llvm/lib/Target/SystemZ/SystemZPostRewrite.cpp
Jonas Paulsson 0af6488be2 [SystemZ] Merge the SystemZExpandPseudo pass into SystemZPostRewrite.
SystemZExpandPseudo:s only job was to expand LOCRMux instructions into jump
sequences. This needs to be done if expandLOCRPseudo() or expandSELRPseudo()
fails to find a legal opcode (all registers "high" or "low"). This task has
now been moved to SystemZPostRewrite while removing the SystemZExpandPseudo
pass.

It is in fact preferred to expand these pseudos directly after register
allocation in SystemZPostRewrite since the hinted register combinations are
then not subject to later optimizations.

Review: Ulrich Weigand
https://reviews.llvm.org/D67432

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371959 91177308-0d34-0410-b5e6-96231b3b80d8
2019-09-16 07:29:37 +00:00

273 lines
10 KiB
C++

//==---- SystemZPostRewrite.cpp - Select pseudos after RegAlloc ---*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that is run immediately after VirtRegRewriter
// but before MachineCopyPropagation. The purpose is to lower pseudos to
// target instructions before any later pass might substitute a register for
// another.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "SystemZInstrInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
using namespace llvm;
#define SYSTEMZ_POSTREWRITE_NAME "SystemZ Post Rewrite pass"
#define DEBUG_TYPE "systemz-postrewrite"
STATISTIC(MemFoldCopies, "Number of copies inserted before folded mem ops.");
STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)");
namespace llvm {
void initializeSystemZPostRewritePass(PassRegistry&);
}
namespace {
class SystemZPostRewrite : public MachineFunctionPass {
public:
static char ID;
SystemZPostRewrite() : MachineFunctionPass(ID) {
initializeSystemZPostRewritePass(*PassRegistry::getPassRegistry());
}
const SystemZInstrInfo *TII;
bool runOnMachineFunction(MachineFunction &Fn) override;
StringRef getPassName() const override { return SYSTEMZ_POSTREWRITE_NAME; }
private:
void selectLOCRMux(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI,
unsigned LowOpcode,
unsigned HighOpcode);
void selectSELRMux(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI,
unsigned LowOpcode,
unsigned HighOpcode);
bool expandCondMove(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
bool selectMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
bool selectMBB(MachineBasicBlock &MBB);
};
char SystemZPostRewrite::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(SystemZPostRewrite, "systemz-post-rewrite",
SYSTEMZ_POSTREWRITE_NAME, false, false)
/// Returns an instance of the Post Rewrite pass.
FunctionPass *llvm::createSystemZPostRewritePass(SystemZTargetMachine &TM) {
return new SystemZPostRewrite();
}
// MI is a load-register-on-condition pseudo instruction. Replace it with
// LowOpcode if source and destination are both low GR32s and HighOpcode if
// source and destination are both high GR32s. Otherwise, a branch sequence
// is created.
void SystemZPostRewrite::selectLOCRMux(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI,
unsigned LowOpcode,
unsigned HighOpcode) {
Register DestReg = MBBI->getOperand(0).getReg();
Register SrcReg = MBBI->getOperand(2).getReg();
bool DestIsHigh = SystemZ::isHighReg(DestReg);
bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
if (!DestIsHigh && !SrcIsHigh)
MBBI->setDesc(TII->get(LowOpcode));
else if (DestIsHigh && SrcIsHigh)
MBBI->setDesc(TII->get(HighOpcode));
else
expandCondMove(MBB, MBBI, NextMBBI);
}
// MI is a select pseudo instruction. Replace it with LowOpcode if source
// and destination are all low GR32s and HighOpcode if source and destination
// are all high GR32s. Otherwise, a branch sequence is created.
void SystemZPostRewrite::selectSELRMux(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI,
unsigned LowOpcode,
unsigned HighOpcode) {
Register DestReg = MBBI->getOperand(0).getReg();
Register Src1Reg = MBBI->getOperand(1).getReg();
Register Src2Reg = MBBI->getOperand(2).getReg();
bool DestIsHigh = SystemZ::isHighReg(DestReg);
bool Src1IsHigh = SystemZ::isHighReg(Src1Reg);
bool Src2IsHigh = SystemZ::isHighReg(Src2Reg);
// If sources and destination aren't all high or all low, we may be able to
// simplify the operation by moving one of the sources to the destination
// first. But only if this doesn't clobber the other source.
if (DestReg != Src1Reg && DestReg != Src2Reg) {
if (DestIsHigh != Src1IsHigh) {
BuildMI(*MBBI->getParent(), MBBI, MBBI->getDebugLoc(),
TII->get(SystemZ::COPY), DestReg)
.addReg(MBBI->getOperand(1).getReg(), getRegState(MBBI->getOperand(1)));
MBBI->getOperand(1).setReg(DestReg);
Src1Reg = DestReg;
Src1IsHigh = DestIsHigh;
} else if (DestIsHigh != Src2IsHigh) {
BuildMI(*MBBI->getParent(), MBBI, MBBI->getDebugLoc(),
TII->get(SystemZ::COPY), DestReg)
.addReg(MBBI->getOperand(2).getReg(), getRegState(MBBI->getOperand(2)));
MBBI->getOperand(2).setReg(DestReg);
Src2Reg = DestReg;
Src2IsHigh = DestIsHigh;
}
}
// If the destination (now) matches one source, prefer this to be first.
if (DestReg != Src1Reg && DestReg == Src2Reg) {
TII->commuteInstruction(*MBBI, false, 1, 2);
std::swap(Src1Reg, Src2Reg);
std::swap(Src1IsHigh, Src2IsHigh);
}
if (!DestIsHigh && !Src1IsHigh && !Src2IsHigh)
MBBI->setDesc(TII->get(LowOpcode));
else if (DestIsHigh && Src1IsHigh && Src2IsHigh)
MBBI->setDesc(TII->get(HighOpcode));
else
// Given the simplification above, we must already have a two-operand case.
expandCondMove(MBB, MBBI, NextMBBI);
}
// Replace MBBI by a branch sequence that performs a conditional move of
// operand 2 to the destination register. Operand 1 is expected to be the
// same register as the destination.
bool SystemZPostRewrite::expandCondMove(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineFunction &MF = *MBB.getParent();
const BasicBlock *BB = MBB.getBasicBlock();
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
Register DestReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(2).getReg();
unsigned CCValid = MI.getOperand(3).getImm();
unsigned CCMask = MI.getOperand(4).getImm();
assert(DestReg == MI.getOperand(1).getReg() &&
"Expected destination and first source operand to be the same.");
LivePhysRegs LiveRegs(TII->getRegisterInfo());
LiveRegs.addLiveOuts(MBB);
for (auto I = std::prev(MBB.end()); I != MBBI; --I)
LiveRegs.stepBackward(*I);
// Splice MBB at MI, moving the rest of the block into RestMBB.
MachineBasicBlock *RestMBB = MF.CreateMachineBasicBlock(BB);
MF.insert(std::next(MachineFunction::iterator(MBB)), RestMBB);
RestMBB->splice(RestMBB->begin(), &MBB, MI, MBB.end());
RestMBB->transferSuccessors(&MBB);
for (auto I = LiveRegs.begin(); I != LiveRegs.end(); ++I)
RestMBB->addLiveIn(*I);
// Create a new block MoveMBB to hold the move instruction.
MachineBasicBlock *MoveMBB = MF.CreateMachineBasicBlock(BB);
MF.insert(std::next(MachineFunction::iterator(MBB)), MoveMBB);
MoveMBB->addLiveIn(SrcReg);
for (auto I = LiveRegs.begin(); I != LiveRegs.end(); ++I)
MoveMBB->addLiveIn(*I);
// At the end of MBB, create a conditional branch to RestMBB if the
// condition is false, otherwise fall through to MoveMBB.
BuildMI(&MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask ^ CCValid).addMBB(RestMBB);
MBB.addSuccessor(RestMBB);
MBB.addSuccessor(MoveMBB);
// In MoveMBB, emit an instruction to move SrcReg into DestReg,
// then fall through to RestMBB.
BuildMI(*MoveMBB, MoveMBB->end(), DL, TII->get(SystemZ::COPY), DestReg)
.addReg(MI.getOperand(2).getReg(), getRegState(MI.getOperand(2)));
MoveMBB->addSuccessor(RestMBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
LOCRMuxJumps++;
return true;
}
/// If MBBI references a pseudo instruction that should be selected here,
/// do it and return true. Otherwise return false.
bool SystemZPostRewrite::selectMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
// Note: If this could be done during regalloc in foldMemoryOperandImpl()
// while also updating the LiveIntervals, there would be no need for the
// MemFoldPseudo to begin with.
int TargetMemOpcode = SystemZ::getTargetMemOpcode(Opcode);
if (TargetMemOpcode != -1) {
MI.setDesc(TII->get(TargetMemOpcode));
MI.tieOperands(0, 1);
Register DstReg = MI.getOperand(0).getReg();
MachineOperand &SrcMO = MI.getOperand(1);
if (DstReg != SrcMO.getReg()) {
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), DstReg)
.addReg(SrcMO.getReg());
SrcMO.setReg(DstReg);
MemFoldCopies++;
}
return true;
}
switch (Opcode) {
case SystemZ::LOCRMux:
selectLOCRMux(MBB, MBBI, NextMBBI, SystemZ::LOCR, SystemZ::LOCFHR);
return true;
case SystemZ::SELRMux:
selectSELRMux(MBB, MBBI, NextMBBI, SystemZ::SELR, SystemZ::SELFHR);
return true;
}
return false;
}
/// Iterate over the instructions in basic block MBB and select any
/// pseudo instructions. Return true if anything was modified.
bool SystemZPostRewrite::selectMBB(MachineBasicBlock &MBB) {
bool Modified = false;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= selectMI(MBB, MBBI, NMBBI);
MBBI = NMBBI;
}
return Modified;
}
bool SystemZPostRewrite::runOnMachineFunction(MachineFunction &MF) {
TII = static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
bool Modified = false;
for (auto &MBB : MF)
Modified |= selectMBB(MBB);
return Modified;
}