llvm/lib/VMCore/Module.cpp
2012-04-20 23:11:38 +00:00

596 lines
21 KiB
C++

//===-- Module.cpp - Implement the Module class ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/InstrTypes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GVMaterializer.h"
#include "llvm/LLVMContext.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/LeakDetector.h"
#include "SymbolTableListTraitsImpl.h"
#include <algorithm>
#include <cstdarg>
#include <cstdlib>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Methods to implement the globals and functions lists.
//
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file.
template class llvm::SymbolTableListTraits<Function, Module>;
template class llvm::SymbolTableListTraits<GlobalVariable, Module>;
template class llvm::SymbolTableListTraits<GlobalAlias, Module>;
//===----------------------------------------------------------------------===//
// Primitive Module methods.
//
Module::Module(StringRef MID, LLVMContext& C)
: Context(C), Materializer(NULL), ModuleID(MID) {
ValSymTab = new ValueSymbolTable();
NamedMDSymTab = new StringMap<NamedMDNode *>();
Context.addModule(this);
}
Module::~Module() {
Context.removeModule(this);
dropAllReferences();
GlobalList.clear();
FunctionList.clear();
AliasList.clear();
LibraryList.clear();
NamedMDList.clear();
delete ValSymTab;
delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
}
/// Target endian information.
Module::Endianness Module::getEndianness() const {
StringRef temp = DataLayout;
Module::Endianness ret = AnyEndianness;
while (!temp.empty()) {
std::pair<StringRef, StringRef> P = getToken(temp, "-");
StringRef token = P.first;
temp = P.second;
if (token[0] == 'e') {
ret = LittleEndian;
} else if (token[0] == 'E') {
ret = BigEndian;
}
}
return ret;
}
/// Target Pointer Size information.
Module::PointerSize Module::getPointerSize() const {
StringRef temp = DataLayout;
Module::PointerSize ret = AnyPointerSize;
while (!temp.empty()) {
std::pair<StringRef, StringRef> TmpP = getToken(temp, "-");
temp = TmpP.second;
TmpP = getToken(TmpP.first, ":");
StringRef token = TmpP.second, signalToken = TmpP.first;
if (signalToken[0] == 'p') {
int size = 0;
getToken(token, ":").first.getAsInteger(10, size);
if (size == 32)
ret = Pointer32;
else if (size == 64)
ret = Pointer64;
}
}
return ret;
}
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
GlobalValue *Module::getNamedValue(StringRef Name) const {
return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
}
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
/// This ID is uniqued across modules in the current LLVMContext.
unsigned Module::getMDKindID(StringRef Name) const {
return Context.getMDKindID(Name);
}
/// getMDKindNames - Populate client supplied SmallVector with the name for
/// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
/// so it is filled in as an empty string.
void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
return Context.getMDKindNames(Result);
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the functions in the module.
//
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return
// it. This is nice because it allows most passes to get away with not handling
// the symbol table directly for this common task.
//
Constant *Module::getOrInsertFunction(StringRef Name,
FunctionType *Ty,
AttrListPtr AttributeList) {
// See if we have a definition for the specified function already.
GlobalValue *F = getNamedValue(Name);
if (F == 0) {
// Nope, add it
Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name);
if (!New->isIntrinsic()) // Intrinsics get attrs set on construction
New->setAttributes(AttributeList);
FunctionList.push_back(New);
return New; // Return the new prototype.
}
// Okay, the function exists. Does it have externally visible linkage?
if (F->hasLocalLinkage()) {
// Clear the function's name.
F->setName("");
// Retry, now there won't be a conflict.
Constant *NewF = getOrInsertFunction(Name, Ty);
F->setName(Name);
return NewF;
}
// If the function exists but has the wrong type, return a bitcast to the
// right type.
if (F->getType() != PointerType::getUnqual(Ty))
return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty));
// Otherwise, we just found the existing function or a prototype.
return F;
}
Constant *Module::getOrInsertTargetIntrinsic(StringRef Name,
FunctionType *Ty,
AttrListPtr AttributeList) {
// See if we have a definition for the specified function already.
GlobalValue *F = getNamedValue(Name);
if (F == 0) {
// Nope, add it
Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name);
New->setAttributes(AttributeList);
FunctionList.push_back(New);
return New; // Return the new prototype.
}
// Otherwise, we just found the existing function or a prototype.
return F;
}
Constant *Module::getOrInsertFunction(StringRef Name,
FunctionType *Ty) {
AttrListPtr AttributeList = AttrListPtr::get((AttributeWithIndex *)0, 0);
return getOrInsertFunction(Name, Ty, AttributeList);
}
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return it.
// This version of the method takes a null terminated list of function
// arguments, which makes it easier for clients to use.
//
Constant *Module::getOrInsertFunction(StringRef Name,
AttrListPtr AttributeList,
Type *RetTy, ...) {
va_list Args;
va_start(Args, RetTy);
// Build the list of argument types...
std::vector<Type*> ArgTys;
while (Type *ArgTy = va_arg(Args, Type*))
ArgTys.push_back(ArgTy);
va_end(Args);
// Build the function type and chain to the other getOrInsertFunction...
return getOrInsertFunction(Name,
FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
Constant *Module::getOrInsertFunction(StringRef Name,
Type *RetTy, ...) {
va_list Args;
va_start(Args, RetTy);
// Build the list of argument types...
std::vector<Type*> ArgTys;
while (Type *ArgTy = va_arg(Args, Type*))
ArgTys.push_back(ArgTy);
va_end(Args);
// Build the function type and chain to the other getOrInsertFunction...
return getOrInsertFunction(Name,
FunctionType::get(RetTy, ArgTys, false),
AttrListPtr::get((AttributeWithIndex *)0, 0));
}
// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
Function *Module::getFunction(StringRef Name) const {
return dyn_cast_or_null<Function>(getNamedValue(Name));
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
/// getGlobalVariable - Look up the specified global variable in the module
/// symbol table. If it does not exist, return null. The type argument
/// should be the underlying type of the global, i.e., it should not have
/// the top-level PointerType, which represents the address of the global.
/// If AllowLocal is set to true, this function will return types that
/// have an local. By default, these types are not returned.
///
GlobalVariable *Module::getGlobalVariable(StringRef Name,
bool AllowLocal) const {
if (GlobalVariable *Result =
dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
if (AllowLocal || !Result->hasLocalLinkage())
return Result;
return 0;
}
/// getOrInsertGlobal - Look up the specified global in the module symbol table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct delclaration, return the
/// existing global.
Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
// See if we have a definition for the specified global already.
GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
if (GV == 0) {
// Nope, add it
GlobalVariable *New =
new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
0, Name);
return New; // Return the new declaration.
}
// If the variable exists but has the wrong type, return a bitcast to the
// right type.
if (GV->getType() != PointerType::getUnqual(Ty))
return ConstantExpr::getBitCast(GV, PointerType::getUnqual(Ty));
// Otherwise, we just found the existing function or a prototype.
return GV;
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
// getNamedAlias - Look up the specified global in the module symbol table.
// If it does not exist, return null.
//
GlobalAlias *Module::getNamedAlias(StringRef Name) const {
return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
}
/// getNamedMetadata - Return the first NamedMDNode in the module with the
/// specified name. This method returns null if a NamedMDNode with the
/// specified name is not found.
NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
SmallString<256> NameData;
StringRef NameRef = Name.toStringRef(NameData);
return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef);
}
/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
NamedMDNode *&NMD =
(*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name];
if (!NMD) {
NMD = new NamedMDNode(Name);
NMD->setParent(this);
NamedMDList.push_back(NMD);
}
return NMD;
}
/// eraseNamedMetadata - Remove the given NamedMDNode from this module and
/// delete it.
void Module::eraseNamedMetadata(NamedMDNode *NMD) {
static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName());
NamedMDList.erase(NMD);
}
/// getModuleFlagsMetadata - Returns the module flags in the provided vector.
void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
const NamedMDNode *ModFlags = getModuleFlagsMetadata();
if (!ModFlags) return;
for (unsigned i = 0, e = ModFlags->getNumOperands(); i != e; ++i) {
MDNode *Flag = ModFlags->getOperand(i);
ConstantInt *Behavior = cast<ConstantInt>(Flag->getOperand(0));
MDString *Key = cast<MDString>(Flag->getOperand(1));
Value *Val = Flag->getOperand(2);
Flags.push_back(ModuleFlagEntry(ModFlagBehavior(Behavior->getZExtValue()),
Key, Val));
}
}
/// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. This method returns null if there are no
/// module-level flags.
NamedMDNode *Module::getModuleFlagsMetadata() const {
return getNamedMetadata("llvm.module.flags");
}
/// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. If module-level flags aren't found, it
/// creates the named metadata that contains them.
NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
return getOrInsertNamedMetadata("llvm.module.flags");
}
/// addModuleFlag - Add a module-level flag to the module-level flags
/// metadata. It will create the module-level flags named metadata if it doesn't
/// already exist.
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Value *Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
Value *Ops[3] = {
ConstantInt::get(Int32Ty, Behavior), MDString::get(Context, Key), Val
};
getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
uint32_t Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
}
void Module::addModuleFlag(MDNode *Node) {
assert(Node->getNumOperands() == 3 &&
"Invalid number of operands for module flag!");
assert(isa<ConstantInt>(Node->getOperand(0)) &&
isa<MDString>(Node->getOperand(1)) &&
"Invalid operand types for module flag!");
getOrInsertModuleFlagsMetadata()->addOperand(Node);
}
//===----------------------------------------------------------------------===//
// Methods to control the materialization of GlobalValues in the Module.
//
void Module::setMaterializer(GVMaterializer *GVM) {
assert(!Materializer &&
"Module already has a GVMaterializer. Call MaterializeAllPermanently"
" to clear it out before setting another one.");
Materializer.reset(GVM);
}
bool Module::isMaterializable(const GlobalValue *GV) const {
if (Materializer)
return Materializer->isMaterializable(GV);
return false;
}
bool Module::isDematerializable(const GlobalValue *GV) const {
if (Materializer)
return Materializer->isDematerializable(GV);
return false;
}
bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) {
if (Materializer)
return Materializer->Materialize(GV, ErrInfo);
return false;
}
void Module::Dematerialize(GlobalValue *GV) {
if (Materializer)
return Materializer->Dematerialize(GV);
}
bool Module::MaterializeAll(std::string *ErrInfo) {
if (!Materializer)
return false;
return Materializer->MaterializeModule(this, ErrInfo);
}
bool Module::MaterializeAllPermanently(std::string *ErrInfo) {
if (MaterializeAll(ErrInfo))
return true;
Materializer.reset();
return false;
}
//===----------------------------------------------------------------------===//
// Other module related stuff.
//
// dropAllReferences() - This function causes all the subelements to "let go"
// of all references that they are maintaining. This allows one to 'delete' a
// whole module at a time, even though there may be circular references... first
// all references are dropped, and all use counts go to zero. Then everything
// is deleted for real. Note that no operations are valid on an object that
// has "dropped all references", except operator delete.
//
void Module::dropAllReferences() {
for(Module::iterator I = begin(), E = end(); I != E; ++I)
I->dropAllReferences();
for(Module::global_iterator I = global_begin(), E = global_end(); I != E; ++I)
I->dropAllReferences();
for(Module::alias_iterator I = alias_begin(), E = alias_end(); I != E; ++I)
I->dropAllReferences();
}
void Module::addLibrary(StringRef Lib) {
for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I)
if (*I == Lib)
return;
LibraryList.push_back(Lib);
}
void Module::removeLibrary(StringRef Lib) {
LibraryListType::iterator I = LibraryList.begin();
LibraryListType::iterator E = LibraryList.end();
for (;I != E; ++I)
if (*I == Lib) {
LibraryList.erase(I);
return;
}
}
//===----------------------------------------------------------------------===//
// Type finding functionality.
//===----------------------------------------------------------------------===//
namespace {
/// TypeFinder - Walk over a module, identifying all of the types that are
/// used by the module.
class TypeFinder {
// To avoid walking constant expressions multiple times and other IR
// objects, we keep several helper maps.
DenseSet<const Value*> VisitedConstants;
DenseSet<Type*> VisitedTypes;
std::vector<StructType*> &StructTypes;
public:
TypeFinder(std::vector<StructType*> &structTypes)
: StructTypes(structTypes) {}
void run(const Module &M) {
// Get types from global variables.
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I) {
incorporateType(I->getType());
if (I->hasInitializer())
incorporateValue(I->getInitializer());
}
// Get types from aliases.
for (Module::const_alias_iterator I = M.alias_begin(),
E = M.alias_end(); I != E; ++I) {
incorporateType(I->getType());
if (const Value *Aliasee = I->getAliasee())
incorporateValue(Aliasee);
}
SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
// Get types from functions.
for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
incorporateType(FI->getType());
for (Function::const_iterator BB = FI->begin(), E = FI->end();
BB != E;++BB)
for (BasicBlock::const_iterator II = BB->begin(),
E = BB->end(); II != E; ++II) {
const Instruction &I = *II;
// Incorporate the type of the instruction and all its operands.
incorporateType(I.getType());
for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
OI != OE; ++OI)
incorporateValue(*OI);
// Incorporate types hiding in metadata.
I.getAllMetadataOtherThanDebugLoc(MDForInst);
for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
incorporateMDNode(MDForInst[i].second);
MDForInst.clear();
}
}
for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
E = M.named_metadata_end(); I != E; ++I) {
const NamedMDNode *NMD = I;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
incorporateMDNode(NMD->getOperand(i));
}
}
private:
void incorporateType(Type *Ty) {
// Check to see if we're already visited this type.
if (!VisitedTypes.insert(Ty).second)
return;
// If this is a structure or opaque type, add a name for the type.
if (StructType *STy = dyn_cast<StructType>(Ty))
StructTypes.push_back(STy);
// Recursively walk all contained types.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
incorporateType(*I);
}
/// incorporateValue - This method is used to walk operand lists finding
/// types hiding in constant expressions and other operands that won't be
/// walked in other ways. GlobalValues, basic blocks, instructions, and
/// inst operands are all explicitly enumerated.
void incorporateValue(const Value *V) {
if (const MDNode *M = dyn_cast<MDNode>(V))
return incorporateMDNode(M);
if (!isa<Constant>(V) || isa<GlobalValue>(V)) return;
// Already visited?
if (!VisitedConstants.insert(V).second)
return;
// Check this type.
incorporateType(V->getType());
// Look in operands for types.
const User *U = cast<User>(V);
for (Constant::const_op_iterator I = U->op_begin(),
E = U->op_end(); I != E;++I)
incorporateValue(*I);
}
void incorporateMDNode(const MDNode *V) {
// Already visited?
if (!VisitedConstants.insert(V).second)
return;
// Look in operands for types.
for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i)
if (Value *Op = V->getOperand(i))
incorporateValue(Op);
}
};
} // end anonymous namespace
void Module::findUsedStructTypes(std::vector<StructType*> &StructTypes) const {
TypeFinder(StructTypes).run(*this);
}