llvm/lib/Transforms/IPO/MergeFunctions.cpp
Nick Lewycky c9dcbed6a3 Work in progress, cleaning up MergeFuncs.
Further clean up the comparison function by removing overly generalized
"domains".
Remove all understanding of ELF aliases and simplify folding code and comments.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110434 91177308-0d34-0410-b5e6-96231b3b80d8
2010-08-06 07:21:30 +00:00

656 lines
22 KiB
C++

//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass looks for equivalent functions that are mergable and folds them.
//
// A hash is computed from the function, based on its type and number of
// basic blocks.
//
// Once all hashes are computed, we perform an expensive equality comparison
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
// important that the hash function be high quality. The equality comparison
// iterates through each instruction in each basic block.
//
// When a match is found the functions are folded. If both functions are
// overridable, we move the functionality into a new internal function and
// leave two overridable thunks to it.
//
//===----------------------------------------------------------------------===//
//
// Future work:
//
// * virtual functions.
//
// Many functions have their address taken by the virtual function table for
// the object they belong to. However, as long as it's only used for a lookup
// and call, this is irrelevant, and we'd like to fold such implementations.
//
// * switch from n^2 pair-wise comparisons to an n-way comparison for each
// bucket.
//
// * be smarter about bitcast.
//
// In order to fold functions, we will sometimes add either bitcast instructions
// or bitcast constant expressions. Unfortunately, this can confound further
// analysis since the two functions differ where one has a bitcast and the
// other doesn't. We should learn to peer through bitcasts without imposing bad
// performance properties.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mergefunc"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include <map>
#include <vector>
using namespace llvm;
STATISTIC(NumFunctionsMerged, "Number of functions merged");
namespace {
/// MergeFunctions finds functions which will generate identical machine code,
/// by considering all pointer types to be equivalent. Once identified,
/// MergeFunctions will fold them by replacing a call to one to a call to a
/// bitcast of the other.
///
struct MergeFunctions : public ModulePass {
static char ID; // Pass identification, replacement for typeid
MergeFunctions() : ModulePass(&ID) {}
bool runOnModule(Module &M);
};
}
char MergeFunctions::ID = 0;
INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
ModulePass *llvm::createMergeFunctionsPass() {
return new MergeFunctions();
}
// ===----------------------------------------------------------------------===
// Comparison of functions
// ===----------------------------------------------------------------------===
namespace {
class FunctionComparator {
public:
FunctionComparator(TargetData *TD, Function *F1, Function *F2)
: F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
// Compare - test whether the two functions have equivalent behaviour.
bool Compare();
private:
// Compare - test whether two basic blocks have equivalent behaviour.
bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
// Enumerate - Assign or look up previously assigned numbers for the two
// values, and return whether the numbers are equal. Numbers are assigned in
// the order visited.
bool Enumerate(const Value *V1, const Value *V2);
// isEquivalentOperation - Compare two Instructions for equivalence, similar
// to Instruction::isSameOperationAs but with modifications to the type
// comparison.
bool isEquivalentOperation(const Instruction *I1,
const Instruction *I2) const;
// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
const GetElementPtrInst *GEP2) {
return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
}
// isEquivalentType - Compare two Types, treating all pointer types as equal.
bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
// The two functions undergoing comparison.
Function *F1, *F2;
TargetData *TD;
typedef DenseMap<const Value *, unsigned long> IDMap;
IDMap Map1, Map2;
unsigned long IDMap1Count, IDMap2Count;
};
}
/// Compute a number which is guaranteed to be equal for two equivalent
/// functions, but is very likely to be different for different functions. This
/// needs to be computed as efficiently as possible.
static unsigned long ProfileFunction(const Function *F) {
const FunctionType *FTy = F->getFunctionType();
FoldingSetNodeID ID;
ID.AddInteger(F->size());
ID.AddInteger(F->getCallingConv());
ID.AddBoolean(F->hasGC());
ID.AddBoolean(FTy->isVarArg());
ID.AddInteger(FTy->getReturnType()->getTypeID());
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
ID.AddInteger(FTy->getParamType(i)->getTypeID());
return ID.ComputeHash();
}
/// isEquivalentType - any two pointers in the same address space are
/// equivalent. Otherwise, standard type equivalence rules apply.
bool FunctionComparator::isEquivalentType(const Type *Ty1,
const Type *Ty2) const {
if (Ty1 == Ty2)
return true;
if (Ty1->getTypeID() != Ty2->getTypeID())
return false;
switch(Ty1->getTypeID()) {
default:
llvm_unreachable("Unknown type!");
// Fall through in Release mode.
case Type::IntegerTyID:
case Type::OpaqueTyID:
// Ty1 == Ty2 would have returned true earlier.
return false;
case Type::VoidTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
case Type::LabelTyID:
case Type::MetadataTyID:
return true;
case Type::PointerTyID: {
const PointerType *PTy1 = cast<PointerType>(Ty1);
const PointerType *PTy2 = cast<PointerType>(Ty2);
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
}
case Type::StructTyID: {
const StructType *STy1 = cast<StructType>(Ty1);
const StructType *STy2 = cast<StructType>(Ty2);
if (STy1->getNumElements() != STy2->getNumElements())
return false;
if (STy1->isPacked() != STy2->isPacked())
return false;
for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
return false;
}
return true;
}
case Type::UnionTyID: {
const UnionType *UTy1 = cast<UnionType>(Ty1);
const UnionType *UTy2 = cast<UnionType>(Ty2);
// TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc.
if (UTy1->getNumElements() != UTy2->getNumElements())
return false;
for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
return false;
}
return true;
}
case Type::FunctionTyID: {
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy1->getNumParams() != FTy2->getNumParams() ||
FTy1->isVarArg() != FTy2->isVarArg())
return false;
if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
return false;
for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
return false;
}
return true;
}
case Type::ArrayTyID: {
const ArrayType *ATy1 = cast<ArrayType>(Ty1);
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy1->getNumElements() == ATy2->getNumElements() &&
isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
}
case Type::VectorTyID: {
const VectorType *VTy1 = cast<VectorType>(Ty1);
const VectorType *VTy2 = cast<VectorType>(Ty2);
return VTy1->getNumElements() == VTy2->getNumElements() &&
isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
}
}
}
/// isEquivalentOperation - determine whether the two operations are the same
/// except that pointer-to-A and pointer-to-B are equivalent. This should be
/// kept in sync with Instruction::isSameOperationAs.
bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
const Instruction *I2) const {
if (I1->getOpcode() != I2->getOpcode() ||
I1->getNumOperands() != I2->getNumOperands() ||
!isEquivalentType(I1->getType(), I2->getType()) ||
!I1->hasSameSubclassOptionalData(I2))
return false;
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same type
for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
if (!isEquivalentType(I1->getOperand(i)->getType(),
I2->getOperand(i)->getType()))
return false;
// Check special state that is a part of some instructions.
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
if (const CallInst *CI = dyn_cast<CallInst>(I1))
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
CI->getAttributes().getRawPointer() ==
cast<CallInst>(I2)->getAttributes().getRawPointer();
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
CI->getAttributes().getRawPointer() ==
cast<InvokeInst>(I2)->getAttributes().getRawPointer();
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
return false;
for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
return false;
return true;
}
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
return false;
for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
return false;
return true;
}
return true;
}
/// isEquivalentGEP - determine whether two GEP operations perform the same
/// underlying arithmetic.
bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
const GEPOperator *GEP2) {
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
Indices1.data(), Indices1.size());
uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
Indices2.data(), Indices2.size());
return Offset1 == Offset2;
}
if (GEP1->getPointerOperand()->getType() !=
GEP2->getPointerOperand()->getType())
return false;
if (GEP1->getNumOperands() != GEP2->getNumOperands())
return false;
for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
return false;
}
return true;
}
/// Enumerate - Compare two values used by the two functions under pair-wise
/// comparison. If this is the first time the values are seen, they're added to
/// the mapping so that we will detect mismatches on next use.
bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
// Check for function @f1 referring to itself and function @f2 referring to
// itself, or referring to each other, or both referring to either of them.
// They're all equivalent if the two functions are otherwise equivalent.
if (V1 == F1 && V2 == F2)
return true;
if (V1 == F2 && V2 == F1)
return true;
// TODO: constant expressions with GEP or references to F1 or F2.
if (isa<Constant>(V1))
return V1 == V2;
if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
const InlineAsm *IA1 = cast<InlineAsm>(V1);
const InlineAsm *IA2 = cast<InlineAsm>(V2);
return IA1->getAsmString() == IA2->getAsmString() &&
IA1->getConstraintString() == IA2->getConstraintString();
}
unsigned long &ID1 = Map1[V1];
if (!ID1)
ID1 = ++IDMap1Count;
unsigned long &ID2 = Map2[V2];
if (!ID2)
ID2 = ++IDMap2Count;
return ID1 == ID2;
}
// Compare - test whether two basic blocks have equivalent behaviour.
bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
do {
if (!Enumerate(F1I, F2I))
return false;
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
if (!GEP2)
return false;
if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
return false;
if (!isEquivalentGEP(GEP1, GEP2))
return false;
} else {
if (!isEquivalentOperation(F1I, F2I))
return false;
assert(F1I->getNumOperands() == F2I->getNumOperands());
for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
Value *OpF1 = F1I->getOperand(i);
Value *OpF2 = F2I->getOperand(i);
if (!Enumerate(OpF1, OpF2))
return false;
if (OpF1->getValueID() != OpF2->getValueID() ||
!isEquivalentType(OpF1->getType(), OpF2->getType()))
return false;
}
}
++F1I, ++F2I;
} while (F1I != F1E && F2I != F2E);
return F1I == F1E && F2I == F2E;
}
bool FunctionComparator::Compare() {
// We need to recheck everything, but check the things that weren't included
// in the hash first.
if (F1->getAttributes() != F2->getAttributes())
return false;
if (F1->hasGC() != F2->hasGC())
return false;
if (F1->hasGC() && F1->getGC() != F2->getGC())
return false;
if (F1->hasSection() != F2->hasSection())
return false;
if (F1->hasSection() && F1->getSection() != F2->getSection())
return false;
if (F1->isVarArg() != F2->isVarArg())
return false;
// TODO: if it's internal and only used in direct calls, we could handle this
// case too.
if (F1->getCallingConv() != F2->getCallingConv())
return false;
if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
return false;
assert(F1->arg_size() == F2->arg_size() &&
"Identical functions have a different number of args.");
// Visit the arguments so that they get enumerated in the order they're
// passed in.
for (Function::const_arg_iterator f1i = F1->arg_begin(),
f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
if (!Enumerate(f1i, f2i))
llvm_unreachable("Arguments repeat");
}
// We need to do an ordered walk since the actual ordering of the blocks in
// the linked list is immaterial. Our walk starts at the entry block for both
// functions, then takes each block from each terminator in order. As an
// artifact, this also means that unreachable blocks are ignored.
SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
F1BBs.push_back(&F1->getEntryBlock());
F2BBs.push_back(&F2->getEntryBlock());
VisitedBBs.insert(F1BBs[0]);
while (!F1BBs.empty()) {
const BasicBlock *F1BB = F1BBs.pop_back_val();
const BasicBlock *F2BB = F2BBs.pop_back_val();
if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
return false;
const TerminatorInst *F1TI = F1BB->getTerminator();
const TerminatorInst *F2TI = F2BB->getTerminator();
assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
continue;
F1BBs.push_back(F1TI->getSuccessor(i));
F2BBs.push_back(F2TI->getSuccessor(i));
}
}
return true;
}
// ===----------------------------------------------------------------------===
// Folding of functions
// ===----------------------------------------------------------------------===
// Cases:
// * F is external strong, G is external strong:
// turn G into a thunk to F
// * F is external strong, G is external weak:
// turn G into a thunk to F
// * F is external weak, G is external weak:
// unfoldable
// * F is external strong, G is internal:
// turn G into a thunk to F
// * F is internal, G is external weak
// turn G into a thunk to F
// * F is internal, G is internal:
// turn G into a thunk to F
//
// external means 'externally visible' linkage != (internal,private)
// internal means linkage == (internal,private)
// weak means linkage mayBeOverridable
/// ThunkGToF - Replace G with a simple tail call to bitcast(F). Also replace
/// direct uses of G with bitcast(F).
static void ThunkGToF(Function *F, Function *G) {
if (!G->mayBeOverridden()) {
// Redirect direct callers of G to F.
Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
UI != UE;) {
Value::use_iterator TheIter = UI;
++UI;
CallSite CS(*TheIter);
if (CS && CS.isCallee(TheIter))
TheIter.getUse().set(BitcastF);
}
}
// If G was internal then we may have replaced all uses if G with F. If so,
// stop here and delete G. There's no need for a thunk.
if (G->hasLocalLinkage() && G->use_empty()) {
G->eraseFromParent();
return;
}
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
G->getParent());
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
SmallVector<Value *, 16> Args;
unsigned i = 0;
const FunctionType *FFTy = F->getFunctionType();
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
AI != AE; ++AI) {
if (FFTy->getParamType(i) == AI->getType()) {
Args.push_back(AI);
} else {
Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB));
}
++i;
}
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
CI->setTailCall();
CI->setCallingConv(F->getCallingConv());
if (NewG->getReturnType()->isVoidTy()) {
ReturnInst::Create(F->getContext(), BB);
} else if (CI->getType() != NewG->getReturnType()) {
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
ReturnInst::Create(F->getContext(), BCI, BB);
} else {
ReturnInst::Create(F->getContext(), CI, BB);
}
NewG->copyAttributesFrom(G);
NewG->takeName(G);
G->replaceAllUsesWith(NewG);
G->eraseFromParent();
}
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
Function *F = FnVec[i];
Function *G = FnVec[j];
if (F->isWeakForLinker() && !G->isWeakForLinker()) {
std::swap(FnVec[i], FnVec[j]);
std::swap(F, G);
}
if (F->isWeakForLinker()) {
assert(G->isWeakForLinker());
// Make them both thunks to the same internal function.
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
F->getParent());
H->copyAttributesFrom(F);
H->takeName(F);
F->replaceAllUsesWith(H);
ThunkGToF(F, G);
ThunkGToF(F, H);
F->setAlignment(std::max(G->getAlignment(), H->getAlignment()));
F->setLinkage(GlobalValue::InternalLinkage);
} else {
ThunkGToF(F, G);
}
++NumFunctionsMerged;
return true;
}
// ===----------------------------------------------------------------------===
// Pass definition
// ===----------------------------------------------------------------------===
bool MergeFunctions::runOnModule(Module &M) {
bool Changed = false;
std::map<unsigned long, std::vector<Function *> > FnMap;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration() || F->hasAvailableExternallyLinkage())
continue;
FnMap[ProfileFunction(F)].push_back(F);
}
TargetData *TD = getAnalysisIfAvailable<TargetData>();
bool LocalChanged;
do {
LocalChanged = false;
DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
for (std::map<unsigned long, std::vector<Function *> >::iterator
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
std::vector<Function *> &FnVec = I->second;
DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
for (int i = 0, e = FnVec.size(); i != e; ++i) {
for (int j = i + 1; j != e; ++j) {
bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare();
DEBUG(dbgs() << " " << FnVec[i]->getName()
<< (isEqual ? " == " : " != ")
<< FnVec[j]->getName() << "\n");
if (isEqual) {
if (fold(FnVec, i, j)) {
LocalChanged = true;
FnVec.erase(FnVec.begin() + j);
--j, --e;
}
}
}
}
}
Changed |= LocalChanged;
} while (LocalChanged);
return Changed;
}