llvm/lib/VMCore/PassManager.cpp
2006-12-08 22:57:48 +00:00

1079 lines
34 KiB
C++

//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Devang Patel and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM Pass Manager infrastructure.
//
//===----------------------------------------------------------------------===//
#include "llvm/PassManager.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Support/Streams.h"
#include <vector>
#include <map>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Overview:
// The Pass Manager Infrastructure manages passes. It's responsibilities are:
//
// o Manage optimization pass execution order
// o Make required Analysis information available before pass P is run
// o Release memory occupied by dead passes
// o If Analysis information is dirtied by a pass then regenerate Analysis
// information before it is consumed by another pass.
//
// Pass Manager Infrastructure uses multipe pass managers. They are PassManager,
// FunctionPassManager, ModulePassManager, BasicBlockPassManager. This class
// hierarcy uses multiple inheritance but pass managers do not derive from
// another pass manager.
//
// PassManager and FunctionPassManager are two top level pass manager that
// represents the external interface of this entire pass manager infrastucture.
//
// Important classes :
//
// [o] class PMTopLevelManager;
//
// Two top level managers, PassManager and FunctionPassManager, derive from
// PMTopLevelManager. PMTopLevelManager manages information used by top level
// managers such as last user info.
//
// [o] class PMDataManager;
//
// PMDataManager manages information, e.g. list of available analysis info,
// used by a pass manager to manage execution order of passes. It also provides
// a place to implement common pass manager APIs. All pass managers derive from
// PMDataManager.
//
// [o] class BasicBlockPassManager : public FunctionPass, public PMDataManager;
//
// BasicBlockPassManager manages BasicBlockPasses.
//
// [o] class FunctionPassManager;
//
// This is a external interface used by JIT to manage FunctionPasses. This
// interface relies on FunctionPassManagerImpl to do all the tasks.
//
// [o] class FunctionPassManagerImpl : public ModulePass, PMDataManager,
// public PMTopLevelManager;
//
// FunctionPassManagerImpl is a top level manager. It manages FunctionPasses
// and BasicBlockPassManagers.
//
// [o] class ModulePassManager : public Pass, public PMDataManager;
//
// ModulePassManager manages ModulePasses and FunctionPassManagerImpls.
//
// [o] class PassManager;
//
// This is a external interface used by various tools to manages passes. It
// relies on PassManagerImpl to do all the tasks.
//
// [o] class PassManagerImpl : public Pass, public PMDataManager,
// public PMDTopLevelManager
//
// PassManagerImpl is a top level pass manager responsible for managing
// ModulePassManagers.
//===----------------------------------------------------------------------===//
namespace llvm {
//===----------------------------------------------------------------------===//
// PMTopLevelManager
//
/// PMTopLevelManager manages LastUser info and collects common APIs used by
/// top level pass managers.
class PMTopLevelManager {
public:
inline std::vector<Pass *>::iterator passManagersBegin() {
return PassManagers.begin();
}
inline std::vector<Pass *>::iterator passManagersEnd() {
return PassManagers.end();
}
/// Schedule pass P for execution. Make sure that passes required by
/// P are run before P is run. Update analysis info maintained by
/// the manager. Remove dead passes. This is a recursive function.
void schedulePass(Pass *P);
/// This is implemented by top level pass manager and used by
/// schedulePass() to add analysis info passes that are not available.
virtual void addTopLevelPass(Pass *P) = 0;
/// Set pass P as the last user of the given analysis passes.
void setLastUser(std::vector<Pass *> &AnalysisPasses, Pass *P);
/// Collect passes whose last user is P
void collectLastUses(std::vector<Pass *> &LastUses, Pass *P);
/// Find the pass that implements Analysis AID. Search immutable
/// passes and all pass managers. If desired pass is not found
/// then return NULL.
Pass *findAnalysisPass(AnalysisID AID);
virtual ~PMTopLevelManager() {
PassManagers.clear();
}
/// Add immutable pass and initialize it.
inline void addImmutablePass(ImmutablePass *P) {
P->initializePass();
ImmutablePasses.push_back(P);
}
inline std::vector<ImmutablePass *>& getImmutablePasses() {
return ImmutablePasses;
}
void addPassManager(Pass *Manager) {
PassManagers.push_back(Manager);
}
private:
/// Collection of pass managers
std::vector<Pass *> PassManagers;
// Map to keep track of last user of the analysis pass.
// LastUser->second is the last user of Lastuser->first.
std::map<Pass *, Pass *> LastUser;
/// Immutable passes are managed by top level manager.
std::vector<ImmutablePass *> ImmutablePasses;
};
/// Set pass P as the last user of the given analysis passes.
void PMTopLevelManager::setLastUser(std::vector<Pass *> &AnalysisPasses,
Pass *P) {
for (std::vector<Pass *>::iterator I = AnalysisPasses.begin(),
E = AnalysisPasses.end(); I != E; ++I) {
Pass *AP = *I;
LastUser[AP] = P;
// If AP is the last user of other passes then make P last user of
// such passes.
for (std::map<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI) {
if (LUI->second == AP)
LastUser[LUI->first] = P;
}
}
}
/// Collect passes whose last user is P
void PMTopLevelManager::collectLastUses(std::vector<Pass *> &LastUses,
Pass *P) {
for (std::map<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI)
if (LUI->second == P)
LastUses.push_back(LUI->first);
}
/// Schedule pass P for execution. Make sure that passes required by
/// P are run before P is run. Update analysis info maintained by
/// the manager. Remove dead passes. This is a recursive function.
void PMTopLevelManager::schedulePass(Pass *P) {
// TODO : Allocate function manager for this pass, other wise required set
// may be inserted into previous function manager
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
E = RequiredSet.end(); I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I);
if (!AnalysisPass) {
// Schedule this analysis run first.
AnalysisPass = (*I)->createPass();
schedulePass(AnalysisPass);
}
}
// Now all required passes are available.
addTopLevelPass(P);
}
/// Find the pass that implements Analysis AID. Search immutable
/// passes and all pass managers. If desired pass is not found
/// then return NULL.
Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
Pass *P = NULL;
for (std::vector<ImmutablePass *>::iterator I = ImmutablePasses.begin(),
E = ImmutablePasses.end(); P == NULL && I != E; ++I) {
const PassInfo *PI = (*I)->getPassInfo();
if (PI == AID)
P = *I;
// If Pass not found then check the interfaces implemented by Immutable Pass
if (!P) {
const std::vector<const PassInfo*> &ImmPI =
PI->getInterfacesImplemented();
for (unsigned Index = 0, End = ImmPI.size();
P == NULL && Index != End; ++Index)
if (ImmPI[Index] == AID)
P = *I;
}
}
if (P)
return P;
// Check pass managers;
for (std::vector<Pass *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); P == NULL && I != E; ++I)
P = NULL; // FIXME: (*I)->findAnalysisPass(AID, false /* Search downward */);
return P;
}
//===----------------------------------------------------------------------===//
// PMDataManager
/// PMDataManager provides the common place to manage the analysis data
/// used by pass managers.
class PMDataManager {
public:
PMDataManager(int D) : TPM(NULL), Depth(D) {
initializeAnalysisInfo();
}
/// Return true IFF pass P's required analysis set does not required new
/// manager.
bool manageablePass(Pass *P);
/// Augment AvailableAnalysis by adding analysis made available by pass P.
void recordAvailableAnalysis(Pass *P);
/// Remove Analysis that is not preserved by the pass
void removeNotPreservedAnalysis(Pass *P);
/// Remove dead passes
void removeDeadPasses(Pass *P);
/// Add pass P into the PassVector. Update
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
void addPassToManager (Pass *P, bool ProcessAnalysis = true);
/// Initialize available analysis information.
void initializeAnalysisInfo() {
ForcedLastUses.clear();
AvailableAnalysis.clear();
// Include immutable passes into AvailableAnalysis vector.
std::vector<ImmutablePass *> &ImmutablePasses = TPM->getImmutablePasses();
for (std::vector<ImmutablePass *>::iterator I = ImmutablePasses.begin(),
E = ImmutablePasses.end(); I != E; ++I)
recordAvailableAnalysis(*I);
}
/// Populate RequiredPasses with the analysis pass that are required by
/// pass P.
void collectRequiredAnalysisPasses(std::vector<Pass *> &RequiredPasses,
Pass *P);
/// All Required analyses should be available to the pass as it runs! Here
/// we fill in the AnalysisImpls member of the pass so that it can
/// successfully use the getAnalysis() method to retrieve the
/// implementations it needs.
void initializeAnalysisImpl(Pass *P);
/// Find the pass that implements Analysis AID. If desired pass is not found
/// then return NULL.
Pass *findAnalysisPass(AnalysisID AID, bool Direction);
inline std::vector<Pass *>::iterator passVectorBegin() {
return PassVector.begin();
}
inline std::vector<Pass *>::iterator passVectorEnd() {
return PassVector.end();
}
// Access toplevel manager
PMTopLevelManager *getTopLevelManager() { return TPM; }
void setTopLevelManager(PMTopLevelManager *T) { TPM = T; }
unsigned getDepth() { return Depth; }
protected:
// Collection of pass whose last user asked this manager to claim
// last use. If a FunctionPass F is the last user of ModulePass info M
// then the F's manager, not F, records itself as a last user of M.
std::vector<Pass *> ForcedLastUses;
// Top level manager.
// TODO : Make it a reference.
PMTopLevelManager *TPM;
private:
// Set of available Analysis. This information is used while scheduling
// pass. If a pass requires an analysis which is not not available then
// equired analysis pass is scheduled to run before the pass itself is
// scheduled to run.
std::map<AnalysisID, Pass*> AvailableAnalysis;
// Collection of pass that are managed by this manager
std::vector<Pass *> PassVector;
unsigned Depth;
};
/// BasicBlockPassManager_New manages BasicBlockPass. It batches all the
/// pass together and sequence them to process one basic block before
/// processing next basic block.
class BasicBlockPassManager_New : public PMDataManager,
public FunctionPass {
public:
BasicBlockPassManager_New(int D) : PMDataManager(D) { }
/// Add a pass into a passmanager queue.
bool addPass(Pass *p);
/// Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the function, and if so, return true.
bool runOnFunction(Function &F);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
bool doInitialization(Module &M);
bool doInitialization(Function &F);
bool doFinalization(Module &M);
bool doFinalization(Function &F);
};
/// FunctionPassManagerImpl_New manages FunctionPasses and BasicBlockPassManagers.
/// It batches all function passes and basic block pass managers together and
/// sequence them to process one function at a time before processing next
/// function.
class FunctionPassManagerImpl_New : public ModulePass,
public PMDataManager,
public PMTopLevelManager {
public:
FunctionPassManagerImpl_New(ModuleProvider *P, int D) :
PMDataManager(D) { /* TODO */ }
FunctionPassManagerImpl_New(int D) : PMDataManager(D) {
activeBBPassManager = NULL;
}
~FunctionPassManagerImpl_New() { /* TODO */ };
inline void addTopLevelPass(Pass *P) {
addPass(P);
}
/// add - Add a pass to the queue of passes to run. This passes
/// ownership of the Pass to the PassManager. When the
/// PassManager_X is destroyed, the pass will be destroyed as well, so
/// there is no need to delete the pass. (TODO delete passes.)
/// This implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// Add pass into the pass manager queue.
bool addPass(Pass *P);
/// Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
bool runOnModule(Module &M);
bool runOnFunction(Function &F);
bool run(Function &F);
/// doInitialization - Run all of the initializers for the function passes.
///
bool doInitialization(Module &M);
/// doFinalization - Run all of the initializers for the function passes.
///
bool doFinalization(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
private:
// Active Pass Managers
BasicBlockPassManager_New *activeBBPassManager;
};
/// ModulePassManager_New manages ModulePasses and function pass managers.
/// It batches all Module passes passes and function pass managers together and
/// sequence them to process one module.
class ModulePassManager_New : public Pass,
public PMDataManager {
public:
ModulePassManager_New(int D) : PMDataManager(D) {
activeFunctionPassManager = NULL;
}
/// Add a pass into a passmanager queue.
bool addPass(Pass *p);
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool runOnModule(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
private:
// Active Pass Manager
FunctionPassManagerImpl_New *activeFunctionPassManager;
};
/// PassManager_New manages ModulePassManagers
class PassManagerImpl_New : public Pass,
public PMDataManager,
public PMTopLevelManager {
public:
PassManagerImpl_New(int D) : PMDataManager(D) {}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
inline void addTopLevelPass(Pass *P) {
addPass(P);
}
private:
/// Add a pass into a passmanager queue.
bool addPass(Pass *p);
// Active Pass Manager
ModulePassManager_New *activeManager;
};
} // End of llvm namespace
//===----------------------------------------------------------------------===//
// PMDataManager implementation
/// Return true IFF pass P's required analysis set does not required new
/// manager.
bool PMDataManager::manageablePass(Pass *P) {
// TODO
// If this pass is not preserving information that is required by a
// pass maintained by higher level pass manager then do not insert
// this pass into current manager. Use new manager. For example,
// For example, If FunctionPass F is not preserving ModulePass Info M1
// that is used by another ModulePass M2 then do not insert F in
// current function pass manager.
return true;
}
/// Augement AvailableAnalysis by adding analysis made available by pass P.
void PMDataManager::recordAvailableAnalysis(Pass *P) {
if (const PassInfo *PI = P->getPassInfo()) {
AvailableAnalysis[PI] = P;
//This pass is the current implementation of all of the interfaces it
//implements as well.
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
AvailableAnalysis[II[i]] = P;
}
}
/// Remove Analyss not preserved by Pass P
void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
if (AnUsage.getPreservesAll())
return;
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::map<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
E = AvailableAnalysis.end(); I != E; ++I ) {
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) ==
PreservedSet.end()) {
// Remove this analysis
std::map<AnalysisID, Pass*>::iterator J = I++;
AvailableAnalysis.erase(J);
}
}
}
/// Remove analysis passes that are not used any longer
void PMDataManager::removeDeadPasses(Pass *P) {
std::vector<Pass *> DeadPasses;
TPM->collectLastUses(DeadPasses, P);
for (std::vector<Pass *>::iterator I = DeadPasses.begin(),
E = DeadPasses.end(); I != E; ++I) {
(*I)->releaseMemory();
std::map<AnalysisID, Pass*>::iterator Pos =
AvailableAnalysis.find((*I)->getPassInfo());
// It is possible that pass is already removed from the AvailableAnalysis
if (Pos != AvailableAnalysis.end())
AvailableAnalysis.erase(Pos);
}
}
/// Add pass P into the PassVector. Update
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
void PMDataManager::addPassToManager(Pass *P,
bool ProcessAnalysis) {
if (ProcessAnalysis) {
// At the moment, this pass is the last user of all required passes.
std::vector<Pass *> LastUses;
std::vector<Pass *> RequiredPasses;
unsigned PDepth = this->getDepth();
collectRequiredAnalysisPasses(RequiredPasses, P);
for (std::vector<Pass *>::iterator I = RequiredPasses.begin(),
E = RequiredPasses.end(); I != E; ++I) {
Pass *PRequired = *I;
unsigned RDepth = 0;
//FIXME: RDepth = PRequired->getResolver()->getDepth();
if (PDepth == RDepth)
LastUses.push_back(PRequired);
else if (PDepth > RDepth) {
// Let the parent claim responsibility of last use
ForcedLastUses.push_back(PRequired);
} else {
// Note : This feature is not yet implemented
assert (0 &&
"Unable to handle Pass that requires lower level Analysis pass");
}
}
if (!LastUses.empty())
TPM->setLastUser(LastUses, P);
// Take a note of analysis required and made available by this pass.
// Remove the analysis not preserved by this pass
initializeAnalysisImpl(P);
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
}
// Add pass
PassVector.push_back(P);
}
/// Populate RequiredPasses with the analysis pass that are required by
/// pass P.
void PMDataManager::collectRequiredAnalysisPasses(std::vector<Pass *> &RP,
Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
for (std::vector<AnalysisID>::const_iterator
I = RequiredSet.begin(), E = RequiredSet.end();
I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I, true);
assert (AnalysisPass && "Analysis pass is not available");
RP.push_back(AnalysisPass);
}
}
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
void PMDataManager::initializeAnalysisImpl(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
for (std::vector<const PassInfo *>::const_iterator
I = AnUsage.getRequiredSet().begin(),
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
Pass *Impl = findAnalysisPass(*I, true);
if (Impl == 0)
assert(0 && "Analysis used but not available!");
// TODO: P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
}
}
/// Find the pass that implements Analysis AID. If desired pass is not found
/// then return NULL.
Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) {
// Check if AvailableAnalysis map has one entry.
std::map<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID);
if (I != AvailableAnalysis.end())
return I->second;
// Search Parents through TopLevelManager
if (SearchParent)
return TPM->findAnalysisPass(AID);
// FIXME : This is expensive and requires. Need to check only managers not all passes.
// One solution is to collect managers in advance at TPM level.
Pass *P = NULL;
for(std::vector<Pass *>::iterator I = passVectorBegin(),
E = passVectorEnd(); P == NULL && I!= E; ++I )
P = NULL; // FIXME : P = (*I)->getResolver()->getAnalysisToUpdate(AID, false /* Do not search parents again */);
return P;
}
//===----------------------------------------------------------------------===//
// BasicBlockPassManager_New implementation
/// Add pass P into PassVector and return true. If this pass is not
/// manageable by this manager then return false.
bool
BasicBlockPassManager_New::addPass(Pass *P) {
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
if (!BP)
return false;
// If this pass does not preserve anlysis that is used by other passes
// managed by this manager than it is not a suiable pass for this manager.
if (!manageablePass(P))
return false;
addPassToManager (BP);
return true;
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnBasicBlock method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool
BasicBlockPassManager_New::runOnFunction(Function &F) {
bool Changed = doInitialization(F);
initializeAnalysisInfo();
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
Changed |= BP->runOnBasicBlock(*I);
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
removeDeadPasses(P);
}
return Changed | doFinalization(F);
}
// Implement doInitialization and doFinalization
inline bool BasicBlockPassManager_New::doInitialization(Module &M) {
bool Changed = false;
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
Changed |= BP->doInitialization(M);
}
return Changed;
}
inline bool BasicBlockPassManager_New::doFinalization(Module &M) {
bool Changed = false;
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
Changed |= BP->doFinalization(M);
}
return Changed;
}
inline bool BasicBlockPassManager_New::doInitialization(Function &F) {
bool Changed = false;
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
Changed |= BP->doInitialization(F);
}
return Changed;
}
inline bool BasicBlockPassManager_New::doFinalization(Function &F) {
bool Changed = false;
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
Changed |= BP->doFinalization(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// FunctionPassManager_New implementation
/// Create new Function pass manager
FunctionPassManager_New::FunctionPassManager_New() {
FPM = new FunctionPassManagerImpl_New(0);
}
FunctionPassManager_New::FunctionPassManager_New(ModuleProvider *P) {
FPM = new FunctionPassManagerImpl_New(0);
MP = P;
}
/// add - Add a pass to the queue of passes to run. This passes
/// ownership of the Pass to the PassManager. When the
/// PassManager_X is destroyed, the pass will be destroyed as well, so
/// there is no need to delete the pass. (TODO delete passes.)
/// This implies that all passes MUST be allocated with 'new'.
void FunctionPassManager_New::add(Pass *P) {
FPM->add(P);
}
/// Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
bool FunctionPassManager_New::runOnModule(Module &M) {
return FPM->runOnModule(M);
}
/// run - Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
///
bool FunctionPassManager_New::run(Function &F) {
std::string errstr;
if (MP->materializeFunction(&F, &errstr)) {
cerr << "Error reading bytecode file: " << errstr << "\n";
abort();
}
return FPM->run(F);
}
/// doInitialization - Run all of the initializers for the function passes.
///
bool FunctionPassManager_New::doInitialization() {
return FPM->doInitialization(*MP->getModule());
}
/// doFinalization - Run all of the initializers for the function passes.
///
bool FunctionPassManager_New::doFinalization() {
return FPM->doFinalization(*MP->getModule());
}
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl_New implementation
/// Add pass P into the pass manager queue. If P is a BasicBlockPass then
/// either use it into active basic block pass manager or create new basic
/// block pass manager to handle pass P.
bool
FunctionPassManagerImpl_New::addPass(Pass *P) {
// If P is a BasicBlockPass then use BasicBlockPassManager_New.
if (BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P)) {
if (!activeBBPassManager || !activeBBPassManager->addPass(BP)) {
// If active manager exists then clear its analysis info.
if (activeBBPassManager)
activeBBPassManager->initializeAnalysisInfo();
// Create and add new manager
activeBBPassManager =
new BasicBlockPassManager_New(getDepth() + 1);
addPassToManager(activeBBPassManager, false);
// Add pass into new manager. This time it must succeed.
if (!activeBBPassManager->addPass(BP))
assert(0 && "Unable to add Pass");
}
if (!ForcedLastUses.empty())
TPM->setLastUser(ForcedLastUses, this);
return true;
}
FunctionPass *FP = dynamic_cast<FunctionPass *>(P);
if (!FP)
return false;
// If this pass does not preserve anlysis that is used by other passes
// managed by this manager than it is not a suiable pass for this manager.
if (!manageablePass(P))
return false;
addPassToManager (FP);
// If active manager exists then clear its analysis info.
if (activeBBPassManager) {
activeBBPassManager->initializeAnalysisInfo();
activeBBPassManager = NULL;
}
return true;
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool FunctionPassManagerImpl_New::runOnModule(Module &M) {
bool Changed = doInitialization(M);
initializeAnalysisInfo();
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
this->runOnFunction(*I);
return Changed | doFinalization(M);
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool FunctionPassManagerImpl_New::runOnFunction(Function &F) {
bool Changed = false;
initializeAnalysisInfo();
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
Changed |= FP->runOnFunction(F);
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
removeDeadPasses(P);
}
return Changed;
}
inline bool FunctionPassManagerImpl_New::doInitialization(Module &M) {
bool Changed = false;
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
Changed |= FP->doInitialization(M);
}
return Changed;
}
inline bool FunctionPassManagerImpl_New::doFinalization(Module &M) {
bool Changed = false;
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
Changed |= FP->doFinalization(M);
}
return Changed;
}
// Execute all the passes managed by this top level manager.
// Return true if any function is modified by a pass.
bool FunctionPassManagerImpl_New::run(Function &F) {
bool Changed = false;
for (std::vector<Pass *>::iterator I = passManagersBegin(),
E = passManagersEnd(); I != E; ++I) {
FunctionPass *FP = dynamic_cast<FunctionPass *>(*I);
Changed |= FP->runOnFunction(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// ModulePassManager implementation
/// Add P into pass vector if it is manageble. If P is a FunctionPass
/// then use FunctionPassManagerImpl_New to manage it. Return false if P
/// is not manageable by this manager.
bool
ModulePassManager_New::addPass(Pass *P) {
// If P is FunctionPass then use function pass maanager.
if (FunctionPass *FP = dynamic_cast<FunctionPass*>(P)) {
if (!activeFunctionPassManager || !activeFunctionPassManager->addPass(P)) {
// If active manager exists then clear its analysis info.
if (activeFunctionPassManager)
activeFunctionPassManager->initializeAnalysisInfo();
// Create and add new manager
activeFunctionPassManager =
new FunctionPassManagerImpl_New(getDepth() + 1);
addPassToManager(activeFunctionPassManager, false);
// Add pass into new manager. This time it must succeed.
if (!activeFunctionPassManager->addPass(FP))
assert(0 && "Unable to add pass");
}
if (!ForcedLastUses.empty())
TPM->setLastUser(ForcedLastUses, this);
return true;
}
ModulePass *MP = dynamic_cast<ModulePass *>(P);
if (!MP)
return false;
// If this pass does not preserve anlysis that is used by other passes
// managed by this manager than it is not a suiable pass for this manager.
if (!manageablePass(P))
return false;
addPassToManager(MP);
// If active manager exists then clear its analysis info.
if (activeFunctionPassManager) {
activeFunctionPassManager->initializeAnalysisInfo();
activeFunctionPassManager = NULL;
}
return true;
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnModule method. Keep track of whether any of the passes modifies
/// the module, and if so, return true.
bool
ModulePassManager_New::runOnModule(Module &M) {
bool Changed = false;
initializeAnalysisInfo();
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
e = passVectorEnd(); itr != e; ++itr) {
Pass *P = *itr;
ModulePass *MP = dynamic_cast<ModulePass*>(P);
Changed |= MP->runOnModule(M);
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
removeDeadPasses(P);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManagerImpl implementation
// PassManager_New implementation
/// Add P into active pass manager or use new module pass manager to
/// manage it.
bool PassManagerImpl_New::addPass(Pass *P) {
if (!activeManager || !activeManager->addPass(P)) {
activeManager = new ModulePassManager_New(getDepth() + 1);
addPassManager(activeManager);
return activeManager->addPass(P);
}
return true;
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManagerImpl_New::run(Module &M) {
bool Changed = false;
for (std::vector<Pass *>::iterator I = passManagersBegin(),
E = passManagersEnd(); I != E; ++I) {
ModulePassManager_New *MP = dynamic_cast<ModulePassManager_New *>(*I);
Changed |= MP->runOnModule(M);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManager implementation
/// Create new pass manager
PassManager_New::PassManager_New() {
PM = new PassManagerImpl_New(0);
}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void
PassManager_New::add(Pass *P) {
PM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool
PassManager_New::run(Module &M) {
return PM->run(M);
}