMem : MemType<0>;
def Mem8 : MemType<1>;
def Mem16 : MemType<2>;
def Mem32 : MemType<3>;
def Mem64 : MemType<4>;
def Mem80 : MemType<5>;
def Mem128 : MemType<6>;
// FPFormat - This specifies what form this FP instruction has. This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CompareFP : FPFormat<5>;
def CondMovFP : FPFormat<6>;
def SpecialFP : FPFormat<7>;
class X86Inst<string nam, bits<8> opcod, Format f, MemType m, ImmType i> : Instruction {
let Namespace = "X86";
let Name = nam;
bits<8> Opcode = opcod;
Format Form = f;
bits<5> FormBits = Form.Value;
MemType MemT = m;
bits<3> MemTypeBits = MemT.Value;
ImmType ImmT = i;
bits<2> ImmTypeBits = ImmT.Value;
//
// Attributes specific to X86 instructions...
//
bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix?
// Flag whether implicit register usage is printed after the instruction.
bit printImplicitUsesAfter = 0;
bits<4> Prefix = 0; // Which prefix byte does this inst have?
FPFormat FPForm; // What flavor of FP instruction is this?
bits<3> FPFormBits = 0;
}
class Imp<list<Register> uses, list<Register> defs> {
list<Register> Uses = uses;
list<Register> Defs = defs;
}
// II - InstructionInfo - this will eventually replace the I class.
class II<dag ops, string AsmStr> {
dag OperandList = ops;
string AsmString = AsmStr;
}
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
class TB { bits<4> Prefix = 1; }
class REP { bits<4> Prefix = 2; }
class D8 { bits<4> Prefix = 3; }
class D9 { bits<4> Prefix = 4; }
class DA { bits<4> Prefix = 5; }
class DB { bits<4> Prefix = 6; }
class DC { bits<4> Prefix = 7; }
class DD { bits<4> Prefix = 8; }
class DE { bits<4> Prefix = 9; }
class DF { bits<4> Prefix = 10; }
//===----------------------------------------------------------------------===//
// Instruction templates...
class I<bits<8> o, Format f, dag ops, string asm> : X86Inst<"", o, f, NoMem, NoImm>, II<ops, asm>;
class Im<string n, bits<8> o, Format f, MemType m> : X86Inst<n, o, f, m, NoImm>;
class Im8 <string n, bits<8> o, Format f> : Im<n, o, f, Mem8 >;
class Im16<string n, bits<8> o, Format f> : Im<n, o, f, Mem16>;
class Im32<string n, bits<8> o, Format f> : Im<n, o, f, Mem32>;
class Ii<bits<8> o, Format f, ImmType i> : X86Inst<"", o, f, NoMem, i>;
class Ii8 <bits<8> o, Format f, dag ops, string asm> : Ii<o, f, Imm8 >, II<ops, asm>;
class Ii16<bits<8> o, Format f, dag ops, string asm> : Ii<o, f, Imm16>, II<ops, asm>;
class Ii32<bits<8> o, Format f, dag ops, string asm> : Ii<o, f, Imm32>, II<ops, asm>;
class Im8i8 <string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem8 , Imm8 >;
class Im16i16<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem16, Imm16>;
class Im32i32<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem32, Imm32>;
class Im16i8<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem16, Imm8>;
class Im32i8<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem32, Imm8>;
//===----------------------------------------------------------------------===//
// Instruction list...
//
def PHI : I<0, Pseudo, (ops), "PHINODE">; // PHI node.
def NOOP : I<0x90, RawFrm, (ops), "nop">; // nop
def ADJCALLSTACKDOWN : I<0, Pseudo, (ops), "#ADJCALLSTACKDOWN">;
def ADJCALLSTACKUP : I<0, Pseudo, (ops), "#ADJCALLSTACKUP">;
def IMPLICIT_USE : I<0, Pseudo, (ops), "#IMPLICIT_USE">;
def IMPLICIT_DEF : I<0, Pseudo, (ops), "#IMPLICIT_DEF">;
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL">;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// Return instruction...
let isTerminator = 1, isReturn = 1, isBarrier = 1 in
def RET : I<0xC3, RawFrm, (ops), "ret">;
// All branches are RawFrm, Void, Branch, and Terminators
let isBranch = 1, isTerminator = 1 in
class IBr<bits<8> opcode, dag ops, string asm> : I<opcode, RawFrm, ops, asm>;
let isBarrier = 1 in
def JMP : IBr<0xE9, (ops i32imm:$dst), "jmp $dst">;
def JB : IBr<0x82, (ops i32imm:$dst), "jb $dst">, TB;
def JAE : IBr<0x83, (ops i32imm:$dst), "jae $dst">, TB;
def JE : IBr<0x84, (ops i32imm:$dst), "je $dst">, TB;
def JNE : IBr<0x85, (ops i32imm:$dst), "jne $dst">, TB;
def JBE : IBr<0x86, (ops i32imm:$dst), "jbe $dst">, TB;
def JA : IBr<0x87, (ops i32imm:$dst), "ja $dst">, TB;
def JS : IBr<0x88, (ops i32imm:$dst), "js $dst">, TB;
def JNS : IBr<0x89, (ops i32imm:$dst), "jns $dst">, TB;
def JL : IBr<0x8C, (ops i32imm:$dst), "jl $dst">, TB;
def JGE : IBr<0x8D, (ops i32imm:$dst), "jge $dst">, TB;
def JLE : IBr<0x8E, (ops i32imm:$dst), "jle $dst">, TB;
def JG : IBr<0x8F, (ops i32imm:$dst), "jg $dst">, TB;
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in {
def CALLpcrel32 : X86Inst<"call", 0xE8, RawFrm, NoMem, NoImm>; // FIXME: 'call' doesn't allow 'OFFSET'
def CALL32r : I<0xFF, MRM2r, (ops R32:$dst), "call $dst">;
def CALL32m : Im32<"call", 0xFF, MRM2m>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
def LEAVE : I<0xC9, RawFrm,
(ops), "leave">, Imp<[EBP,ESP],[EBP,ESP]>;
def POP32r : I<0x58, AddRegFrm,
(ops R32:$reg), "pop $reg">, Imp<[ESP],[ESP]>;
let isTwoAddress = 1 in // R32 = bswap R32
def BSWAP32r : I<0xC8, AddRegFrm,
(ops R32:$dst, R32:$src), "bswap $dst">, TB;
def XCHG8rr : I<0x86, MRMDestReg, // xchg R8, R8
(ops R8:$src1, R8:$src2), "xchg $src1, $src2">;
def XCHG16rr : I<0x87, MRMDestReg, // xchg R16, R16
(ops R16:$src1, R16:$src2), "xchg $src1, $src2">, OpSize;
def XCHG32rr : I<0x87, MRMDestReg, // xchg R32, R32
(ops R32:$src1, R32:$src2), "xchg $src1, $src2">;
def XCHG8mr : Im8 <"xchg", 0x86, MRMDestMem>; // xchg [mem8], R8
def XCHG16mr : Im16<"xchg", 0x87, MRMDestMem>, OpSize; // xchg [mem16], R16
def XCHG32mr : Im32<"xchg", 0x87, MRMDestMem>; // xchg [mem32], R32
def XCHG8rm : Im8 <"xchg", 0x86, MRMSrcMem >; // xchg R8, [mem8]
def XCHG16rm : Im16<"xchg", 0x87, MRMSrcMem >, OpSize; // xchg R16, [mem16]
def XCHG32rm : Im32<"xchg", 0x87, MRMSrcMem >; // xchg R32, [mem32]
def LEA16r : Im32<"lea", 0x8D, MRMSrcMem>, OpSize; // R16 = lea [mem]
def LEA32r : Im32<"lea", 0x8D, MRMSrcMem>; // R32 = lea [mem]
def REP_MOVSB : I<0xA4, RawFrm, (ops), "rep movsb">,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP;
def REP_MOVSW : I<0xA5, RawFrm, (ops), "rep movsw">,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP, OpSize;
def REP_MOVSD : I<0xA5, RawFrm, (ops), "rep movsd">,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP;
def REP_STOSB : I<0xAA, RawFrm, (ops), "rep stosb">,
Imp<[AL,ECX,EDI], [ECX,EDI]>, REP;
def REP_STOSW : I<0xAB, RawFrm, (ops), "rep stosw">,
Imp<[AX,ECX,EDI], [ECX,EDI]>, REP, OpSize;
def REP_STOSD : I<0xAB, RawFrm, (ops), "rep stosd">,
Imp<[EAX,ECX,EDI], [ECX,EDI]>, REP;
//===----------------------------------------------------------------------===//
// Input/Output Instructions...
//
def IN8rr : I<0xEC, RawFrm, (ops),
"in %AL, %DX">, Imp<[DX], [AL]>;
def IN16rr : I<0xED, RawFrm, (ops),
"in %AX, %DX">, Imp<[DX], [AX]>, OpSize;
def IN32rr : I<0xED, RawFrm, (ops),
"in %EAX, %DX">, Imp<[DX],[EAX]>;
def IN8ri : Ii16<0xE4, RawFrm, (ops i16imm:$port),
"in %AL, $port">, Imp<[], [AL]>;
def IN16ri : Ii16<0xE5, RawFrm, (ops i16imm:$port),
"in %AX, $port">, Imp<[], [AX]>, OpSize;
def IN32ri : Ii16<0xE5, RawFrm, (ops i16imm:$port),
"in %EAX, $port">, Imp<[],[EAX]>;
def OUT8rr : I<0xEE, RawFrm, (ops),
"out %DX, %AL">, Imp<[DX, AL], []>;
def OUT16rr : I<0xEF, RawFrm, (ops),
"out %DX, %AX">, Imp<[DX, AX], []>, OpSize;
def OUT32rr : I<0xEF, RawFrm, (ops),
"out %DX, %EAX">, Imp<[DX, EAX], []>;
def OUT8ir : Ii16<0xE6, RawFrm, (ops i16imm:$port),
"out $port, %AL">, Imp<[AL], []>;
def OUT16ir : Ii16<0xE7, RawFrm, (ops i16imm:$port),
"out $port, %AX">, Imp<[AX], []>, OpSize;
def OUT32ir : Ii16<0xE7, RawFrm, (ops i16imm:$port),
"out $port, %EAX">, Imp<[EAX], []>;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
def MOV8rr : I<0x88, MRMDestReg, (ops R8 :$dst, R8 :$src), "mov $dst, $src">;
def MOV16rr : I<0x89, MRMDestReg, (ops R16:$dst, R16:$src), "mov $dst, $src">, OpSize;
def MOV32rr : I<0x89, MRMDestReg, (ops R32:$dst, R32:$src), "mov $dst, $src">;
def MOV8ri : Ii8 <0xB0, AddRegFrm, (ops R8 :$dst, i8imm :$src), "mov $dst, $src">;
def MOV16ri : Ii16<0xB8, AddRegFrm, (ops R16:$dst, i16imm:$src), "mov $dst, $src">, OpSize;
def MOV32ri : Ii32<0xB8, AddRegFrm, (ops R32:$dst, i32imm:$src), "mov $dst, $src">;
def MOV8mi : Im8i8 <"mov", 0xC6, MRM0m >; // [mem8] = imm8
def MOV16mi : Im16i16<"mov", 0xC7, MRM0m >, OpSize; // [mem16] = imm16
def MOV32mi : Im32i32<"mov", 0xC7, MRM0m >; // [mem32] = imm32
def MOV8rm : Im8 <"mov", 0x8A, MRMSrcMem>; // R8 = [mem8]
def MOV16rm : Im16 <"mov", 0x8B, MRMSrcMem>, OpSize; // R16 = [mem16]
def MOV32rm : Im32 <"mov", 0x8B, MRMSrcMem>; // R32 = [mem32]
def MOV8mr : Im8 <"mov", 0x88, MRMDestMem>; // [mem8] = R8
def MOV16mr : Im16 <"mov", 0x89, MRMDestMem>, OpSize; // [mem16] = R16
def MOV32mr : Im32 <"mov", 0x89, MRMDestMem>; // [mem32] = R32
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions...
//
// Extra precision multiplication
def MUL8r : I<0xF6, MRM4r, (ops R8:$src), "mul $src">,
Imp<[AL],[AX]>; // AL,AH = AL*R8
def MUL16r : I<0xF7, MRM4r, (ops R16:$src), "mul $src">,
Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16
def MUL32r : I<0xF7, MRM4r, (ops R32:$src), "mul $src">,
Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32
def MUL8m : Im8 <"mul", 0xF6, MRM4m>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8]
def MUL16m : Im16<"mul", 0xF7, MRM4m>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16]
def MUL32m : Im32<"mul", 0xF7, MRM4m>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32]
// unsigned division/remainder
def DIV8r : I<0xF6, MRM6r, (ops R8:$src), "div $src">,
Imp<[AX],[AX]>; // AX/r8 = AL,AH
def DIV16r : I<0xF7, MRM6r, (ops R16:$src), "div $src">,
Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def DIV32r : I<0xF7, MRM6r, (ops R32:$src), "div $src">,
Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def DIV8m : Im8 <"div", 0xF6, MRM6m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def DIV16m : Im16<"div", 0xF7, MRM6m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def DIV32m : Im32<"div", 0xF7, MRM6m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// Signed division/remainder.
def IDIV8r : I<0xF6, MRM7r, (ops R8:$src), "idiv $src">,
Imp<[AX],[AX]>; // AX/r8 = AL,AH
def IDIV16r: I<0xF7, MRM7r, (ops R16:$src), "idiv $src">,
Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def IDIV32r: I<0xF7, MRM7r, (ops R32:$src), "idiv $src">,
Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def IDIV8m : Im8 <"idiv",0xF6, MRM7m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def IDIV16m: Im16<"idiv",0xF7, MRM7m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def IDIV32m: Im32<"idiv",0xF7, MRM7m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// Sign-extenders for division.
def CBW : I<0x98, RawFrm, (ops), "cbw">, Imp<[AL],[AH]>; // AX = signext(AL)
def CWD : I<0x99, RawFrm, (ops), "cwd">, Imp<[AX],[DX]>; // DX:AX = signext(AX)
def CDQ : I<0x99, RawFrm, (ops), "cdq">, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX)
//===----------------------------------------------------------------------===//
// Two address Instructions...
//
let isTwoAddress = 1 in {
// Conditional moves
def CMOVB16rr : I<0x42, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovb $dst, $src2">, TB, OpSize; // if <u, R16 = R16
def CMOVB16rm : Im16<"cmovb", 0x42, MRMSrcMem>, TB, OpSize; // if <u, R16 = [mem16]
def CMOVB32rr : I<0x42, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovb $dst, $src2">, TB; // if <u, R32 = R32
def CMOVB32rm : Im32<"cmovb", 0x42, MRMSrcMem>, TB; // if <u, R32 = [mem32]
def CMOVAE16rr: I<0x43, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovae $dst, $src2">, TB, OpSize; // if >=u, R16 = R16
def CMOVAE16rm: Im16<"cmovae", 0x43, MRMSrcMem>, TB, OpSize; // if >=u, R16 = [mem16]
def CMOVAE32rr: I<0x43, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovae $dst, $src2">, TB; // if >=u, R32 = R32
def CMOVAE32rm: Im32<"cmovae", 0x43, MRMSrcMem>, TB; // if >=u, R32 = [mem32]
def CMOVE16rr : I<0x44, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmove $dst, $src2">, TB, OpSize; // if ==, R16 = R16
def CMOVE16rm : Im16<"cmove", 0x44, MRMSrcMem>, TB, OpSize; // if ==, R16 = [mem16]
def CMOVE32rr : I<0x44, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmove $dst, $src2">, TB; // if ==, R32 = R32
def CMOVE32rm : Im32<"cmove", 0x44, MRMSrcMem>, TB; // if ==, R32 = [mem32]
def CMOVNE16rr: I<0x45, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovne $dst, $src2">, TB, OpSize; // if !=, R16 = R16
def CMOVNE16rm: Im16<"cmovne",0x45, MRMSrcMem>, TB, OpSize; // if !=, R16 = [mem16]
def CMOVNE32rr: I<0x45, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovne $dst, $src2">, TB; // if !=, R32 = R32
def CMOVNE32rm: Im32<"cmovne",0x45, MRMSrcMem>, TB; // if !=, R32 = [mem32]
def CMOVBE16rr: I<0x46, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovbe $dst, $src2">, TB, OpSize; // if <=u, R16 = R16
def CMOVBE16rm: Im16<"cmovbe",0x46, MRMSrcMem>, TB, OpSize; // if <=u, R16 = [mem16]
def CMOVBE32rr: I<0x46, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovbe $dst, $src2">, TB; // if <=u, R32 = R32
def CMOVBE32rm: Im32<"cmovbe",0x46, MRMSrcMem>, TB; // if <=u, R32 = [mem32]
def CMOVA16rr : I<0x47, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmova $dst, $src2">, TB, OpSize; // if >u, R16 = R16
def CMOVA16rm : Im16<"cmova", 0x47, MRMSrcMem>, TB, OpSize; // if >u, R16 = [mem16]
def CMOVA32rr : I<0x47, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmova $dst, $src2">, TB; // if >u, R32 = R32
def CMOVA32rm : Im32<"cmova", 0x47, MRMSrcMem>, TB; // if >u, R32 = [mem32]
def CMOVS16rr : I<0x48, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovs $dst, $src2">, TB, OpSize; // if signed, R16 = R16
def CMOVS16rm : Im16<"cmovs", 0x48, MRMSrcMem>, TB, OpSize; // if signed, R16 = [mem16]
def CMOVS32rr : I<0x48, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovs $dst, $src2">, TB; // if signed, R32 = R32
def CMOVS32rm : Im32<"cmovs", 0x48, MRMSrcMem>, TB; // if signed, R32 = [mem32]
def CMOVNS16rr: I<0x49, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovns $dst, $src2">, TB, OpSize; // if !signed, R16 = R16
def CMOVNS16rm: Im16<"cmovns",0x49, MRMSrcMem>, TB, OpSize; // if !signed, R16 = [mem16]
def CMOVNS32rr: I<0x49, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovns $dst, $src2">, TB; // if !signed, R32 = R32
def CMOVNS32rm: Im32<"cmovns",0x49, MRMSrcMem>, TB; // if !signed, R32 = [mem32]
def CMOVL16rr : I<0x4C, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovl $dst, $src2">, TB, OpSize; // if <s, R16 = R16
def CMOVL16rm : Im16<"cmovl", 0x4C, MRMSrcMem>, TB, OpSize; // if <s, R16 = [mem16]
def CMOVL32rr : I<0x4C, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovl $dst, $src2">, TB; // if <s, R32 = R32
def CMOVL32rm : Im32<"cmovl", 0x4C, MRMSrcMem>, TB; // if <s, R32 = [mem32]
def CMOVGE16rr: I<0x4D, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovge $dst, $src2">, TB, OpSize; // if >=s, R16 = R16
def CMOVGE16rm: Im16<"cmovge",0x4D, MRMSrcMem>, TB, OpSize; // if >=s, R16 = [mem16]
def CMOVGE32rr: I<0x4D, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovge $dst, $src2">, TB; // if >=s, R32 = R32
def CMOVGE32rm: Im32<"cmovge",0x4D, MRMSrcMem>, TB; // if >=s, R32 = [mem32]
def CMOVLE16rr: I<0x4E, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovle $dst, $src2">, TB, OpSize; // if <=s, R16 = R16
def CMOVLE16rm: Im16<"cmovle",0x4E, MRMSrcMem>, TB, OpSize; // if <=s, R16 = [mem16]
def CMOVLE32rr: I<0x4E, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovle $dst, $src2">, TB; // if <=s, R32 = R32
def CMOVLE32rm: Im32<"cmovle",0x4E, MRMSrcMem>, TB; // if <=s, R32 = [mem32]
def CMOVG16rr : I<0x4F, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"cmovg $dst, $src2">, TB, OpSize; // if >s, R16 = R16
def CMOVG16rm : Im16<"cmovg", 0x4F, MRMSrcMem>, TB, OpSize; // if >s, R16 = [mem16]
def CMOVG32rr : I<0x4F, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"cmovg $dst, $src2">, TB; // if >s, R32 = R32
def CMOVG32rm : Im32<"cmovg", 0x4F, MRMSrcMem>, TB; // if >s, R32 = [mem32]
// unary instructions
def NEG8r : I<0xF6, MRM3r, (ops R8 :$dst, R8 :$src), "neg $dst">;
def NEG16r : I<0xF7, MRM3r, (ops R16:$dst, R16:$src), "neg $dst">, OpSize;
def NEG32r : I<0xF7, MRM3r, (ops R32:$dst, R32:$src), "neg $dst">;
def NEG8m : Im8 <"neg", 0xF6, MRM3m>; // [mem8] = -[mem8] = 0-[mem8]
def NEG16m : Im16<"neg", 0xF7, MRM3m>, OpSize; // [mem16] = -[mem16] = 0-[mem16]
def NEG32m : Im32<"neg", 0xF7, MRM3m>; // [mem32] = -[mem32] = 0-[mem32]
def NOT8r : I<0xF6, MRM2r, (ops R8 :$dst, R8 :$src), "not $dst">;
def NOT16r : I<0xF7, MRM2r, (ops R16:$dst, R16:$src), "not $dst">, OpSize;
def NOT32r : I<0xF7, MRM2r, (ops R32:$dst, R32:$src), "not $dst">;
def NOT8m : Im8 <"not", 0xF6, MRM2m>; // [mem8] = ~[mem8] = [mem8^-1]
def NOT16m : Im16<"not", 0xF7, MRM2m>, OpSize; // [mem16] = ~[mem16] = [mem16^-1]
def NOT32m : Im32<"not", 0xF7, MRM2m>; // [mem32] = ~[mem32] = [mem32^-1]
def INC8r : I<0xFE, MRM0r, (ops R8 :$dst, R8 :$src), "inc $dst">;
def INC16r : I<0xFF, MRM0r, (ops R16:$dst, R16:$src), "inc $dst">, OpSize;
def INC32r : I<0xFF, MRM0r, (ops R32:$dst, R32:$src), "inc $dst">;
def INC8m : Im8 <"inc", 0xFE, MRM0m>; // ++R8
def INC16m : Im16<"inc", 0xFF, MRM0m>, OpSize; // ++R16
def INC32m : Im32<"inc", 0xFF, MRM0m>; // ++R32
def DEC8r : I<0xFE, MRM1r, (ops R8 :$dst, R8 :$src), "dec $dst">;
def DEC16r : I<0xFF, MRM1r, (ops R16:$dst, R16:$src), "dec $dst">, OpSize;
def DEC32r : I<0xFF, MRM1r, (ops R32:$dst, R32:$src), "dec $dst">;
def DEC8m : Im8 <"dec", 0xFE, MRM1m>; // --[mem8]
def DEC16m : Im16<"dec", 0xFF, MRM1m>, OpSize; // --[mem16]
def DEC32m : Im32<"dec", 0xFF, MRM1m>; // --[mem32]
// Logical operators...
def AND8rr : I<0x20, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "and $dst, $src2">;
def AND16rr : I<0x21, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "and $dst, $src2">, OpSize;
def AND32rr : I<0x21, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "and $dst, $src2">;
def AND8mr : Im8 <"and", 0x20, MRMDestMem>; // [mem8] &= R8
def AND16mr : Im16 <"and", 0x21, MRMDestMem>, OpSize; // [mem16] &= R16
def AND32mr : Im32 <"and", 0x21, MRMDestMem>; // [mem32] &= R32
def AND8rm : Im8 <"and", 0x22, MRMSrcMem >; // R8 &= [mem8]
def AND16rm : Im16 <"and", 0x23, MRMSrcMem >, OpSize; // R16 &= [mem16]
def AND32rm : Im32 <"and", 0x23, MRMSrcMem >; // R32 &= [mem32]
def AND8ri : Ii8 <0x80, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm :$src2),
"and $dst, $src2">;
def AND16ri : Ii16<0x81, MRM4r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"and $dst, $src2">, OpSize;
def AND32ri : Ii32<0x81, MRM4r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"and $dst, $src2">;
def AND8mi : Im8i8 <"and", 0x80, MRM4m >; // [mem8] &= imm8
def AND16mi : Im16i16<"and", 0x81, MRM4m >, OpSize; // [mem16] &= imm16
def AND32mi : Im32i32<"and", 0x81, MRM4m >; // [mem32] &= imm32
def AND16ri8 : Ii8<0x83, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"and $dst, $src2" >, OpSize;
def AND32ri8 : Ii8<0x83, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"and $dst, $src2">;
def AND16mi8 : Im16i8<"and", 0x83, MRM4m >, OpSize; // [mem16] &= imm8
def AND32mi8 : Im32i8<"and", 0x83, MRM4m >; // [mem32] &= imm8
def OR8rr : I<0x08, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2),
"or $dst, $src2">;
def OR16rr : I<0x09, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"or $dst, $src2">, OpSize;
def OR32rr : I<0x09, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"or $dst, $src2">;
def OR8mr : Im8 <"or" , 0x08, MRMDestMem>; // [mem8] |= R8
def OR16mr : Im16 <"or" , 0x09, MRMDestMem>, OpSize; // [mem16] |= R16
def OR32mr : Im32 <"or" , 0x09, MRMDestMem>; // [mem32] |= R32
def OR8rm : Im8 <"or" , 0x0A, MRMSrcMem >; // R8 |= [mem8]
def OR16rm : Im16 <"or" , 0x0B, MRMSrcMem >, OpSize; // R16 |= [mem16]
def OR32rm : Im32 <"or" , 0x0B, MRMSrcMem >; // R32 |= [mem32]
def OR8ri : Ii8 <0x80, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"or $dst, $src2">;
def OR16ri : Ii16<0x81, MRM1r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"or $dst, $src2">, OpSize;
def OR32ri : Ii32<0x81, MRM1r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"or $dst, $src2">;
def OR8mi : Im8i8 <"or" , 0x80, MRM1m>; // [mem8] |= imm8
def OR16mi : Im16i16<"or" , 0x81, MRM1m>, OpSize; // [mem16] |= imm16
def OR32mi : Im32i32<"or" , 0x81, MRM1m>; // [mem32] |= imm32
def OR16ri8 : Ii8<0x83, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"or $dst, $src2">, OpSize;
def OR32ri8 : Ii8<0x83, MRM1r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"or $dst, $src2">;
def OR16mi8 : Im16i8<"or" , 0x83, MRM1m>, OpSize; // [mem16] |= imm8
def OR32mi8 : Im32i8<"or" , 0x83, MRM1m>; // [mem32] |= imm8
def XOR8rr : I<0x30, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "xor $dst, $src2">;
def XOR16rr : I<0x31, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "xor $dst, $src2">, OpSize;
def XOR32rr : I<0x31, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "xor $dst, $src2">;
def XOR8mr : Im8 <"xor", 0x30, MRMDestMem>; // [mem8] ^= R8
def XOR16mr : Im16 <"xor", 0x31, MRMDestMem>, OpSize; // [mem16] ^= R16
def XOR32mr : Im32 <"xor", 0x31, MRMDestMem>; // [mem32] ^= R32
def XOR8rm : Im8 <"xor", 0x32, MRMSrcMem >; // R8 ^= [mem8]
def XOR16rm : Im16 <"xor", 0x33, MRMSrcMem >, OpSize; // R16 ^= [mem16]
def XOR32rm : Im32 <"xor", 0x33, MRMSrcMem >; // R32 ^= [mem32]
def XOR8ri : Ii8 <0x80, MRM6r, (ops R8:$dst, R8:$src1, i8imm:$src2), "xor $dst, $src2">;
def XOR16ri : Ii16 <0x81, MRM6r, (ops R16:$dst, R16:$src1, i16imm:$src2), "xor $dst, $src2">, OpSize;
def XOR32ri : Ii32 <0x81, MRM6r, (ops R32:$dst, R32:$src1, i32imm:$src2), "xor $dst, $src2">;
def XOR8mi : Im8i8 <"xor", 0x80, MRM6m >; // [mem8] ^= R8
def XOR16mi : Im16i16<"xor", 0x81, MRM6m >, OpSize; // [mem16] ^= R16
def XOR32mi : Im32i32<"xor", 0x81, MRM6m >; // [mem32] ^= R32
def XOR16ri8 : Ii8<0x83, MRM6r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"xor $dst, $src2">, OpSize;
def XOR32ri8 : Ii8<0x83, MRM6r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"xor $dst, $src2">;
def XOR16mi8 : Im16i8<"xor", 0x83, MRM6m >, OpSize; // [mem16] ^= imm8
def XOR32mi8 : Im32i8<"xor", 0x83, MRM6m >; // [mem32] ^= imm8
// Shift instructions
// FIXME: provide shorter instructions when imm8 == 1
let Uses = [CL], printImplicitUsesAfter = 1 in {
def SHL8rCL : I<0xD2, MRM4r, (ops R8 :$dst, R8 :$src), "shl $dst, %CL">;
def SHL16rCL : I<0xD3, MRM4r, (ops R16:$dst, R16:$src), "shl $dst, %CL">, OpSize;
def SHL32rCL : I<0xD3, MRM4r, (ops R32:$dst, R32:$src), "shl $dst, %CL">;
def SHL8mCL : Im8 <"shl", 0xD2, MRM4m > ; // [mem8] <<= cl
def SHL16mCL : Im16 <"shl", 0xD3, MRM4m >, OpSize; // [mem16] <<= cl
def SHL32mCL : Im32 <"shl", 0xD3, MRM4m > ; // [mem32] <<= cl
}
def SHL8ri : Ii8<0xC0, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"shl $dst, $src2">;
def SHL16ri : Ii8<0xC1, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"shl $dst, $src2">, OpSize;
def SHL32ri : Ii8<0xC1, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"shl $dst, $src2">;
def SHL8mi : Im8i8 <"shl", 0xC0, MRM4m >; // [mem8] <<= imm8
def SHL16mi : Im16i8<"shl", 0xC1, MRM4m >, OpSize; // [mem16] <<= imm8
def SHL32mi : Im32i8<"shl", 0xC1, MRM4m >; // [mem32] <<= imm8
let Uses = [CL], printImplicitUsesAfter = 1 in {
def SHR8rCL : I<0xD2, MRM5r, (ops R8 :$dst, R8 :$src), "shr $dst, %CL">;
def SHR16rCL : I<0xD3, MRM5r, (ops R16:$dst, R16:$src), "shr $dst, %CL">, OpSize;
def SHR32rCL : I<0xD3, MRM5r, (ops R32:$dst, R32:$src), "shr $dst, %CL">;
def SHR8mCL : Im8 <"shr", 0xD2, MRM5m > ; // [mem8] >>= cl
def SHR16mCL : Im16 <"shr", 0xD3, MRM5m >, OpSize; // [mem16] >>= cl
def SHR32mCL : Im32 <"shr", 0xD3, MRM5m > ; // [mem32] >>= cl
}
def SHR8ri : Ii8 <0xC0, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2), "shr $dst, $src2">;
def SHR16ri : Ii8 <0xC1, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2), "shr $dst, $src2">, OpSize;
def SHR32ri : Ii8 <0xC1, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2), "shr $dst, $src2">;
def SHR8mi : Im8i8 <"shr", 0xC0, MRM5m >; // [mem8] >>= imm8
def SHR16mi : Im16i8<"shr", 0xC1, MRM5m >, OpSize; // [mem16] >>= imm8
def SHR32mi : Im32i8<"shr", 0xC1, MRM5m >; // [mem32] >>= imm8
let Uses = [CL], printImplicitUsesAfter = 1 in {
def SAR8rCL : I<0xD2, MRM7r, (ops R8 :$dst, R8 :$src), "sar $dst, %CL">;
def SAR16rCL : I<0xD3, MRM7r, (ops R16:$dst, R16:$src), "sar $dst, %CL">, OpSize;
def SAR32rCL : I<0xD3, MRM7r, (ops R32:$dst, R32:$src), "sar $dst, %CL">;
def SAR8mCL : Im8 <"sar", 0xD2, MRM7m > ; // [mem8] >>>= cl
def SAR16mCL : Im16 <"sar", 0xD3, MRM7m >, OpSize; // [mem16] >>>= cl
def SAR32mCL : Im32 <"sar", 0xD3, MRM7m > ; // [mem32] >>>= cl
}
def SAR8ri : Ii8<0xC0, MRM7r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"sar $dst, $src2">;
def SAR16ri : Ii8<0xC1, MRM7r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"sar $dst, $src2">, OpSize;
def SAR32ri : Ii8<0xC1, MRM7r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sar $dst, $src2">;
def SAR8mi : Im8i8 <"sar", 0xC0, MRM7m >; // [mem8] >>>= imm8
def SAR16mi : Im16i8<"sar", 0xC1, MRM7m >, OpSize; // [mem16] >>>= imm8
def SAR32mi : Im32i8<"sar", 0xC1, MRM7m >; // [mem32] >>>= imm8
let Uses = [CL], printImplicitUsesAfter = 1 in {
def SHLD32rrCL : I<0xA5, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"shld $dst, $src2, %CL">, TB;
def SHLD32mrCL : Im32 <"shld", 0xA5, MRMDestMem>, TB; // [mem32] <<= [mem32],R32 cl
def SHRD32rrCL : I<0xAD, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"shrd $dst, $src2, %CL">, TB;
def SHRD32mrCL : Im32 <"shrd", 0xAD, MRMDestMem>, TB; // [mem32] >>= [mem32],R32 cl
}
def SHLD32rri8 : Ii8 <0xA4, MRMDestReg, (ops R8:$dst, R8:$src1, i8imm:$src2),
"shld $dst, $src2">, TB;
def SHLD32mri8 : Im32i8<"shld", 0xA4, MRMDestMem>, TB; // [mem32] <<= [mem32],R32 imm8
def SHRD32rri8 : Ii8 <0xAC, MRMDestReg, (ops R16:$dst, R16:$src1, i8imm:$src2),
"shrd $dst, $src2">, TB;
def SHRD32mri8 : Im32i8<"shrd", 0xAC, MRMDestMem>, TB; // [mem32] >>= [mem32],R32 imm8
// Arithmetic...
def ADD8rr : I<0x00, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "add $dst, $src2">;
def ADD16rr : I<0x01, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "add $dst, $src2">, OpSize;
def ADD32rr : I<0x01, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "add $dst, $src2">;
def ADD8mr : Im8 <"add", 0x00, MRMDestMem>; // [mem8] += R8
def ADD16mr : Im16 <"add", 0x01, MRMDestMem>, OpSize; // [mem16] += R16
def ADD32mr : Im32 <"add", 0x01, MRMDestMem>; // [mem32] += R32
def ADD8rm : Im8 <"add", 0x02, MRMSrcMem >; // R8 += [mem8]
def ADD16rm : Im16 <"add", 0x03, MRMSrcMem >, OpSize; // R16 += [mem16]
def ADD32rm : Im32 <"add", 0x03, MRMSrcMem >; // R32 += [mem32]
def ADD8ri : Ii8 <0x80, MRM0r, (ops R8:$dst, R8:$src1, i8imm:$src2), "add $dst, $src2">;
def ADD16ri : Ii16 <0x81, MRM0r, (ops R16:$dst, R16:$src1, i16imm:$src2), "add $dst, $src2">, OpSize;
def ADD32ri : Ii32 <0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2), "add $dst, $src2">;
def ADD8mi : Im8i8 <"add", 0x80, MRM0m >; // [mem8] += I8
def ADD16mi : Im16i16<"add", 0x81, MRM0m >, OpSize; // [mem16] += I16
def ADD32mi : Im32i32<"add", 0x81, MRM0m >; // [mem32] += I32
def ADD16ri8 : Ii8 <0x83, MRM0r, (ops R16:$dst, R16:$src1, i8imm:$src2), "add $dst, $src2">, OpSize;
def ADD32ri8 : Ii8 <0x83, MRM0r, (ops R32:$dst, R32:$src1, i8imm:$src2), "add $dst, $src2">;
def ADD16mi8 : Im16i8<"add", 0x83, MRM0m >, OpSize; // [mem16] += I8
def ADD32mi8 : Im32i8<"add", 0x83, MRM0m >; // [mem32] += I8
def ADC32rr : I<0x11, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "adc $dst, $src2">;
def ADC32mr : Im32 <"adc", 0x11, MRMDestMem>; // [mem32] += R32+Carry
def ADC32rm : Im32 <"adc", 0x13, MRMSrcMem >; // R32 += [mem32]+Carry
def ADC32ri : Ii32 <0x81, MRM2r, (ops R32:$dst, R32:$src1, i32imm:$src2), "adc $dst, $src2">;
def ADC32ri8 : Ii8 <0x83, MRM2r, (ops R32:$dst, R32:$src1, i8imm:$src2), "adc $dst, $src2">;
def ADC32mi : Im32i32<"adc", 0x81, MRM2m >; // [mem32] += I32+Carry
def ADC32mi8 : Im32i8 <"adc", 0x83, MRM2m >; // [mem32] += I8+Carry
def SUB8rr : I<0x28, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "sub $dst, $src2">;
def SUB16rr : I<0x29, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "sub $dst, $src2">, OpSize;
def SUB32rr : I<0x29, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "sub $dst, $src2">;
def SUB8mr : Im8 <"sub", 0x28, MRMDestMem>; // [mem8] -= R8
def SUB16mr : Im16 <"sub", 0x29, MRMDestMem>, OpSize; // [mem16] -= R16
def SUB32mr : Im32 <"sub", 0x29, MRMDestMem>; // [mem32] -= R32
def SUB8rm : Im8 <"sub", 0x2A, MRMSrcMem >; // R8 -= [mem8]
def SUB16rm : Im16 <"sub", 0x2B, MRMSrcMem >, OpSize; // R16 -= [mem16]
def SUB32rm : Im32 <"sub", 0x2B, MRMSrcMem >; // R32 -= [mem32]
def SUB8ri : Ii8 <0x80, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2),
"sub $dst, $src2">;
def SUB16ri : Ii16<0x81, MRM5r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"sub $dst, $src2">, OpSize;
def SUB32ri : Ii32<0x81, MRM5r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"sub $dst, $src2">;
def SUB8mi : Im8i8 <"sub", 0x80, MRM5m >; // [mem8] -= I8
def SUB16mi : Im16i16<"sub", 0x81, MRM5m >, OpSize; // [mem16] -= I16
def SUB32mi : Im32i32<"sub", 0x81, MRM5m >; // [mem32] -= I32
def SUB16ri8 : Ii8<0x83, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"sub $dst, $src2">, OpSize;
def SUB32ri8 : Ii8<0x83, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sub $dst, $src2">;
def SUB16mi8 : Im16i8<"sub", 0x83, MRM5m >, OpSize; // [mem16] -= I8
def SUB32mi8 : Im32i8<"sub", 0x83, MRM5m >; // [mem32] -= I8
def SBB32rr : I<0x19, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"adc $dst, $src2">;
def SBB32mr : Im32<"sbb", 0x19, MRMDestMem>; // [mem32] -= R32+Carry
def SBB32rm : Im32<"sbb", 0x1B, MRMSrcMem >; // R32 -= [mem32]+Carry
def SBB32ri : Ii32<0x81, MRM3r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"sbb $dst, $src2">;
def SBB32ri8 : Ii8<0x83, MRM3r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sbb $dst, $src2">;
def SBB32mi : Im32i32<"sbb", 0x81, MRM3m>; // [mem32] -= I32+Carry
def SBB32mi8 : Im32i8 <"sbb", 0x83, MRM3m>; // [mem32] -= I8+Carry
def IMUL16rr : I<0xAF, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2), "imul $dst, $src2">, TB, OpSize;
def IMUL32rr : I<0xAF, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2), "imul $dst, $src2">, TB;
def IMUL16rm : Im16 <"imul", 0xAF, MRMSrcMem>, TB, OpSize;
def IMUL32rm : Im32 <"imul", 0xAF, MRMSrcMem>, TB ;
} // end Two Address instructions
// These are suprisingly enough not two address instructions!
def IMUL16rri : Ii16<0x69, MRMSrcReg, (ops R16:$dst, R16:$src1, i16imm:$src2),
"imul $dst, $src1, $src2">, OpSize; // R16 = R16*I16
def IMUL32rri : Ii32<0x69, MRMSrcReg, (ops R32:$dst, R32:$src1, i32imm:$src2),
"imul $dst, $src1, $src2">; // R32 = R32*I32
def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, (ops R16:$dst, R16:$src1, i8imm:$src2),
"imul $dst, $src1, $src2">, OpSize; // R16 = R16*I8
def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, (ops R32:$dst, R32:$src1, i8imm:$src2),
"imul $dst, $src1, $src2">; // R32 = R32*I8
def IMUL16rmi : Im16i16<"imul",0x69, MRMSrcMem>, OpSize; // R16 = [mem16]*I16
def IMUL32rmi : Im32i32<"imul",0x69, MRMSrcMem>; // R32 = [mem32]*I32
def IMUL16rmi8 : Im16i8<"imul", 0x6B, MRMSrcMem>, OpSize; // R16 = [mem16]*I8
def IMUL32rmi8 : Im32i8<"imul", 0x6B, MRMSrcMem>; // R32 = [mem32]*I8
//===----------------------------------------------------------------------===//
// Test instructions are just like AND, except they don't generate a result.
def TEST8rr : I<0x84, MRMDestReg, (ops R8:$src1, R8:$src2),
"test $src1, $src2">;
def TEST16rr : I<0x85, MRMDestReg, (ops R16:$src1, R16:$src2),
"test $src1, $src2">, OpSize;
def TEST32rr : I<0x85, MRMDestReg, (ops R32:$src1, R32:$src2),
"test $src1, $src2">;
def TEST8mr : Im8 <"test", 0x84, MRMDestMem>; // flags = [mem8] & R8
def TEST16mr : Im16 <"test", 0x85, MRMDestMem>, OpSize; // flags = [mem16] & R16
def TEST32mr : Im32 <"test", 0x85, MRMDestMem>; // flags = [mem32] & R32
def TEST8rm : Im8 <"test", 0x84, MRMSrcMem >; // flags = R8 & [mem8]
def TEST16rm : Im16 <"test", 0x85, MRMSrcMem >, OpSize; // flags = R16 & [mem16]
def TEST32rm : Im32 <"test", 0x85, MRMSrcMem >; // flags = R32 & [mem32]
def TEST8ri : Ii8 <0xF6, MRM0r, (ops R8:$dst, i8imm:$src),
"test $dst, $src">; // flags = R8 & imm8
def TEST16ri : Ii16 <0xF7, MRM0r, (ops R16:$dst, i16imm:$src),
"test $dst, $src">, OpSize; // flags = R16 & imm16
def TEST32ri : Ii32 <0xF7, MRM0r, (ops R32:$dst, i32imm:$src),
"test $dst, $src">; // flags = R32 & imm32
def TEST8mi : Im8i8 <"test", 0xF6, MRM0m >; // flags = [mem8] & imm8
def TEST16mi : Im16i16<"test", 0xF7, MRM0m >, OpSize; // flags = [mem16] & imm16
def TEST32mi : Im32i32<"test", 0xF7, MRM0m >; // flags = [mem32] & imm32
// Condition code ops, incl. set if equal/not equal/...
def SAHF : I<0x9E, RawFrm, (ops), "sahf">, Imp<[AH],[]>; // flags = AH
def LAHF : I<0x9F, RawFrm, (ops), "lahf">, Imp<[],[AH]>; // AH = flags
def SETBr : I<0x92, MRM0r, (ops R8:$dst), "setb $dst">, TB; // R8 = < unsign
def SETBm : Im8<"setb" , 0x92, MRM0m>, TB; // [mem8] = < unsign
def SETAEr : I<0x93, MRM0r, (ops R8:$dst), "setae $dst">, TB; // R8 = >= unsign
def SETAEm : Im8<"setae", 0x93, MRM0m>, TB; // [mem8] = >= unsign
def SETEr : I<0x94, MRM0r, (ops R8:$dst), "sete $dst">, TB; // R8 = ==
def SETEm : Im8<"sete" , 0x94, MRM0m>, TB; // [mem8] = ==
def SETNEr : I<0x95, MRM0r, (ops R8:$dst), "setne $dst">, TB; // R8 = !=
def SETNEm : Im8<"setne", 0x95, MRM0m>, TB; // [mem8] = !=
def SETBEr : I<0x96, MRM0r, (ops R8:$dst), "setbe $dst">, TB; // R8 = <= unsign
def SETBEm : Im8<"setbe", 0x96, MRM0m>, TB; // [mem8] = <= unsign
def SETAr : I<0x97, MRM0r, (ops R8:$dst), "seta $dst">, TB; // R8 = > signed
def SETAm : Im8<"seta" , 0x97, MRM0m>, TB; // [mem8] = > signed
def SETSr : I<0x98, MRM0r, (ops R8:$dst), "sets $dst">, TB; // R8 = <sign bit>
def SETSm : Im8<"sets" , 0x98, MRM0m>, TB; // [mem8] = <sign bit>
def SETNSr : I<0x99, MRM0r, (ops R8:$dst), "setns $dst">, TB; // R8 = !<sign bit>
def SETNSm : Im8<"setns", 0x99, MRM0m>, TB; // [mem8] = !<sign bit>
def SETPr : I<0x9A, MRM0r, (ops R8:$dst), "setp $dst">, TB; // R8 = parity
def SETPm : Im8<"setp" , 0x9A, MRM0m>, TB; // [mem8] = parity
def SETLr : I<0x9C, MRM0r, (ops R8:$dst), "setl $dst">, TB; // R8 = < signed
def SETLm : Im8<"setl" , 0x9C, MRM0m>, TB; // [mem8] = < signed
def SETGEr : I<0x9D, MRM0r, (ops R8:$dst), "setge $dst">, TB; // R8 = >= signed
def SETGEm : Im8<"setge", 0x9D, MRM0m>, TB; // [mem8] = >= signed
def SETLEr : I<0x9E, MRM0r, (ops R8:$dst), "setle $dst">, TB; // R8 = <= signed
def SETLEm : Im8<"setle", 0x9E, MRM0m>, TB; // [mem8] = <= signed
def SETGr : I<0x9F, MRM0r, (ops R8:$dst), "setg $dst">, TB; // R8 = < signed
def SETGm : Im8<"setg" , 0x9F, MRM0m>, TB; // [mem8] = < signed
// Integer comparisons
def CMP8rr : I<0x38, MRMDestReg, (ops R8 :$src1, R8 :$src2), "cmp $src1, $src2">;
def CMP16rr : I<0x39, MRMDestReg, (ops R16:$src1, R16:$src2), "cmp $src1, $src2">, OpSize;
def CMP32rr : I<0x39, MRMDestReg, (ops R32:$src1, R32:$src2), "cmp $src1, $src2">;
def CMP8mr : Im8 <"cmp", 0x38, MRMDestMem>; // compare [mem8], R8
def CMP16mr : Im16 <"cmp", 0x39, MRMDestMem>, OpSize; // compare [mem16], R16
def CMP32mr : Im32 <"cmp", 0x39, MRMDestMem>; // compare [mem32], R32
def CMP8rm : Im8 <"cmp", 0x3A, MRMSrcMem >; // compare R8, [mem8]
def CMP16rm : Im16 <"cmp", 0x3B, MRMSrcMem >, OpSize; // compare R16, [mem16]
def CMP32rm : Im32 <"cmp", 0x3B, MRMSrcMem >; // compare R32, [mem32]
def CMP8ri : Ii8 <0x80, MRM7r, (ops R16:$dst, i8imm:$src), "cmp $dst, $src">;
def CMP16ri : Ii16 <0x81, MRM7r, (ops R16:$dst, i16imm:$src), "cmp $dst, $src">, OpSize;
def CMP32ri : Ii32 <0x81, MRM7r, (ops R32:$dst, i32imm:$src), "cmp $dst, $src">;
def CMP8mi : Im8i8 <"cmp", 0x80, MRM7m >; // compare [mem8], imm8
def CMP16mi : Im16i16<"cmp", 0x81, MRM7m >, OpSize; // compare [mem16], imm16
def CMP32mi : Im32i32<"cmp", 0x81, MRM7m >; // compare [mem32], imm32
// Sign/Zero extenders
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (ops R16:$dst, R8 :$src), "movsx $dst, $src">, TB, OpSize;
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (ops R32:$dst, R8 :$src), "movsx $dst, $src">, TB;
def MOVSX32rr16: I<0xBF, MRMSrcReg, (ops R32:$dst, R16:$src), "movsx $dst, $src">, TB;
def MOVSX16rm8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB, OpSize; // R16 = signext([mem8])
def MOVSX32rm8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB; // R32 = signext([mem8])
def MOVSX32rm16: Im16<"movsx", 0xBF, MRMSrcMem>, TB; // R32 = signext([mem16])
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (ops R16:$dst, R8 :$src), "movzx $dst, $src">, TB, OpSize;
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (ops R32:$dst, R8 :$src), "movzx $dst, $src">, TB;
def MOVZX32rr16: I<0xB7, MRMSrcReg, (ops R32:$dst, R16:$src), "movzx $dst, $src">, TB;
def MOVZX16rm8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB, OpSize; // R16 = zeroext([mem8])
def MOVZX32rm8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB; // R32 = zeroext([mem8])
def MOVZX32rm16: Im16<"movzx", 0xB7, MRMSrcMem>, TB; // R32 = zeroext([mem16])
//===----------------------------------------------------------------------===//
// Floating point support
//===----------------------------------------------------------------------===//
// FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP'
// Floating point instruction templates
class FPInst<string n, bits<8> o, Format F, FPFormat fp, MemType m, ImmType i>
: X86Inst<n, o, F, m, i> { let FPForm = fp; let FPFormBits = FPForm.Value; }
class FPI<bits<8> o, Format F, FPFormat fp> : FPInst<"", o, F, fp, NoMem, NoImm>;
class FPIM<string n, bits<8> o, Format F, FPFormat fp, MemType m> : FPInst<n, o, F, fp, m, NoImm>;
class FPI16m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem16>;
class FPI32m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem32>;
class FPI64m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem64>;
class FPI80m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem80>;
// Pseudo instructions for floating point. We use these pseudo instructions
// because they can be expanded by the fp spackifier into one of many different
// forms of instructions for doing these operations. Until the stackifier runs,
// we prefer to be abstract.
def FpMOV : FPI<0, Pseudo, SpecialFP>; // f1 = fmov f2
def FpADD : FPI<0, Pseudo, TwoArgFP>; // f1 = fadd f2, f3
def FpSUB : FPI<0, Pseudo, TwoArgFP>; // f1 = fsub f2, f3
def FpMUL : FPI<0, Pseudo, TwoArgFP>; // f1 = fmul f2, f3
def FpDIV : FPI<0, Pseudo, TwoArgFP>; // f1 = fdiv f2, f3
def FpGETRESULT : FPI<0, Pseudo, SpecialFP>; // FPR = ST(0)
def FpSETRESULT : FPI<0, Pseudo, SpecialFP>; // ST(0) = FPR
// FADD reg, mem: Before stackification, these are represented by: R1 = FADD* R2, [mem]
def FADD32m : FPI32m<"fadd", 0xD8, MRM0m, OneArgFPRW>; // ST(0) = ST(0) + [mem32real]
def FADD64m : FPI64m<"fadd", 0xDC, MRM0m, OneArgFPRW>; // ST(0) = ST(0) + [mem64real]
def FIADD16m : FPI16m<"fiadd", 0xDE, MRM0m, OneArgFPRW>; // ST(0) = ST(0) + [mem16int]
def FIADD32m : FPI32m<"fiadd", 0xDA, MRM0m, OneArgFPRW>; // ST(0) = ST(0) + [mem32int]
// FMUL reg, mem: Before stackification, these are represented by: R1 = FMUL* R2, [mem]
def FMUL32m : FPI32m<"fmul", 0xD8, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem32real]
def FMUL64m : FPI64m<"fmul", 0xDC, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem64real]
def FIMUL16m : FPI16m<"fimul", 0xDE, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem16int]
def FIMUL32m : FPI32m<"fimul", 0xDA, MRM1m, OneArgFPRW>; // ST(0) = ST(0) * [mem32int]
// FSUB reg, mem: Before stackification, these are represented by: R1 = FSUB* R2, [mem]
def FSUB32m : FPI32m<"fsub", 0xD8, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem32real]
def FSUB64m : FPI64m<"fsub", 0xDC, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem64real]
def FISUB16m : FPI16m<"fisub", 0xDE, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem16int]
def FISUB32m : FPI32m<"fisub", 0xDA, MRM4m, OneArgFPRW>; // ST(0) = ST(0) - [mem32int]
// FSUBR reg, mem: Before stackification, these are represented by: R1 = FSUBR* R2, [mem]
// Note that the order of operands does not reflect the operation being performed.
def FSUBR32m : FPI32m<"fsubr", 0xD8, MRM5m, OneArgFPRW>; // ST(0) = [mem32real] - ST(0)
def FSUBR64m : FPI64m<"fsubr", 0xDC, MRM5m, OneArgFPRW>; // ST(0) = [mem64real] - ST(0)
def FISUBR16m : FPI16m<"fisubr", 0xDE, MRM5m, OneArgFPRW>; // ST(0) = [mem16int] - ST(0)
def FISUBR32m : FPI32m<"fisubr", 0xDA, MRM5m, OneArgFPRW>; // ST(0) = [mem32int] - ST(0)
// FDIV reg, mem: Before stackification, these are represented by: R1 = FDIV* R2, [mem]
def FDIV32m : FPI32m<"fdiv", 0xD8, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem32real]
def FDIV64m : FPI64m<"fdiv", 0xDC, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem64real]
def FIDIV16m : FPI16m<"fidiv", 0xDE, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem16int]
def FIDIV32m : FPI32m<"fidiv", 0xDA, MRM6m, OneArgFPRW>; // ST(0) = ST(0) / [mem32int]
// FDIVR reg, mem: Before stackification, these are represented by: R1 = FDIVR* R2, [mem]
// Note that the order of operands does not reflect the operation being performed.
def FDIVR32m : FPI32m<"fdivr", 0xD8, MRM7m, OneArgFPRW>; // ST(0) = [mem32real] / ST(0)
def FDIVR64m : FPI64m<"fdivr", 0xDC, MRM7m, OneArgFPRW>; // ST(0) = [mem64real] / ST(0)
def FIDIVR16m : FPI16m<"fidivr", 0xDE, MRM7m, OneArgFPRW>; // ST(0) = [mem16int] / ST(0)
def FIDIVR32m : FPI32m<"fidivr", 0xDA, MRM7m, OneArgFPRW>; // ST(0) = [mem32int] / ST(0)
// Floating point cmovs...
let isTwoAddress = 1, Uses = [ST0], Defs = [ST0] in {
def FCMOVB : FPI<0xC0, AddRegFrm, CondMovFP>, DA, // fcmovb ST(i) -> ST(0)
II<(ops RST:$op), "fcmovb %ST(0), $op">;
def FCMOVBE : FPI<0xD0, AddRegFrm, CondMovFP>, DA, // fcmovbe ST(i) -> ST(0)
II<(ops RST:$op), "fcmovbe %ST(0), $op">;
def FCMOVE : FPI<0xC8, AddRegFrm, CondMovFP>, DA, // fcmove ST(i) -> ST(0)
II<(ops RST:$op), "fcmove %ST(0), $op">;
def FCMOVAE : FPI<0xC0, AddRegFrm, CondMovFP>, DB, // fcmovae ST(i) -> ST(0)
II<(ops RST:$op), "fcmovae %ST(0), $op">;
def FCMOVA : FPI<0xD0, AddRegFrm, CondMovFP>, DB, // fcmova ST(i) -> ST(0)
II<(ops RST:$op), "fcmova %ST(0), $op">;
def FCMOVNE : FPI<0xC8, AddRegFrm, CondMovFP>, DB, // fcmovne ST(i) -> ST(0)
II<(ops RST:$op), "fcmovne %ST(0), $op">;
}
// Floating point loads & stores...
let Name = "fld" in
def FLDrr : FPI<0xC0, AddRegFrm, NotFP>, D9; // push(ST(i))
def FLD32m : FPI32m <"fld" , 0xD9, MRM0m , ZeroArgFP>; // load float
def FLD64m : FPI64m <"fld" , 0xDD, MRM0m , ZeroArgFP>; // load double
def FLD80m : FPI80m <"fld" , 0xDB, MRM5m , ZeroArgFP>; // load extended
def FILD16m : FPI16m <"fild" , 0xDF, MRM0m , ZeroArgFP>; // load signed short
def FILD32m : FPI32m <"fild" , 0xDB, MRM0m , ZeroArgFP>; // load signed int
def FILD64m : FPI64m <"fild" , 0xDF, MRM5m , ZeroArgFP>; // load signed long
let Name = "fst" in
def FSTrr : FPI<0xD0, AddRegFrm, NotFP >, DD; // ST(i) = ST(0)
let Name = "fstp" in
def FSTPrr : FPI<0xD8, AddRegFrm, NotFP >, DD; // ST(i) = ST(0), pop
def FST32m : FPI32m <"fst" , 0xD9, MRM2m , OneArgFP>; // store float
def FST64m : FPI64m <"fst" , 0xDD, MRM2m , OneArgFP>; // store double
def FSTP32m : FPI32m <"fstp", 0xD9, MRM3m , OneArgFP>; // store float, pop
def FSTP64m : FPI64m <"fstp", 0xDD, MRM3m , OneArgFP>; // store double, pop
def FSTP80m : FPI80m <"fstp", 0xDB, MRM7m , OneArgFP>; // store extended, pop
def FIST16m : FPI16m <"fist", 0xDF, MRM2m , OneArgFP>; // store signed short
def FIST32m : FPI32m <"fist", 0xDB, MRM2m , OneArgFP>; // store signed int
def FISTP16m : FPI16m <"fistp", 0xDF, MRM3m , NotFP >; // store signed short, pop
def FISTP32m : FPI32m <"fistp", 0xDB, MRM3m , NotFP >; // store signed int, pop
def FISTP64m : FPI64m <"fistpll", 0xDF, MRM7m , OneArgFP>; // store signed long, pop
def FXCH : FPI<0xC8, AddRegFrm, NotFP>,
II<(ops RST:$op), "fxch $op">, D9; // fxch ST(i), ST(0)
// Floating point constant loads...
def FLD0 : FPI<0xEE, RawFrm, ZeroArgFP>, D9,
II<(ops), "fldz">;
def FLD1 : FPI<0xE8, RawFrm, ZeroArgFP>, D9,
II<(ops), "fld1">;
// Unary operations...
def FCHS : FPI<0xE0, RawFrm, OneArgFPRW>, // f1 = fchs f2
II<(ops), "fchs">, D9;
def FTST : FPI<0xE4, RawFrm, OneArgFP>, // ftst ST(0)
II<(ops), "ftst">, D9;
// Binary arithmetic operations...
class FPST0rInst<bits<8> o, dag ops, string asm> : I<o, AddRegFrm, ops, asm>, D8 {
list<Register> Uses = [ST0];
list<Register> Defs = [ST0];
}
class FPrST0Inst<bits<8> o, dag ops, string asm> : I<o, AddRegFrm, ops, asm>, DC {
list<Register> Uses = [ST0];
}
class FPrST0PInst<bits<8> o, dag ops, string asm> : I<o, AddRegFrm, ops, asm>, DE {
list<Register> Uses = [ST0];
}
def FADDST0r : FPST0rInst <0xC0, (ops RST:$op), "fadd $op">;
def FADDrST0 : FPrST0Inst <0xC0, (ops RST:$op), "fadd $op, %ST(0)">;
def FADDPrST0 : FPrST0PInst<0xC0, (ops RST:$op), "faddp $op">;
def FSUBRST0r : FPST0rInst <0xE8, (ops RST:$op), "fsubr $op">;
def FSUBrST0 : FPrST0Inst <0xE8, (ops RST:$op), "fsub $op, %ST(0)">;
def FSUBPrST0 : FPrST0PInst<0xE8, (ops RST:$op), "fsubp $op">;
def FSUBST0r : FPST0rInst <0xE0, (ops RST:$op), "fsub $op">;
def FSUBRrST0 : FPrST0Inst <0xE0, (ops RST:$op), "fsubr $op, %ST(0)">;
def FSUBRPrST0 : FPrST0PInst<0xE0, (ops RST:$op), "fsubrp $op">;
def FMULST0r : FPST0rInst <0xC8, (ops RST:$op), "fmul $op">;
def FMULrST0 : FPrST0Inst <0xC8, (ops RST:$op), "fmul $op, %ST(0)">;
def FMULPrST0 : FPrST0PInst<0xC8, (ops RST:$op), "fmulp $op">;
def FDIVRST0r : FPST0rInst <0xF8, (ops RST:$op), "fdivr $op">;
def FDIVrST0 : FPrST0Inst <0xF8, (ops RST:$op), "fdiv $op, %ST(0)">;
def FDIVPrST0 : FPrST0PInst<0xF8, (ops RST:$op), "fdivp $op">;
def FDIVST0r : FPST0rInst <0xF0, (ops RST:$op), "fdiv $op">; // ST(0) = ST(0) / ST(i)
def FDIVRrST0 : FPrST0Inst <0xF0, (ops RST:$op), "fdivr $op, %ST(0)">; // ST(i) = ST(0) / ST(i)
def FDIVRPrST0 : FPrST0PInst<0xF0, (ops RST:$op), "fdivrp $op">; // ST(i) = ST(0) / ST(i), pop
// Floating point compares
def FUCOMr : FPI<0xE0, AddRegFrm, CompareFP>, // FPSW = compare ST(0) with ST(i)
II<(ops RST:$reg), "fucom $reg">, DD, Imp<[ST0],[]>;
def FUCOMPr : I<0xE8, AddRegFrm, (ops RST:$reg),
"fucomp $reg">, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop
def FUCOMPPr : I<0xE9, RawFrm, (ops),
"fucompp">, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop
def FUCOMIr : FPI<0xE8, AddRegFrm, CompareFP>, // CC = compare ST(0) with ST(i)
II<(ops RST:$reg), "fucomi %ST(0), $reg">, DB, Imp<[ST0],[]>;
def FUCOMIPr : I<0xE8, AddRegFrm, (ops RST:$reg),
"fucomip %ST(0), $reg">, DF, Imp<[ST0],[]>; // CC = compare ST(0) with ST(i), pop
// Floating point flag ops
def FNSTSW8r : I<0xE0, RawFrm, (ops), "fnstsw">, DF, Imp<[],[AX]>; // AX = fp flags
def FNSTCW16m : Im16<"fnstcw", 0xD9, MRM7m>; // [mem16] = X87 control world
def FLDCW16m : Im16<"fldcw" , 0xD9, MRM5m>; // X87 control world = [mem16]