llvm/lib/IR/Attributes.cpp
Benjamin Kramer 15c435a367 Retire llvm::array_endof in favor of non-member std::end.
While there make array_lengthof constexpr if we have support for it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206112 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-12 16:15:53 +00:00

1186 lines
38 KiB
C++

//===-- Attributes.cpp - Implement AttributesList -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// \brief This file implements the Attribute, AttributeImpl, AttrBuilder,
// AttributeSetImpl, and AttributeSet classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Attributes.h"
#include "AttributeImpl.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Attribute Construction Methods
//===----------------------------------------------------------------------===//
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
uint64_t Val) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddInteger(Kind);
if (Val) ID.AddInteger(Val);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!Val)
PA = new EnumAttributeImpl(Kind);
else
PA = new AlignAttributeImpl(Kind, Val);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the Attribute that we found or created.
return Attribute(PA);
}
Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddString(Kind);
if (!Val.empty()) ID.AddString(Val);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
PA = new StringAttributeImpl(Kind, Val);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the Attribute that we found or created.
return Attribute(PA);
}
Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) {
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
return get(Context, Alignment, Align);
}
Attribute Attribute::getWithStackAlignment(LLVMContext &Context,
uint64_t Align) {
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
return get(Context, StackAlignment, Align);
}
//===----------------------------------------------------------------------===//
// Attribute Accessor Methods
//===----------------------------------------------------------------------===//
bool Attribute::isEnumAttribute() const {
return pImpl && pImpl->isEnumAttribute();
}
bool Attribute::isAlignAttribute() const {
return pImpl && pImpl->isAlignAttribute();
}
bool Attribute::isStringAttribute() const {
return pImpl && pImpl->isStringAttribute();
}
Attribute::AttrKind Attribute::getKindAsEnum() const {
if (!pImpl) return None;
assert((isEnumAttribute() || isAlignAttribute()) &&
"Invalid attribute type to get the kind as an enum!");
return pImpl ? pImpl->getKindAsEnum() : None;
}
uint64_t Attribute::getValueAsInt() const {
if (!pImpl) return 0;
assert(isAlignAttribute() &&
"Expected the attribute to be an alignment attribute!");
return pImpl ? pImpl->getValueAsInt() : 0;
}
StringRef Attribute::getKindAsString() const {
if (!pImpl) return StringRef();
assert(isStringAttribute() &&
"Invalid attribute type to get the kind as a string!");
return pImpl ? pImpl->getKindAsString() : StringRef();
}
StringRef Attribute::getValueAsString() const {
if (!pImpl) return StringRef();
assert(isStringAttribute() &&
"Invalid attribute type to get the value as a string!");
return pImpl ? pImpl->getValueAsString() : StringRef();
}
bool Attribute::hasAttribute(AttrKind Kind) const {
return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None);
}
bool Attribute::hasAttribute(StringRef Kind) const {
if (!isStringAttribute()) return false;
return pImpl && pImpl->hasAttribute(Kind);
}
/// This returns the alignment field of an attribute as a byte alignment value.
unsigned Attribute::getAlignment() const {
assert(hasAttribute(Attribute::Alignment) &&
"Trying to get alignment from non-alignment attribute!");
return pImpl->getValueAsInt();
}
/// This returns the stack alignment field of an attribute as a byte alignment
/// value.
unsigned Attribute::getStackAlignment() const {
assert(hasAttribute(Attribute::StackAlignment) &&
"Trying to get alignment from non-alignment attribute!");
return pImpl->getValueAsInt();
}
std::string Attribute::getAsString(bool InAttrGrp) const {
if (!pImpl) return "";
if (hasAttribute(Attribute::SanitizeAddress))
return "sanitize_address";
if (hasAttribute(Attribute::AlwaysInline))
return "alwaysinline";
if (hasAttribute(Attribute::Builtin))
return "builtin";
if (hasAttribute(Attribute::ByVal))
return "byval";
if (hasAttribute(Attribute::InAlloca))
return "inalloca";
if (hasAttribute(Attribute::InlineHint))
return "inlinehint";
if (hasAttribute(Attribute::InReg))
return "inreg";
if (hasAttribute(Attribute::MinSize))
return "minsize";
if (hasAttribute(Attribute::Naked))
return "naked";
if (hasAttribute(Attribute::Nest))
return "nest";
if (hasAttribute(Attribute::NoAlias))
return "noalias";
if (hasAttribute(Attribute::NoBuiltin))
return "nobuiltin";
if (hasAttribute(Attribute::NoCapture))
return "nocapture";
if (hasAttribute(Attribute::NoDuplicate))
return "noduplicate";
if (hasAttribute(Attribute::NoImplicitFloat))
return "noimplicitfloat";
if (hasAttribute(Attribute::NoInline))
return "noinline";
if (hasAttribute(Attribute::NonLazyBind))
return "nonlazybind";
if (hasAttribute(Attribute::NoRedZone))
return "noredzone";
if (hasAttribute(Attribute::NoReturn))
return "noreturn";
if (hasAttribute(Attribute::NoUnwind))
return "nounwind";
if (hasAttribute(Attribute::OptimizeNone))
return "optnone";
if (hasAttribute(Attribute::OptimizeForSize))
return "optsize";
if (hasAttribute(Attribute::ReadNone))
return "readnone";
if (hasAttribute(Attribute::ReadOnly))
return "readonly";
if (hasAttribute(Attribute::Returned))
return "returned";
if (hasAttribute(Attribute::ReturnsTwice))
return "returns_twice";
if (hasAttribute(Attribute::SExt))
return "signext";
if (hasAttribute(Attribute::StackProtect))
return "ssp";
if (hasAttribute(Attribute::StackProtectReq))
return "sspreq";
if (hasAttribute(Attribute::StackProtectStrong))
return "sspstrong";
if (hasAttribute(Attribute::StructRet))
return "sret";
if (hasAttribute(Attribute::SanitizeThread))
return "sanitize_thread";
if (hasAttribute(Attribute::SanitizeMemory))
return "sanitize_memory";
if (hasAttribute(Attribute::UWTable))
return "uwtable";
if (hasAttribute(Attribute::ZExt))
return "zeroext";
if (hasAttribute(Attribute::Cold))
return "cold";
// FIXME: These should be output like this:
//
// align=4
// alignstack=8
//
if (hasAttribute(Attribute::Alignment)) {
std::string Result;
Result += "align";
Result += (InAttrGrp) ? "=" : " ";
Result += utostr(getValueAsInt());
return Result;
}
if (hasAttribute(Attribute::StackAlignment)) {
std::string Result;
Result += "alignstack";
if (InAttrGrp) {
Result += "=";
Result += utostr(getValueAsInt());
} else {
Result += "(";
Result += utostr(getValueAsInt());
Result += ")";
}
return Result;
}
// Convert target-dependent attributes to strings of the form:
//
// "kind"
// "kind" = "value"
//
if (isStringAttribute()) {
std::string Result;
Result += '\"' + getKindAsString().str() + '"';
StringRef Val = pImpl->getValueAsString();
if (Val.empty()) return Result;
Result += "=\"" + Val.str() + '"';
return Result;
}
llvm_unreachable("Unknown attribute");
}
bool Attribute::operator<(Attribute A) const {
if (!pImpl && !A.pImpl) return false;
if (!pImpl) return true;
if (!A.pImpl) return false;
return *pImpl < *A.pImpl;
}
//===----------------------------------------------------------------------===//
// AttributeImpl Definition
//===----------------------------------------------------------------------===//
// Pin the vtabels to this file.
AttributeImpl::~AttributeImpl() {}
void EnumAttributeImpl::anchor() {}
void AlignAttributeImpl::anchor() {}
void StringAttributeImpl::anchor() {}
bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
if (isStringAttribute()) return false;
return getKindAsEnum() == A;
}
bool AttributeImpl::hasAttribute(StringRef Kind) const {
if (!isStringAttribute()) return false;
return getKindAsString() == Kind;
}
Attribute::AttrKind AttributeImpl::getKindAsEnum() const {
assert(isEnumAttribute() || isAlignAttribute());
return static_cast<const EnumAttributeImpl *>(this)->getEnumKind();
}
uint64_t AttributeImpl::getValueAsInt() const {
assert(isAlignAttribute());
return static_cast<const AlignAttributeImpl *>(this)->getAlignment();
}
StringRef AttributeImpl::getKindAsString() const {
assert(isStringAttribute());
return static_cast<const StringAttributeImpl *>(this)->getStringKind();
}
StringRef AttributeImpl::getValueAsString() const {
assert(isStringAttribute());
return static_cast<const StringAttributeImpl *>(this)->getStringValue();
}
bool AttributeImpl::operator<(const AttributeImpl &AI) const {
// This sorts the attributes with Attribute::AttrKinds coming first (sorted
// relative to their enum value) and then strings.
if (isEnumAttribute()) {
if (AI.isEnumAttribute()) return getKindAsEnum() < AI.getKindAsEnum();
if (AI.isAlignAttribute()) return true;
if (AI.isStringAttribute()) return true;
}
if (isAlignAttribute()) {
if (AI.isEnumAttribute()) return false;
if (AI.isAlignAttribute()) return getValueAsInt() < AI.getValueAsInt();
if (AI.isStringAttribute()) return true;
}
if (AI.isEnumAttribute()) return false;
if (AI.isAlignAttribute()) return false;
if (getKindAsString() == AI.getKindAsString())
return getValueAsString() < AI.getValueAsString();
return getKindAsString() < AI.getKindAsString();
}
uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) {
// FIXME: Remove this.
switch (Val) {
case Attribute::EndAttrKinds:
llvm_unreachable("Synthetic enumerators which should never get here");
case Attribute::None: return 0;
case Attribute::ZExt: return 1 << 0;
case Attribute::SExt: return 1 << 1;
case Attribute::NoReturn: return 1 << 2;
case Attribute::InReg: return 1 << 3;
case Attribute::StructRet: return 1 << 4;
case Attribute::NoUnwind: return 1 << 5;
case Attribute::NoAlias: return 1 << 6;
case Attribute::ByVal: return 1 << 7;
case Attribute::Nest: return 1 << 8;
case Attribute::ReadNone: return 1 << 9;
case Attribute::ReadOnly: return 1 << 10;
case Attribute::NoInline: return 1 << 11;
case Attribute::AlwaysInline: return 1 << 12;
case Attribute::OptimizeForSize: return 1 << 13;
case Attribute::StackProtect: return 1 << 14;
case Attribute::StackProtectReq: return 1 << 15;
case Attribute::Alignment: return 31 << 16;
case Attribute::NoCapture: return 1 << 21;
case Attribute::NoRedZone: return 1 << 22;
case Attribute::NoImplicitFloat: return 1 << 23;
case Attribute::Naked: return 1 << 24;
case Attribute::InlineHint: return 1 << 25;
case Attribute::StackAlignment: return 7 << 26;
case Attribute::ReturnsTwice: return 1 << 29;
case Attribute::UWTable: return 1 << 30;
case Attribute::NonLazyBind: return 1U << 31;
case Attribute::SanitizeAddress: return 1ULL << 32;
case Attribute::MinSize: return 1ULL << 33;
case Attribute::NoDuplicate: return 1ULL << 34;
case Attribute::StackProtectStrong: return 1ULL << 35;
case Attribute::SanitizeThread: return 1ULL << 36;
case Attribute::SanitizeMemory: return 1ULL << 37;
case Attribute::NoBuiltin: return 1ULL << 38;
case Attribute::Returned: return 1ULL << 39;
case Attribute::Cold: return 1ULL << 40;
case Attribute::Builtin: return 1ULL << 41;
case Attribute::OptimizeNone: return 1ULL << 42;
case Attribute::InAlloca: return 1ULL << 43;
}
llvm_unreachable("Unsupported attribute type");
}
//===----------------------------------------------------------------------===//
// AttributeSetNode Definition
//===----------------------------------------------------------------------===//
AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
ArrayRef<Attribute> Attrs) {
if (Attrs.empty())
return nullptr;
// Otherwise, build a key to look up the existing attributes.
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end());
array_pod_sort(SortedAttrs.begin(), SortedAttrs.end());
for (SmallVectorImpl<Attribute>::iterator I = SortedAttrs.begin(),
E = SortedAttrs.end(); I != E; ++I)
I->Profile(ID);
void *InsertPoint;
AttributeSetNode *PA =
pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!PA) {
// Coallocate entries after the AttributeSetNode itself.
void *Mem = ::operator new(sizeof(AttributeSetNode) +
sizeof(Attribute) * SortedAttrs.size());
PA = new (Mem) AttributeSetNode(SortedAttrs);
pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
}
// Return the AttributesListNode that we found or created.
return PA;
}
bool AttributeSetNode::hasAttribute(Attribute::AttrKind Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return true;
return false;
}
bool AttributeSetNode::hasAttribute(StringRef Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return true;
return false;
}
Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return *I;
return Attribute();
}
Attribute AttributeSetNode::getAttribute(StringRef Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return *I;
return Attribute();
}
unsigned AttributeSetNode::getAlignment() const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Attribute::Alignment))
return I->getAlignment();
return 0;
}
unsigned AttributeSetNode::getStackAlignment() const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Attribute::StackAlignment))
return I->getStackAlignment();
return 0;
}
std::string AttributeSetNode::getAsString(bool InAttrGrp) const {
std::string Str;
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I != begin())
Str += ' ';
Str += I->getAsString(InAttrGrp);
}
return Str;
}
//===----------------------------------------------------------------------===//
// AttributeSetImpl Definition
//===----------------------------------------------------------------------===//
uint64_t AttributeSetImpl::Raw(unsigned Index) const {
for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) {
if (getSlotIndex(I) != Index) continue;
const AttributeSetNode *ASN = getSlotNode(I);
uint64_t Mask = 0;
for (AttributeSetNode::iterator II = ASN->begin(),
IE = ASN->end(); II != IE; ++II) {
Attribute Attr = *II;
// This cannot handle string attributes.
if (Attr.isStringAttribute()) continue;
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Kind == Attribute::Alignment)
Mask |= (Log2_32(ASN->getAlignment()) + 1) << 16;
else if (Kind == Attribute::StackAlignment)
Mask |= (Log2_32(ASN->getStackAlignment()) + 1) << 26;
else
Mask |= AttributeImpl::getAttrMask(Kind);
}
return Mask;
}
return 0;
}
void AttributeSetImpl::dump() const {
AttributeSet(const_cast<AttributeSetImpl *>(this)).dump();
}
//===----------------------------------------------------------------------===//
// AttributeSet Construction and Mutation Methods
//===----------------------------------------------------------------------===//
AttributeSet
AttributeSet::getImpl(LLVMContext &C,
ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs) {
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
AttributeSetImpl::Profile(ID, Attrs);
void *InsertPoint;
AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then
// create a new one and insert it.
if (!PA) {
// Coallocate entries after the AttributeSetImpl itself.
void *Mem = ::operator new(sizeof(AttributeSetImpl) +
sizeof(std::pair<unsigned, AttributeSetNode *>) *
Attrs.size());
PA = new (Mem) AttributeSetImpl(C, Attrs);
pImpl->AttrsLists.InsertNode(PA, InsertPoint);
}
// Return the AttributesList that we found or created.
return AttributeSet(PA);
}
AttributeSet AttributeSet::get(LLVMContext &C,
ArrayRef<std::pair<unsigned, Attribute> > Attrs){
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttributeSet();
#ifndef NDEBUG
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
assert((!i || Attrs[i-1].first <= Attrs[i].first) &&
"Misordered Attributes list!");
assert(!Attrs[i].second.hasAttribute(Attribute::None) &&
"Pointless attribute!");
}
#endif
// Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
// list.
SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrPairVec;
for (ArrayRef<std::pair<unsigned, Attribute> >::iterator I = Attrs.begin(),
E = Attrs.end(); I != E; ) {
unsigned Index = I->first;
SmallVector<Attribute, 4> AttrVec;
while (I != E && I->first == Index) {
AttrVec.push_back(I->second);
++I;
}
AttrPairVec.push_back(std::make_pair(Index,
AttributeSetNode::get(C, AttrVec)));
}
return getImpl(C, AttrPairVec);
}
AttributeSet AttributeSet::get(LLVMContext &C,
ArrayRef<std::pair<unsigned,
AttributeSetNode*> > Attrs) {
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttributeSet();
return getImpl(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index, AttrBuilder &B) {
if (!B.hasAttributes())
return AttributeSet();
// Add target-independent attributes.
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (Attribute::AttrKind Kind = Attribute::None;
Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) {
if (!B.contains(Kind))
continue;
if (Kind == Attribute::Alignment)
Attrs.push_back(std::make_pair(Index, Attribute::
getWithAlignment(C, B.getAlignment())));
else if (Kind == Attribute::StackAlignment)
Attrs.push_back(std::make_pair(Index, Attribute::
getWithStackAlignment(C, B.getStackAlignment())));
else
Attrs.push_back(std::make_pair(Index, Attribute::get(C, Kind)));
}
// Add target-dependent (string) attributes.
for (AttrBuilder::td_iterator I = B.td_begin(), E = B.td_end();
I != E; ++I)
Attrs.push_back(std::make_pair(Index, Attribute::get(C, I->first,I->second)));
return get(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index,
ArrayRef<Attribute::AttrKind> Kind) {
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (ArrayRef<Attribute::AttrKind>::iterator I = Kind.begin(),
E = Kind.end(); I != E; ++I)
Attrs.push_back(std::make_pair(Index, Attribute::get(C, *I)));
return get(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<AttributeSet> Attrs) {
if (Attrs.empty()) return AttributeSet();
if (Attrs.size() == 1) return Attrs[0];
SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrNodeVec;
AttributeSetImpl *A0 = Attrs[0].pImpl;
if (A0)
AttrNodeVec.append(A0->getNode(0), A0->getNode(A0->getNumAttributes()));
// Copy all attributes from Attrs into AttrNodeVec while keeping AttrNodeVec
// ordered by index. Because we know that each list in Attrs is ordered by
// index we only need to merge each successive list in rather than doing a
// full sort.
for (unsigned I = 1, E = Attrs.size(); I != E; ++I) {
AttributeSetImpl *AS = Attrs[I].pImpl;
if (!AS) continue;
SmallVector<std::pair<unsigned, AttributeSetNode *>, 8>::iterator
ANVI = AttrNodeVec.begin(), ANVE;
for (const AttributeSetImpl::IndexAttrPair
*AI = AS->getNode(0),
*AE = AS->getNode(AS->getNumAttributes());
AI != AE; ++AI) {
ANVE = AttrNodeVec.end();
while (ANVI != ANVE && ANVI->first <= AI->first)
++ANVI;
ANVI = AttrNodeVec.insert(ANVI, *AI) + 1;
}
}
return getImpl(C, AttrNodeVec);
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Attr) const {
if (hasAttribute(Index, Attr)) return *this;
return addAttributes(C, Index, AttributeSet::get(C, Index, Attr));
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind) const {
llvm::AttrBuilder B;
B.addAttribute(Kind);
return addAttributes(C, Index, AttributeSet::get(C, Index, B));
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind, StringRef Value) const {
llvm::AttrBuilder B;
B.addAttribute(Kind, Value);
return addAttributes(C, Index, AttributeSet::get(C, Index, B));
}
AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Index,
AttributeSet Attrs) const {
if (!pImpl) return Attrs;
if (!Attrs.pImpl) return *this;
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment. For now, say
// we can't change a known alignment.
unsigned OldAlign = getParamAlignment(Index);
unsigned NewAlign = Attrs.getParamAlignment(Index);
assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
"Attempt to change alignment!");
#endif
// Add the attribute slots before the one we're trying to add.
SmallVector<AttributeSet, 4> AttrSet;
uint64_t NumAttrs = pImpl->getNumAttributes();
AttributeSet AS;
uint64_t LastIndex = 0;
for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
if (getSlotIndex(I) >= Index) {
if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++);
break;
}
LastIndex = I + 1;
AttrSet.push_back(getSlotAttributes(I));
}
// Now add the attribute into the correct slot. There may already be an
// AttributeSet there.
AttrBuilder B(AS, Index);
for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Index) {
for (AttributeSetImpl::iterator II = Attrs.pImpl->begin(I),
IE = Attrs.pImpl->end(I); II != IE; ++II)
B.addAttribute(*II);
break;
}
AttrSet.push_back(AttributeSet::get(C, Index, B));
// Add the remaining attribute slots.
for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
AttrSet.push_back(getSlotAttributes(I));
return get(C, AttrSet);
}
AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Attr) const {
if (!hasAttribute(Index, Attr)) return *this;
return removeAttributes(C, Index, AttributeSet::get(C, Index, Attr));
}
AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Index,
AttributeSet Attrs) const {
if (!pImpl) return AttributeSet();
if (!Attrs.pImpl) return *this;
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment.
// For now, say we can't pass in alignment, which no current use does.
assert(!Attrs.hasAttribute(Index, Attribute::Alignment) &&
"Attempt to change alignment!");
#endif
// Add the attribute slots before the one we're trying to add.
SmallVector<AttributeSet, 4> AttrSet;
uint64_t NumAttrs = pImpl->getNumAttributes();
AttributeSet AS;
uint64_t LastIndex = 0;
for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
if (getSlotIndex(I) >= Index) {
if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++);
break;
}
LastIndex = I + 1;
AttrSet.push_back(getSlotAttributes(I));
}
// Now remove the attribute from the correct slot. There may already be an
// AttributeSet there.
AttrBuilder B(AS, Index);
for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Index) {
B.removeAttributes(Attrs.pImpl->getSlotAttributes(I), Index);
break;
}
AttrSet.push_back(AttributeSet::get(C, Index, B));
// Add the remaining attribute slots.
for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
AttrSet.push_back(getSlotAttributes(I));
return get(C, AttrSet);
}
//===----------------------------------------------------------------------===//
// AttributeSet Accessor Methods
//===----------------------------------------------------------------------===//
LLVMContext &AttributeSet::getContext() const {
return pImpl->getContext();
}
AttributeSet AttributeSet::getParamAttributes(unsigned Index) const {
return pImpl && hasAttributes(Index) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(Index, getAttributes(Index)))) :
AttributeSet();
}
AttributeSet AttributeSet::getRetAttributes() const {
return pImpl && hasAttributes(ReturnIndex) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(ReturnIndex,
getAttributes(ReturnIndex)))) :
AttributeSet();
}
AttributeSet AttributeSet::getFnAttributes() const {
return pImpl && hasAttributes(FunctionIndex) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(FunctionIndex,
getAttributes(FunctionIndex)))) :
AttributeSet();
}
bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttribute(Kind) : false;
}
bool AttributeSet::hasAttribute(unsigned Index, StringRef Kind) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttribute(Kind) : false;
}
bool AttributeSet::hasAttributes(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttributes() : false;
}
/// \brief Return true if the specified attribute is set for at least one
/// parameter or for the return value.
bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const {
if (!pImpl) return false;
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
for (AttributeSetImpl::iterator II = pImpl->begin(I),
IE = pImpl->end(I); II != IE; ++II)
if (II->hasAttribute(Attr))
return true;
return false;
}
Attribute AttributeSet::getAttribute(unsigned Index,
Attribute::AttrKind Kind) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAttribute(Kind) : Attribute();
}
Attribute AttributeSet::getAttribute(unsigned Index,
StringRef Kind) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAttribute(Kind) : Attribute();
}
unsigned AttributeSet::getParamAlignment(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAlignment() : 0;
}
unsigned AttributeSet::getStackAlignment(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getStackAlignment() : 0;
}
std::string AttributeSet::getAsString(unsigned Index,
bool InAttrGrp) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAsString(InAttrGrp) : std::string("");
}
/// \brief The attributes for the specified index are returned.
AttributeSetNode *AttributeSet::getAttributes(unsigned Index) const {
if (!pImpl) return nullptr;
// Loop through to find the attribute node we want.
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
if (pImpl->getSlotIndex(I) == Index)
return pImpl->getSlotNode(I);
return nullptr;
}
AttributeSet::iterator AttributeSet::begin(unsigned Slot) const {
if (!pImpl)
return ArrayRef<Attribute>().begin();
return pImpl->begin(Slot);
}
AttributeSet::iterator AttributeSet::end(unsigned Slot) const {
if (!pImpl)
return ArrayRef<Attribute>().end();
return pImpl->end(Slot);
}
//===----------------------------------------------------------------------===//
// AttributeSet Introspection Methods
//===----------------------------------------------------------------------===//
/// \brief Return the number of slots used in this attribute list. This is the
/// number of arguments that have an attribute set on them (including the
/// function itself).
unsigned AttributeSet::getNumSlots() const {
return pImpl ? pImpl->getNumAttributes() : 0;
}
unsigned AttributeSet::getSlotIndex(unsigned Slot) const {
assert(pImpl && Slot < pImpl->getNumAttributes() &&
"Slot # out of range!");
return pImpl->getSlotIndex(Slot);
}
AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const {
assert(pImpl && Slot < pImpl->getNumAttributes() &&
"Slot # out of range!");
return pImpl->getSlotAttributes(Slot);
}
uint64_t AttributeSet::Raw(unsigned Index) const {
// FIXME: Remove this.
return pImpl ? pImpl->Raw(Index) : 0;
}
void AttributeSet::dump() const {
dbgs() << "PAL[\n";
for (unsigned i = 0, e = getNumSlots(); i < e; ++i) {
uint64_t Index = getSlotIndex(i);
dbgs() << " { ";
if (Index == ~0U)
dbgs() << "~0U";
else
dbgs() << Index;
dbgs() << " => " << getAsString(Index) << " }\n";
}
dbgs() << "]\n";
}
//===----------------------------------------------------------------------===//
// AttrBuilder Method Implementations
//===----------------------------------------------------------------------===//
AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Index)
: Attrs(0), Alignment(0), StackAlignment(0) {
AttributeSetImpl *pImpl = AS.pImpl;
if (!pImpl) return;
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) {
if (pImpl->getSlotIndex(I) != Index) continue;
for (AttributeSetImpl::iterator II = pImpl->begin(I),
IE = pImpl->end(I); II != IE; ++II)
addAttribute(*II);
break;
}
}
void AttrBuilder::clear() {
Attrs.reset();
Alignment = StackAlignment = 0;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) {
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
assert(Val != Attribute::Alignment && Val != Attribute::StackAlignment &&
"Adding alignment attribute without adding alignment value!");
Attrs[Val] = true;
return *this;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) {
if (Attr.isStringAttribute()) {
addAttribute(Attr.getKindAsString(), Attr.getValueAsString());
return *this;
}
Attribute::AttrKind Kind = Attr.getKindAsEnum();
Attrs[Kind] = true;
if (Kind == Attribute::Alignment)
Alignment = Attr.getAlignment();
else if (Kind == Attribute::StackAlignment)
StackAlignment = Attr.getStackAlignment();
return *this;
}
AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) {
TargetDepAttrs[A] = V;
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
Attrs[Val] = false;
if (Val == Attribute::Alignment)
Alignment = 0;
else if (Val == Attribute::StackAlignment)
StackAlignment = 0;
return *this;
}
AttrBuilder &AttrBuilder::removeAttributes(AttributeSet A, uint64_t Index) {
unsigned Slot = ~0U;
for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I)
if (A.getSlotIndex(I) == Index) {
Slot = I;
break;
}
assert(Slot != ~0U && "Couldn't find index in AttributeSet!");
for (AttributeSet::iterator I = A.begin(Slot), E = A.end(Slot); I != E; ++I) {
Attribute Attr = *I;
if (Attr.isEnumAttribute() || Attr.isAlignAttribute()) {
Attribute::AttrKind Kind = I->getKindAsEnum();
Attrs[Kind] = false;
if (Kind == Attribute::Alignment)
Alignment = 0;
else if (Kind == Attribute::StackAlignment)
StackAlignment = 0;
} else {
assert(Attr.isStringAttribute() && "Invalid attribute type!");
std::map<std::string, std::string>::iterator
Iter = TargetDepAttrs.find(Attr.getKindAsString());
if (Iter != TargetDepAttrs.end())
TargetDepAttrs.erase(Iter);
}
}
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(StringRef A) {
std::map<std::string, std::string>::iterator I = TargetDepAttrs.find(A);
if (I != TargetDepAttrs.end())
TargetDepAttrs.erase(I);
return *this;
}
AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) {
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
Attrs[Attribute::Alignment] = true;
Alignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) {
// Default alignment, allow the target to define how to align it.
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
Attrs[Attribute::StackAlignment] = true;
StackAlignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) {
// FIXME: What if both have alignments, but they don't match?!
if (!Alignment)
Alignment = B.Alignment;
if (!StackAlignment)
StackAlignment = B.StackAlignment;
Attrs |= B.Attrs;
for (td_const_iterator I = B.TargetDepAttrs.begin(),
E = B.TargetDepAttrs.end(); I != E; ++I)
TargetDepAttrs[I->first] = I->second;
return *this;
}
bool AttrBuilder::contains(StringRef A) const {
return TargetDepAttrs.find(A) != TargetDepAttrs.end();
}
bool AttrBuilder::hasAttributes() const {
return !Attrs.none() || !TargetDepAttrs.empty();
}
bool AttrBuilder::hasAttributes(AttributeSet A, uint64_t Index) const {
unsigned Slot = ~0U;
for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I)
if (A.getSlotIndex(I) == Index) {
Slot = I;
break;
}
assert(Slot != ~0U && "Couldn't find the index!");
for (AttributeSet::iterator I = A.begin(Slot), E = A.end(Slot);
I != E; ++I) {
Attribute Attr = *I;
if (Attr.isEnumAttribute() || Attr.isAlignAttribute()) {
if (Attrs[I->getKindAsEnum()])
return true;
} else {
assert(Attr.isStringAttribute() && "Invalid attribute kind!");
return TargetDepAttrs.find(Attr.getKindAsString())!=TargetDepAttrs.end();
}
}
return false;
}
bool AttrBuilder::hasAlignmentAttr() const {
return Alignment != 0;
}
bool AttrBuilder::operator==(const AttrBuilder &B) {
if (Attrs != B.Attrs)
return false;
for (td_const_iterator I = TargetDepAttrs.begin(),
E = TargetDepAttrs.end(); I != E; ++I)
if (B.TargetDepAttrs.find(I->first) == B.TargetDepAttrs.end())
return false;
return Alignment == B.Alignment && StackAlignment == B.StackAlignment;
}
AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) {
// FIXME: Remove this in 4.0.
if (!Val) return *this;
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) {
Attrs[I] = true;
if (I == Attribute::Alignment)
Alignment = 1ULL << ((A >> 16) - 1);
else if (I == Attribute::StackAlignment)
StackAlignment = 1ULL << ((A >> 26)-1);
}
}
return *this;
}
//===----------------------------------------------------------------------===//
// AttributeFuncs Function Defintions
//===----------------------------------------------------------------------===//
/// \brief Which attributes cannot be applied to a type.
AttributeSet AttributeFuncs::typeIncompatible(Type *Ty, uint64_t Index) {
AttrBuilder Incompatible;
if (!Ty->isIntegerTy())
// Attribute that only apply to integers.
Incompatible.addAttribute(Attribute::SExt)
.addAttribute(Attribute::ZExt);
if (!Ty->isPointerTy())
// Attribute that only apply to pointers.
Incompatible.addAttribute(Attribute::ByVal)
.addAttribute(Attribute::Nest)
.addAttribute(Attribute::NoAlias)
.addAttribute(Attribute::NoCapture)
.addAttribute(Attribute::ReadNone)
.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::StructRet)
.addAttribute(Attribute::InAlloca);
return AttributeSet::get(Ty->getContext(), Index, Incompatible);
}